92
VEM’s for the numerical solution of PDE’s F. Brezzi IUSS-Istituto Universitario di Studi Superiori, Pavia, Italy IMATI-C.N.R., Pavia, Italy From Joint works with L. Beir˜ ao da Veiga, L.D. Marini, and A. Russo Koper, 19. februarja 2015 Franco Brezzi (vv) VEM Koper, 19. februarja 2015 1 / 92

VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

VEM’s for the numerical solution of PDE’s

F. Brezzi

IUSS-Istituto Universitario di Studi Superiori, Pavia, Italy

IMATI-C.N.R., Pavia, Italy

From Joint works with L. Beirao da Veiga, L.D. Marini, and A. Russo

Koper, 19. februarja 2015

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 1 / 92

Page 2: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Papers on VEMs from our group

L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A.Russo: Basic principles of Virtual Element Methods, M3AS 23 (2013)199-214.

F. Brezzi, L.D. Marini: Virtual Element Method for plate bending problems,CMAME 253 (2013) 455-462.

L. Beirao da Veiga, F. Brezzi, L.D. Marini: Virtual Elements for linearelasticity problems, SIAM JNA 51 (2013) 794-812

B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo: Equivalentprojectors for virtual element methods, Comput. Math. Appl. 66 (2013)376-391

F. Brezzi, R.S. Falk, L.D. Marini: Basic principles of mixed Virtual ElementMethod, M2AN 48 ( 2014), 1227-1240

L. Beirao da Veiga, F. Brezzi, L.D. Marini, A. Russo: The hitchhiker guideto the Virtual Element Method, M3AS 24 (2014) 1541-1573

L. Beirao da Veiga, F. Brezzi, L.D. Marini, A. Russo: H(div) and H(curl)VEM, (submitted; arXiv preprint arXiv:1407.6822)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 2 / 92

Page 3: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Outline1 Generalities on Scientific Computing

2 Variational Formulations and Functional Spaces

3 Galerkin approximations

4 Finite Element Methods

5 FEM approximations of various spaces

6 Difficulties with Finite Element Methods

7 Virtual Element Methods

8 Robustness of VEMs

9 Working with VEM’s

10 VEM Approximations of PDE’s

11 Some additional numerical results

12 Conclusions

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 3 / 92

Page 4: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Scientific Computing from a Mathematical point of view

The practical interest of Scientific Computing isknown to (almost) everybody.

Here I will discuss a (minor) part of the role ofMathematics in Scientific Computation

Within the M.S.O. (Modelization, Simulation,Optimization) paradigm I will focus on the ”S” part.

In particular, I will deal with ”basic instruments tocompute an approximate solution (as accurate asneeded) to a (system of) PDE’s”.

I apologize to Numerical Analysts for the first part ofthis lecture. I hope it will not be too boring.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 4 / 92

Page 5: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Maxwell Equations

Basic physical laws

∇ ·D = ρ ∇ · B = 0

∂B

∂t+∇∧ E = 0

∂D

∂t−∇ ∧H = J

Phenomenological laws (material dependent)

D = εE B = µH

Compatibility of the right-hand sides

∂ρ

∂t+∇ · J = 0

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 5 / 92

Page 6: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Incompressible Navier-Stokes Equations

ε =1

2(∇+∇T )u σ = (2µε+ Iidp)

ρ∂u

∂t+ u · ∇u +∇ · σ = −f

∇ · u = 0

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 6 / 92

Page 7: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Variational formulations

Let us consider the simplest possible problem: Given apolygon Ω and f ∈ L2(Ω):

find u ∈ V such that −∆u = f in Ω,

where V ≡ H10 (Ω) ≡ v | v ∈ L2(Ω), gradv ∈ (L2(Ω))2

such that v = 0 on ∂Ω. The variational form of thisproblem consists in looking for a function u ∈ V suchthat: ∫

Ω

gradu · gradvdx =

∫Ω

f vdx ∀ v ∈ V .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 7 / 92

Page 8: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Galerkin approximations

The Galerkin method consists in choosing a finitedimensional Vh ⊂ V and looking for uh ∈ Vh such that∫

Ω

graduh · gradvhdx =

∫Ω

f vhdx ∀ vh ∈ Vh.

