29
Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Embed Size (px)

DESCRIPTION

Tight Bounds on the Approximability of Almost-satisfiable Horn SAT and Exact Hitting Set. Venkatesan Guruswami (CMU) Yuan Zhou (CMU). Satisfiable CSPs. Theorem [Schaefer'78]. Only three nontrivial Boolean CSPs for which satisfiability is poly-time decidable. - PowerPoint PPT Presentation

Citation preview

Page 1: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Venkatesan Guruswami (CMU)Yuan Zhou (CMU)

Page 2: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Satisfiable CSPs

Theorem [Schaefer'78]

Only three nontrivial Boolean CSPs for which satisfiability is poly-time decidable• LIN-mod-2 -- linear equations mod 2e

• 2-SAT• Horn-SAT -- CNF formula where each clause consists of at most one unnegated literal e.g.

1x 2x 421 xxx , , ,

542 xxx 542 xxx (equivalent to )

Page 3: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Almost satisfiable CSPs

-satisfiable instance -- satisfiable by removing fraction of clauses

)1(

Finding almost satisfying assignments

satisfiable instance satisfying solution

"almost" satisfiable instance

"almost" satisfying solution

)1(opt ))1(1(alg ,no

robust version (against noise)

input output

Page 4: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Almost satisfiable CSPs

-satisfiable instance -- satisfiable by removing fraction of clauses

)1(

Finding almost satisfying assignmentsGiven a -satisfiable instance, can we efficiently find an assignment satisfying . constraints, where as . ?

)1(

))1()(1( nof 0)( f0

Page 5: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

The answer...• No for LIN-mod-2

– vs. is NP-Hard [Håstad'01]• Yes for 2-SAT

– SDP-based alg. gives vs [Zwick'98]– Improved to vs [CMM'09]– Tight under Unique Games Conjecture [KKMO'07]

• Yes for Horn-SAT– LP-based alg. gives vs [Zwick'98]– For Horn-3SAT, Zwick's alg. gives vs

– Exponential loss -- is it tight?

)1( )2/1(

)1( )1( 3/1

)1(

1

1

log

loglog1

)1(

1log

11

)1( )1(

Page 6: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Approximability of almost satisfiable Horn-SAT

• Previously knownHorn 3-SAT

Approx. Alg. 1-1/(log 1/ε)[Zwick'98]

NP-Hardness 1-εc for some c < 1[KSTW'00]

UG-Hardness

Page 7: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Approximability of almost satisfiable Horn-SAT

• Previously knownHorn 3-SAT Horn 2-SAT

Approx. Alg. 1-1/(log 1/ε)[Zwick'98]

1-3ε[KSTW'00]

NP-Hardness 1-εc for some c < 1[KSTW'00]

1-1.36εfrom Vertex Cover

UG-Hardness 1-(2-δ)εfrom Vertex Cover

Page 8: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Approximability of almost satisfiable Horn-SAT

• Our result

• Comment. People need UGC to get sharp inapprox. result for most of problems

Horn 3-SAT Horn 2-SATApprox. Alg. 1-1/(log 1/ε)

[Zwick'98]1-2ε

NP-Hardness 1-εc for some c < 1[KSTW'00]

1-1.36εfrom Vertex Cover

UG-Hardness 1-1/(log 1/ε) 1-(2-δ)εfrom Vertex Cover

Page 9: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Proof framework of the hardness result

c vs. s dictatorship

test

c vs. s dictatorship

test

[KKMO'07,Rag'08] c vs. s UG-Hardness for

the CSP

c vs. s UG-Hardness for

the CSP

not clear how to construct a dictatorship test for HornSAT

Theorem. [Rag'08] There is a canonical SDP relaxation for SDP(Λ) each CSP Λ, such that c vs. s integrality gap => c-η vs. s+η dictator test.

MaxCut, Linear Equations, Max-2SAT, Vertex Cover ...

Page 10: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Proof framework of the hardness result

c vs. s dictatorship

test

c vs. s dictatorship

test

[KKMO'07,Rag'08] c vs. s UG-Hardness for

the CSP

c vs. s UG-Hardness for

the CSP

c vs. s integrality gap for

the "canonical SDP"

c vs. s integrality gap for

the "canonical SDP"

[Rag'08]

construct an SDP gap instance instead

MaxCut, Linear Equations, Max-2SAT, Vertex Cover ...

Page 11: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Theorem. [Rag'08] There is a canonical SDP relaxation for SDP(Λ) each CSP Λ, such that c vs. s integrality gap => c-η vs. s+η dictator test.

Our Theorem 1. There is a (1-2-k) vs. (1-1/k) gap instance for SDP(Horn-3SAT), for every k > 1.

Our Theorem 2. A tight gap instance for SDP(1-in-k HittingSet).

Page 12: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

1-in-k HittingSet

• U : universe • C : collection of subsets of U of size <= k• Goal : a subset S of U intersecting maximum num

ber of sets in C at exactly one element

• Theorem 2. (1-1/k0.999) vs. 1/log k SDP gap.• Corollary. UG-Hard to approx. within O(1/log k).

• 1-in-Exact k HittingSet:

• Approximability of 1-in-EkHS: 1/e [GT05]

• C : collection of subsets of U of size k<=

=

Page 13: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

1-in-k HittingSet

• U : universe • C : collection of subsets of U of size <= k• Goal : a subset S of U intersecting maximum num

ber of sets in C at exactly one element

• Theorem 2. (1-1/k0.999) vs. 1/log k SDP gap.• Corollary. UG-Hard to approx. within O(1/log k).