It is an easy exercise to show that such a uh exists and isunique in Vh, and satisfies the estimate∫

Ω

|grad(u − uh)|2dx ≤ C infvh∈Vh

∫Ω

|grad(u − vh)|2dx

bounding the error ‖u − uh‖ with the best approximationthat could be given of u within the subspace Vh.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 8 / 92

Page 9: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Sequences of approximations

More generally, the analysis, from the mathematical pointof view, of these procedures assumes that we are given asequence of subspaces Vhh and proves, under suitableassumptions on the subspaces, that the sequence ofsolutions uhh converges to the exact solution u when htends to 0.As far as possible, one also tries to connect the speed ofthis convergence with suitable properties of the sequenceVhh, and hence to find what are the sequences ofsubspaces that would provide the best speed, plus possiblyother convenient properties (e.g.computability, positivity,conservation of physical quantities, etc.).

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 9 / 92

Page 10: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Finite Element Methods (FEM)

In the FEM’s one decomposes the domain Ω in smallpieces and takes Vh as the space of functions that arepiece-wise polynomials. The most classical case is that ofdecompositions in triangles

Figure: Triangulations of a square domain: non-uniform or uniform

taking then Vh as the space of functions that arepolynomials of degree ≤ 1 in each triangle.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 10 / 92

Page 11: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Higher order methods

Instead of p.w. polynomials of degree ≤ 1 one can takepiecewise polynomials of degree ≤ k (k = 2, 3, ...).

For the analysis we consider a sequence of decompositionsThh, and piecewise polynomials of degree ≤ k , and tryto express the speed of convergence (of uh to u) in termsof k , of h = biggest diameter among the elements of Th,and of some additional geometric property θ (e.g. theminimum angle of all triangles of all decompositions):

‖grad(u − uh)‖L2(Ω) ≤ Cθ hk ‖Dk+1u‖L2(Ω).

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 11 / 92

Page 12: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Lagrange FEM’s

k=1 k=2

k=3 k=4

Triangular elements and their degrees of freedom.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 12 / 92

Page 13: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Typical Functional Spaces

Here are the functional spaces most commonly used invariational formulations of PDE problems

L2(Ω) (ex. pressures, densities)

H(div; Ω) (ex. fluxes, D, B)

H(curl; Ω) (ex. vector potentials, E, H )

H(grad; Ω) (H1) (ex. displacements, velocities)

H(D2; Ω) (H2) (ex. in K-L plates, Cahn-Hilliard)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 13 / 92

Page 14: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Continuity requirements

For a piecewise smooth vector valued function, at thecommon boundary between two elements,

in order to belong to you need to match

L2(Ω) nothing

H(div; Ω) normal component

H(curl; Ω) tangential components

H(grad; Ω) all the components

H(D2; Ω) w , wx wy

Note that the freedom you gain by relaxing the continuityproperties can be used to satisfy other properties

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 14 / 92

Page 15: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Elegance of FEM spaces

P1 := v = a + c · x with a ∈ R and c ∈ R3

(1 d.o.f. per node)H(grad; Ω) ∼ v ∈ H(grad; Ω) s.t. v |T ∈ P1 ∀T ∈ Th.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 15 / 92

Page 16: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Elegance of FEM spaces

N0 := ϕ = a + c ∧ x with a ∈ R3 and c ∈ R3

(1 d.o.f. per edge)H(curl; Ω) ∼ ϕ ∈ H(curl; Ω) s.t. ϕ|T ∈ N0 ∀T ∈ Th.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 16 / 92

Page 17: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Elegance of FEM spaces

RT0 := τ = a + cx with a ∈ R3 and c ∈ R(1 d.o.f. per face)

H(div; Ω) ∼ τ ∈ H(div; Ω) s.t. τ |T ∈ ∀T ∈ Th.Franco Brezzi (vv) VEM Koper, 19. februarja 2015 17 / 92

Page 18: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Elegance of FEM spaces