• Fact. An Ω(1/log k) approx. algorithm.• Theorem 3. A (1-1/2k) vs. 0.1 approx. algorithm.

Page 14: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

c vs. s dictatorship

test

c vs. s dictatorship

test

[KKMO'07,Rag'08] c vs. s UG-Hardness for

the CSP

c vs. s UG-Hardness for

the CSP

c vs. s integrality gap for

the "canonical SDP"

c vs. s integrality gap for

the "canonical SDP"

[Rag'08]

MaxCut, Linear Equations, Max-2SAT, Vertex Cover ...

Horn-3SAT1-in-k HittingSet

The first work (and the only one so far) using Raghavendra's theorem to get sharp hardness result.

Page 15: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

The canonical SDP:Lifted LP + semidefinite constraints

Page 16: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

The lifted-LP (in Sherali-Adams system)• C: the set of clauses• For each CєC, set up local (integral) prob. distribu

tion πC on all truth-assignments {σ : XC -> {0, 1} }– Variables. πC(σ) >= 0 for each σ : XC -> {0, 1}– Constraints. Σσ πC(σ) = 1

maximize ECєC[Prσ~πC[C(σ)=1]]

Prσ~πC[σ(xi)=b1 Λ σ(xj)=b2] = X(xi,b1),(xj,b2)

for all CєC; xi, xj C; bє 1,b2 {0, 1}є

consistency of pairwise margins:

consistency of singleton margins: s.t. Prσ~πC[σ(xi)=b1] = X(xi,b1),(xi,b1)

linear expressions

Page 17: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

The semidefinite constraints

• Vectors. Introduce v(x,0) and v(x,1) corresponding to the event x = 0 and x = 1.

• Constraints.– <v(x,0), v(x,1)> = 0 -- mutually exclusive events– v(x,0) + v(x,1) = I -- probability adds up to 1– Prσ~πC[σ(xi)=b1 Λ σ(xj)=b2] = <v(xi,b1),v(xj,b2)> -- pairwise marginals must be PSD

Page 18: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

The gap instance for Horn-3SAT.

Page 19: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Instance Ik:

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

Observation. Ik is not satisfiable. Therefore OPT(Ik) < 1 - Ω(1/k) .

Page 20: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

OPTLP(Ik) >= 1 - 1/2k

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

Observation. Clauses in different steps share at most one variable. No worry about pairwise margins between different steps.

Page 21: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

OPTLP(Ik) >= 1 - 1/2k

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

x0(y0)10

πC(σ)1-δ

δ

x0Λy0->x1(y1)1 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-2δ

δδ

loss = 2δ

Page 22: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

OPTLP(Ik) >= 1 - 1/2k

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

x0Λy0->x1(y1)1 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-2δ

δδ

x1Λy1->x2(y2)1 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-4δ

2δ2δ

loss = 2δ

Page 23: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

OPTLP(Ik) >= 1 - 1/2k

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

x2Λy2->x3(y3)1 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-8δ

4δ4δ

x1Λy1->x2(y2)1 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-4δ

2δ2δ

loss = 2δ

Page 24: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

OPTLP(Ik) >= 1 - 1/2k

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

x2Λy2->x3(y3)1 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-8δ

4δ4δ

xkΛyk->xk+1

xkΛyk->yk+11 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-2k+1δ

2kδ2kδ

...

loss = 2δ

Page 25: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

OPTLP(Ik) >= 1 - 1/2k

x0, y0x0 Λ y0 -> x1, x0 Λ y0 -> y1x1 Λ y1 -> x2, x1 Λ y1 -> y2x2 Λ y2 -> x3, x2 Λ y2 -> y3

xk Λ yk -> xk+1, xk Λ yk -> yk+1xk+1, yk+1

Step 0:Step 1:Step 2:Step 3:

Step k+1:Step k+2:

... ... ... ...

xk+1(yk+1)10

πC(σ)1-2k+1δ

2k+1δ

xkΛyk->xk+1

xkΛyk->yk+11 Λ 1 -> 10 Λ 1 -> 01 Λ 0 -> 0

πC(σ)1-2k+1δ

2kδ2kδ

loss = 2δ + 2(1-2k+1)δ = 1/2k (by taking δ = 1/2k+1)

Page 26: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Getting a good SDP solution

• No vectors corresponding to the previous LP solution– Because of the extra semidefinite constraints

• Solution: twist the LP solution in several ways

Page 27: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Summary of our results

• (1 - ε) vs (1 - 1/(log 1/ε)) UG-Hardness for Horn-3SAT

• (1 - 1/k0.999) vs 1/log k UG-Hardness for 1-in-k HittingSet

• (1 - ε) vs (1 - 2ε) algorithm for Horn-2SAT• (1 - 1/2k) vs 0.1 approximation algorithm for 1-in-k

HittingSet

Page 28: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

Open directions

• NP-Hardness for approximating 1-in-k HittingSet. Ok(1)?

• For which CSPs does it suffice to show an LP integrality gap?

• Study finding almost satisfiable solutions for non-Boolean CSPs.– Conjecture. There are poly-time algorithms for al

most satisfiable CSPs that cannot express linear equations (i.e. "bounded width" CSPs, by [Barto-Kozik'09]).

Page 29: Venkatesan Guruswami (CMU) Yuan Zhou (CMU)

The End.

Any questions?