P0 := constants (1 d.o.f. per element)

L2(Ω) ∼ q ∈ L2(Ω) such that q|T ∈ P0 ∀T ∈ Th.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 18 / 92

Page 19: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Difficulties with FEM’s: distorted elements

Distorted quads can degenerate in many ways:

YES

NO

NO

NO

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 19 / 92

Page 20: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

More difficulties: FE approximations of H2(Ω)

There are relatively few C 1 Finite Elements on themarket. Here are some:

Bell

HCT reduced HCT

Argyris

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 20 / 92

Page 21: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Programming C 1 elements

Cod liver oil(Olio di fegato di merluzzo, Ribje olje)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 21 / 92

Page 22: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

A flavor of VEM’s

For a decomposition in general sub-polygons, FEM’s faceconsiderable difficulties. With VEM, instead, you cantake a decomposition like

having four elements with 8 12 14, and 41 nodes,respectively! Can we work in 3D as well?

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 22 / 92

Page 23: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

A flavor of VEM’s

WE CAN !! These are three possible 3D elements

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 23 / 92

Page 24: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Polygonal and Polyhedral elements

There is a wide literature on Polygonal and PolyhedralElements

Rational Polynomials (Wachspress, 1975, 2010)

Voronoi tassellations (Sibson, 1980; Hiyoshi-Sugihara,1999; Sukumar et als, 2001)

Mean Value Coordinates (Floater, 2003)

Metric Coordinates (Malsch-Lin-Dasgupta, 2005)

Maximum Entropy (Arroyo-Ortiz, 2006;Hormann-Sukumar, 2008)

Harmonic Coordinates (Joshi et als 2007; Martin etals, 2008; Bishop 2013)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 24 / 92

Page 25: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Related Polygonal Methods

Today, there are several similar methods that generalizeFinite Element Methods to Polygonal/Polyhedral elements

HDG Methods (e.g. Bernardo Cockburn, JayGopalakhrisnan),

Weak Galerkin Methods (e.g. Junping Wang, Xiu Ye),

Discrete Gradient Reconstruction (e.g. Daniele DiPietro, Alexandre Ern ).

There are also a strong connections between thesemethods and

Mimetic Finite Diffrences (e.g. Mikhail Shashkov,Konstantin Lipnikov),

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 25 / 92

Page 26: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Why Polygonal/Polyhedral Elements

There are several types of problems where Polygonal andPolyhedral elements are used:

Crack propagation and Fractured materials (e.g. T.Belytschko, N. Sukumar)

Topology Optimization (e.g. O. Sigmund, G.H.Paulino)

Computer Graphics (e.g. M.S. Floater)

Fluid-Structure Interaction (e.g. W.A. Wall)

Complex Micro structures (e.g. N. Moes)

Two-phase flows (e.g. J. Chessa)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 26 / 92

Page 27: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Voronoi Meshes

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 27 / 92

Page 28: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Local refinements and hanging nodes

The ”interface” big squares are treated as polygons with11 edges.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 28 / 92

Page 29: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Possible Inclusions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1512 polygons, 2849 vertices

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 29 / 92

Page 30: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Robustness of VEMs - General elements

Note that the pink element is a polygon with 9 edges,while the blue element is a polygon (not simplyconnected) with 13 edges. We are exact on linears...

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 30 / 92

Page 31: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The exact solution of the PDE

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.60.8

1

−2

−1

0

1

2

max |u−uh| = 0.008783

For reasons of ”glastnost”, we take as exact solution

w = x(x − 0.3)3(2− y)2 sin(2πx) sin(2πy) + sin(10xy)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 31 / 92

Page 32: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Robustness of the method

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.60.8

1

−2

−1

0

1

2

max |u−uh| = 0.074424

Mesh of 512 (16× 16× 2) elements. Max-Err=0.074

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 32 / 92

Page 33: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Finer grids

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.60.8

1

−2

−1

0

1

2

max |u−uh| = 0.019380

Mesh of 2048 (32× 32× 2) elements. Max-Err=0.019

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 33 / 92

Page 34: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Solution on the finer grid

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.60.8

1

−2

−1

0

1

2

max |u−uh| = 0.005035

Mesh of 8192 (64× 64× 2) elements. Max-Err=0.005Note the O(h2) convergence in L∞.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 34 / 92

Page 35: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The next steps? (by M.C. Escher)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 35 / 92

Page 36: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The next steps? (by M.C. Escher)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 36 / 92

Page 37: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going berserk

−0.5 0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.41 polygons, 82 vertices

The first step: a pegasus-shaped polygon with 82 edges.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 37 / 92

Page 38: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going berserk

−0.5 0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 polygons, 82 vertices

1

2 3

4 5

6

7

8 9 10

1112

13

1415

16 17

18

1920

21

22

23

24

2526 27

2829

3031

3233

34

3536

37 38

39

404142

43

44

45

46

4748

4950

51

5253

545556

57

585960

61 62

63 64 65

66

6768

6970

71

7273

74 75

7677

787980

81

82

The second step: local numbering of the 82 nodes.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 38 / 92

Page 39: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going berserk

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4−0.2

0

0.2

0.4

0.6

0.8

1

1.2

4 polygons, 243 vertices

The third step: a mesh of 2× 2 pegasus.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 39 / 92

Page 40: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going totally berserk

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 cells, 16821 vertices

A mesh of 20× 20 pegasus.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 40 / 92

Page 41: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going totally berserk

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.60.8

1

−2

−1

0

1

2

max |u−uh| = 0.077167

Solution on a 20× 20-pegasus mesh. Max-Err=0.077

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 41 / 92

Page 42: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going totally berserk

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11600 cells, 65641 vertices

A mesh of 40× 40 pegasus.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 42 / 92

Page 43: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Going totally berserk

0

0.2

0.4

0.6

0.8

1

00.2

0.4

0.60.8

1

−2

−1

0

1

2

max |u−uh| = 0.026436

Solution on a 40× 40-pegasus mesh. Max-Err=0.026

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 43 / 92

Page 44: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The main features of VEM

As for other methods on polyhedral elements

the trial and test functions inside each element arerather complicated (e.g. solutions of suitable PDE’s orsystems of PDE’s).

Contrary to other methods on polyhedral elements,

they do not require the approximate evaluation oftrial and test functions at the integration points.

In most cases they satisfy the patch test exactly (upto the computer accuracy).

We have now a full family of spaces.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 44 / 92

Page 45: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The general philosophy

In every element, to define the generic (scalar or vectorvalued) element v of our VEM space:

You start from the boundary d.o.f. and use a 1Dedge-by edge reconstruction

Then you define v inside as the solution of a (systemof) PDE’s, typically with a polynomial right-hand side.

The construction is such that all polynomials of acertain degree belong to the local space. In generalthe local space also contains some additional elements.

Let us see some examples.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 45 / 92

Page 46: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Nodal 2D elements

We take, for every integer k ≥ 1

V Eh = v | v|e ∈ Pk(e)∀ edge e and ∆v ∈ Pk−2(E )

It is easy to see that the local space will contain all Pk .As degrees of freedom we take:

the values of v at the vertices,

the moments∫e v pk−2de on each edge,

the moments∫E v pk−2dE inside.

It is easy to see that these d.o.f. are unisolvent.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 46 / 92

Page 47: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The L2-projection

A fantastic trick (sometimes called The Three CardMonte trick), often allows the exact computation of themoments of order k − 1 and k of every v ∈ V E

h .

This is very useful for dealing with the 3D case.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 47 / 92

Page 48: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The Three Card Monte Trick is hard to believe

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 48 / 92

Page 49: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Example: Degrees of freedom of nodal VEM’s in 2D

k=4

k=1 k=2

k=3

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 49 / 92

Page 50: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

More general geometries k = 1

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 50 / 92

Page 51: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

More general geometries k = 2

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 51 / 92

Page 52: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Approximations of H1(Ω) in 3D

For a given integer k ≥ 1, and for every element E , we set

V Eh = v ∈ H1(E )| v|e ∈ Pk(e)∀ edge e, v|f ∈ V f

h ∀ face f , and ∆v ∈ Pk−2(E )with the degrees of freedom:• values of v at the vertices,• moments

∫e v pk−2 (e) on each edge e,

• moments∫f v pk−2 (f ) on each face f , and

• moments∫E v pk−2 (E ) on E .

Ex: for k = 3 the number of degrees of freedom wouldbe: the number of vertices, plus 2× the number of edges,plus 3× the number of faces, plus 4. On a cube thismakes 8 + 24 + 18 + 4 = 54 against 64 for Q3.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 52 / 92

Page 53: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The spaces Gk , G⊥k , Rk , and R⊥k

In the sequel it will be convenient to introduce thefollowing notation

Gk := grad(Pk+1)

Rk := rot(Pk+1) (in 2 dimensions)

Rk := curl(P3k+1) (in 3 dimensions)

Moreover, for every vector valued polynomial spacePk(E ) ⊂ Pd

k (E ) we denote

P⊥k (E ) := q ∈ Pd(E ) s.t. (q,p)0,E = 0∀p ∈ Pk(E )

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 53 / 92

Page 54: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

VEM approximations of H(div; Ω) in 2d and in 3d

In each element E , and for each integer k , we define

Bk(∂E ) := g | g|e∈Pk ∀ edge e ∈ ∂E in 2d

Bk(∂E ) := g | g|f ∈Pk ∀ face f ∈ ∂E in 3d.

Then we define, in 2 dimensions:

V k(E ) = τ |τ · n∈Bk(∂E ),∇divτ ∈Gk−2, rotτ ∈Pk−1

and in 3 dimensions

V k(E ) = τ |τ · n∈Bk(∂E ),∇divτ ∈Gk−2, curlτ ∈Rk−1.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 54 / 92

Page 55: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Variants of VEMs in H(div; Ω)

For k , r and s integer, we define, in 2 dimensions:

V (k,r ,s)(E ) = τ |τ · n∈Bk(∂E ),∇divτ ∈Gr−1, rotτ ∈Ps

and in 3 dimensions

V (k,r ,s)(E ) = τ |τ ·n∈Bk(∂E ),∇divτ ∈Gr−1, curlτ ∈Rs.

In general we might say that

V k ≡ V (k,k−1,k−1) ' BDMk and V (k,k,k−1) ' RTk

On a triangle: V (0,0,−1) = RT0. We point out that ∀k ≥ 0

(Pk)d ⊂ V (k ,k−1,k−1) and ∇(Pk+1) ⊂ V (k,k−1,−1)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 55 / 92

Page 56: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom in V k ≡ V (k ,k−1,k−1)(E ) in 2d

In V k ≡ V (k,k−1,k−1) we can take the following d.o.f.∫e

τ · n qkde ∀qk ∈ Pk(e) ∀ edge e∫E

τ · gradqk−1dE ∀qk−1 ∈ Pk−1∫E

τ · g⊥k dE ∀g⊥k ∈ G⊥k

with natural variants for other spaces of the type V (k,s,r).

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 56 / 92

Page 57: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom for V (0,0,−1)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 57 / 92

Page 58: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom for V (1,1,0)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 58 / 92

Page 59: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom in V k ≡ V (k ,k−1,k−1)(E ) in 3d

In V k ≡ V (k,k−1,k−1) we can take the following d.o.f.∫f

τ · n qkdf ∀qk ∈ Pk(f ) ∀ face f∫E

τ · gradqk−1dE ∀qk−1 ∈ Pk−1∫E

τ · g⊥k dE ∀g⊥k ∈ G⊥k

with natural variants for other spaces of the type V (k,s,r).

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 59 / 92

Page 60: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

VEM approximations of H(rot; Ω) in 2d

In each element E , and for each integer k , we recall

Bk(∂E ) := g | g|e ∈ Pk ∀ edge e ∈ ∂E in 2d

Then we set

V k(E )=ϕ|ϕ · t∈Bk(∂E ), divϕ∈Pk−1, rotrotϕ∈Rk−2

and for integers k , r , and s

V (k,r ,s)(E )=ϕ|ϕ·t∈Bk(∂E ), divϕ∈Pr , rotrotϕ∈Rs−1

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 60 / 92

Page 61: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom in V k ≡ V (k ,k−1,k−1)(E ) in 2d

In V k ≡ V (k,k−1,k−1) in 2d we can take the followingd.o.f.∫

e

ϕ · t qkde ∀qk ∈ Pk(e) ∀ edge e∫E

ϕ · rotqk−1dE ∀qk−1 ∈ Pk−1∫E

ϕ · r⊥k dE ∀r⊥k ∈ R⊥k

with natural variants for other spaces of the type V (k,r ,s).

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 61 / 92

Page 62: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom for V (0,−1,0)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 62 / 92

Page 63: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom for V (1,0,1)

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 63 / 92

Page 64: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

VEM approximations of H(curl; Ω) in 3d

In each element E , and for each integer k , we set

Bk(∂E ) := ϕ| ϕ|f ∈ V k(f )∀ face f ∈ ∂E and

ϕ · te is single valued at each edge e ∈ ∂E

Then we set

V k(E ) = ϕ| such that ϕ · t ∈ Bk(∂E ),

divϕ ∈ Pk−1, curlcurlϕ∈Rk−2

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 64 / 92

Page 65: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom in V k(E ) ≡ V (k ,k−1,k−1) in 3d

for every edge e

∫e

ϕ · t qkde ∀qk ∈ Pk(e)

for every face f∫f

ϕ · rotqk−1df ∀qk−1 ∈ Pk−1(f )∫f

ϕ · r⊥k df ∀r⊥k ∈ R⊥k (f )

and inside E∫E

ϕ · curlqk−1dE ∀qk−1 ∈ (Pk−1(E ))3∫E

ϕ · r⊥k dE ∀r⊥k ∈ R⊥k (E )

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 65 / 92

Page 66: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

VEM approximations of L2(Ω)

In each element E , and for each integer k , we set

V k(E ) := Pk(E ),

and then obviously

V k(Ω) = v | such that v|E ∈ Pk(E ),∀E in Th

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 66 / 92

Page 67: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom in V k(E )

As degrees of freedom in V k(E ) we can obviously choose∫E

v qkdE ∀qk ∈ (Pk(E ))3

. k = 0 k = 1

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 67 / 92

Page 68: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

VEM approximations of H2(Ω)

For r , s, k , with

r ≥ k ,

s ≥ k − 1

we set

Vh := v ∈ V : v ∈ Pr(e), vn ∈ Ps(e) ∀ edge e,

and ∆2v ∈ Pk−4(E ) ∀ element E

It is clear that for every element E the restriction V Eh of

Vh to E contains all the polynomials of degree ≤ k .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 68 / 92

Page 69: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Degrees of freedom for K-L plate elements

We had:

Vh := v ∈ V : v ∈ Pr(e), vn ∈ Ps(e)

∀ edge e and ∆2v ∈ Pk−4(E ) ∀ element E

In each E the functions in V Eh are identified by

their value and the value of their derivatives on ∂E ,

(for k > 3) the moments up to the order k − 4 in E

Hence we have to worry only for the boundary degrees offreedom.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 69 / 92

Page 70: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Example: r = 3, s = 1

On each vertex we assign v , vx , vy .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 70 / 92

Page 71: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Example: r = 4, s = 3 (Pac-Plate)

On each vertex we assign v , vx , vy . On each midpoint weassign v , vn, vnt .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 71 / 92

Page 72: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Manipulating VEM’s

When we deal with VEM, we cannot manipulate them aswe please. As we don’t want to use approximate solutionsof the PDE problems in each element, we have to use onlythe degrees of freedom and all the information that youcan deduce exactly from the degrees of freedom.

In a sense, is like doing Robotic Surgery

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 72 / 92

Page 73: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Example of manipulation

For instance if you know a function v on ∂E and its meanvalue in E you can compute∫

E

∇v · q1dE =

∫∂E

v q1 · nds −∫E

v divq1dE

for every vector valued polynomial q1 ∈ (P1)2.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 73 / 92

Page 74: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

A very useful property

We observe that the classical differential operators grad ,curl , and div send these VEM spaces one into the other(up to the obvious adjustments for the polynomialdegrees). Indeed:

grad(VEM , nodal) ⊆ VEM , edge

curl(VEM , edge) ⊆ VEM , face

div(VEM , face) ⊆ VEM , volume

Ri−→ V ver

k (Ω)grad−−−−→ V edg

k−1(Ω)curl−−−→ V fac

k−2(Ω)div−−−→ V vol

k−3(Ω)o−→ 0

.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 74 / 92

Page 75: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The crucial feature

The crucial feature common to all these choices is thepossibility to construct (starting from the degrees offreedom, and without solving approximate problems in theelement) a symmetric bilinear form [u, v]h such that,on each element E , we have

[pk , v]Eh =

∫E

pk ·vdE ∀pk ∈ (Pk(E ))d , ∀v in the VEM space

and ∃α∗ ≥ α∗ > 0 independent of h such that

α∗‖v‖2L2(E ) ≤ [v, v]Eh ≤ α∗‖v‖2

L2(E ), ∀v in the VEM space

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 75 / 92

Page 76: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

The crucial feature - 2

In other words: In each VEM space (nodal, edge, face,volume) we have a corresponding inner product[· , ·

]VEM,nodal

,[· , ·

]VEM,edge

,[· , ·

]VEM,face

,[· , ·

]VEM,volume

that scales properly, and reproduces exactly the L2

inner product when at least one of the two entries is apolynomial of degree ≤ k .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 76 / 92

Page 77: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

General idea on the construction of Scalar Products

First note that you can always integrate a polynomial∫E

x3dE =

∫∂E

x4

4nxds.

You construct Πk : V E → (Pk(E ))d defined by∫E (v − Πkv) · pkdE = 0∀pk ,

and then set, for all u and v in V E[u, v

]E

:=∫E (Πku · Πkv)dE + S(u− Πku, v − Πkv)

where the stabilizing bilinear form S is for instance themeasure of E times the Euclidean inner product in RN .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 77 / 92

Page 78: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Strong formulation of Darcy’s law

p = pressure

u = velocities (volumetric flow per unit area)

f = source

K = material-depending (full) tensor

u = −K∇p (Constitutive Equation)

div u = f (Conservation Equation)

−div(K∇p) = f in Ω,

BBBBBBBBBBBBBBBp = 0 on ∂ Ω, for simplicity.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 78 / 92

Page 79: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Variational formulation and VEM approximation

The variational formulation of Darcy problem is:find p ∈ H1

0 (Ω) such that∫Ω

K∇p · ∇q dx =

∫Ω

f qdx ∀q ∈ H10 (Ω).

and as VEM approximate problem we can take:find ph ∈ VEM,nodal such that:

[K∇ph,∇qh]VEM,edge = [f , qh]VEM,nodal ∀qh ∈ VEM,nodal

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 79 / 92

Page 80: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Variational formulation - Mixed

Darcy problem, in mixed form, is instead:find p ∈ L2(Ω) and u ∈ H(div; Ω) such that:∫

Ω

K−1u · vdV =

∫Ω

p divvdV ∀v ∈ H(div; Ω)

and ∫Ω

divu qdV =

∫Ω

f q dV ∀q ∈ L2(Ω).

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 80 / 92

Page 81: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Approximation of Darcy - Mixed

The approximate mixed formulation can be written as:

find ph ∈ VEM , volume and uh ∈ VEM , face such that

[K−1uh, vh]VEM,face = [ph, divvh]VEM,volume ∀vh ∈VEM,face

and

[divuh, qh]VEM,volume = [f , qh]VEM,volume ∀qh ∈VEM,volume.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 81 / 92

Page 82: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Strong formulation of Magnetostatic problem

j = divergence free current density

µ = magnetic permeability

u = vector potential with the gauge div u = 0

B = curl u = magnetic induction

H = µ−1B = µ−1curl u =magnetic field

curlH = j

The classical magnetostatic equations become now

curlµ−1curl u = j and div u = 0 in Ω,

u× n = 0 on ∂Ω.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 82 / 92

Page 83: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Variational formulation of the magnetostatic problem

The variational formulation of the magnetostatic problem(setting B = µH = curl u) is :

Find u ∈ H0(curl,Ω) and p ∈ H10 (Ω) such that :

(µ−1curl u, curl v)− (∇p, v) = (j, v)∀ v ∈ H0(curl; Ω)

(u,∇q) = 0 ∀ q ∈ H10 (Ω),

and the VEM approximation can be chosen as:Find uh ∈ VEM,edges and ph ∈VEM,nodal such that:

[µ−1curl uh, curl vh]VEM,face − [gradph, vh]VEM,edge

= [j, vh]VEM,edge ∀ vh ∈ VEM , edge,

[u, gradqh]VEM,edge = 0 ∀ qh ∈ VEM , nodal .

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 83 / 92

Page 84: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results for Darcy problem with ”BDM-like” VEM

Mesh of squares 4x4, 8x8, ...,64x64Exact solution p=sin(2x)cos(3y)

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−1

−0.5

0

0.5

1

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 84 / 92

Page 85: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results-Squares

10−1

10−3

10−2

L2 −error

log h

||p−

ph||

0

BDM1

h2

VEM1

10−1

10−3

10−2

L2 −error

log h

||u−

hh||

0

BDM1

h2

VEM1

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 85 / 92

Page 86: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results-Voronoi Meshes

Voronoi polygons 88,...,7921Exact solution p=sin(2x)cos(3y)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

triangle0.0188 polygons, h

max = 0.174116, h

mean = 0.149291

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

triangle0.00017921 polygons, h

max = 0.019754, h

mean = 0.015641

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 86 / 92

Page 87: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results-Voronoi

10−2

10−1

100

10−4

10−3

10−2

10−1

h1

h2

||p−ph|| in L

2

10−2

10−1

100

10−4

10−3

10−2

10−1

h1

h2

||σ−Πaσ

h|| in L

2

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 87 / 92

Page 88: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results-Distorted Quads meshes

Mesh of distorted quads: 10x10; 20x20; 40x40Exact solution: p = sin(2x) cos(3y)

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

quadrati−distorti−0.5−10x10100 polygons, h

max = 0.234445, h

mean = 0.171046

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

quadrati−distorti−0.5−40x401600 polygons, h

max = 0.065760, h

mean = 0.043012

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 88 / 92

Page 89: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results–Distorted Quads

10−2

10−1

100

10−4

10−3

10−2

10−1

h1

h2

||p−ph|| in L

2

10−2

10−1

100

10−3

10−2

10−1

h1

h2

||σ−Πaσ

h|| in L

2

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 89 / 92

Page 90: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results-Winged horses meshes

Mesh of horses: 4x4; 8x8; 10x10; 16x16Exact solution: p = sin(2x) cos(3y)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4−0.2

0

0.2

0.4

0.6

0.8

1

1.2

4 polygons, 243 vertices

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 cells, 16821 vertices

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 90 / 92

Page 91: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Numerical results–Winged horses

10−2

10−1

100

10−4

10−3

10−2

10−1

h1

h2

||p−ph|| in L

2

10−2

10−1

100

10−3

10−2

10−1

h1

h2

||σ−Πaσ

h|| in L

2

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 91 / 92

Page 92: VEM's for the numerical solution of PDE's · 2019. 5. 13. · Outline 1 Generalities on Scienti c Computing 2 Variational Formulations and Functional Spaces 3 Galerkin approximations

Conclusions

Virtual Elements are a new method, and a lot of workis needed to assess their pros and cons.

Their major interest is on polygonal and polyhedralelements, but their use on distorted quads, hexa, andthe like, is also quite promising.

For triangles and tetrahedra the interest seems to beconcentrated in higher order continuity (e.g. plates).

The use of VEM mixed methods seems to be quiteinteresting, in particular for their connections withother methods for polygonal/polyhedral elements.

Franco Brezzi (vv) VEM Koper, 19. februarja 2015 92 / 92