50
8/9/2019 Verification Manual - StabLab.pdf http://slidepdf.com/reader/full/verification-manual-stablabpdf 1/50  Verification Manual

Verification Manual - StabLab.pdf

Embed Size (px)

Citation preview

Page 1: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 1/50

 

Verification Manual

Page 2: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 2/50

 

2

Content 

1 Theoretical background ...........................................................................................................3 

2 Stress analysis ..........................................................................................................................3 

2.1 Geometrically linear (first order) theory .......................................................................... 4 

WE-01 Compressed member ......................................................................................... 4 

WE-02 Member subjected to bending ........................................................................... 6 

WE-03 Member in torsion (concentrated twist moment) .............................................. 9 

WE-04 Member in torsion (torsion by transverse concentrated load on mono-

symmetric I section) ..................................................................................................... 14 

2.2 Geometrically nonlinear (second order) theory ............................................................. 19 

WE-05 Member subjected to bending and compression ............................................. 19 

WE-06 Member subjected to biaxial bending and compression ................................. 22 

3 Stability analysis ....................................................................................................................26 

WE-07 Lateral torsional buckling (double symmetric section & constant bending

moment) ........................................................................................................................... 26 

WE-08 Lateral torsional buckling (double symmetric section & triangular bending

moment distribution) ........................................................................................................ 28 

WE-09 Lateral torsional buckling (mono-symmetric section & constant moment) ....... 30 

WE-10 Lateral torsional buckling (mono-symmetric section & triangular moment

distribution) ...................................................................................................................... 34 

WE-11 Lateral torsional buckling (C section & equal end moments) ............................. 38 

WE-12 Lateral torsional buckling (C section & equal end moments) ............................. 41 

WE-13 Flexural-torsional buckling (U section) .............................................................. 44 

WE-14 Interaction of flexural buckling and LTB (symmetric I section & equal end

moments and compressive force)..................................................................................... 48 

Page 3: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 3/50

 

3

1 Theoretical background 

The StabLab software uses the 14 degrees of freedom general thin-walled beam-columnfinite element (referred as Beam7 ) publ ished by Rajasekaran in the fo l lowing textbook:

  CHEN, W.F. ATSUTA, T.: Theory of Beam-Columns: Space behavior and

design , Vol .2 McGraw-Hil l , 1977, pp . 539 -564

Later more researchers used and developed this element, for example:

  PAPP, F.: Computer aided design of steel beam-column structures, Doctoral

thesis , Budapest Universi ty of Technology & Herio t -Wat t Universi ty of

Edinburgh, 1994-1996

The general beam-column finite element takes the effect of warping into consideration;

therefore i t is reasonable to use i t in both of the geometrically nonlinear stress analysis

and the e last ic s tabi l i ty ana lysis of spa t ia l s tee l s t ruc tures .

The verification of this analysis model is presented by comparisons with two types ofindependent resul ts :

  Calculation by hand  –   where analytical solution is available

  Calculation by triangular shell f inite element (referred as Shell3 )  –   an equivalent

model is created where the plate elements of the beam member are modeled bytriangular shell f inite elements, the analysis is performed by the ConSteel software

(www.constee lsof tware .com)

2 Stress analysis 

The stress analysis (computation of deflections, internal forces and reactions) of simple

structural members are verified by

  Geometr ica l ly l inear ( f i rs t order) theory

  Geometrica l ly non- l inear (second order) theory

Page 4: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 4/50

 

4

2.1 Geometrically linear (first order) theory

The analysis of simple structural members using the StabLab software (based on the

Beam7   f ini te element) are checked in the following Worked Examples   (WE-01   to WE-

04) .

WE-01 Compressed member

Figure 1   shows a compressed member. The displacement of the end of themember and the compressive stress are calculated by hand, by Shell3  element and by the StabLab software.

A) Calculat ion by hand

Sectional area   A 11250 m m2

Grade of material   S235

E 2 10 000  N

mm2

Length of member    L 4000 m m

Compressive force   Fx

  1000 kN

Compressive stress   x

Fx

A88.889

  N

mm2

End moving   ex

  x

L

E   1.693 mm

F ig .1   Stress analysis of compressed member

Page 5: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 5/50

 

5

B) Computation by Shel l3 e lement

F i g.2   Axial deflection of the compressed member  –   Shell3

C) Computation by StabLab

F i g.3   Axial deflection of the compressed member- Beam7

Evaluation

Table 1 shows the axial displacement of the free end of the simply supported

compressed member calculated by hand and computed  by Shell3   element and by

the StabLab software . The resul ts a re accura te.

Tab.1 Stress analysis of compressed member

section property theory1  StabLab

Beam72  1 /2 Shell3

3  1 /3  

HEA300

L=4000mme x [mm] 1,693 1,684 1 ,005 1,717 0 ,986

Page 6: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 6/50

 

6

WE-02 Member subjected to bending

Figure 4   shows a structural member which is loaded by uniformlydistributed load. The vertical displacement of the middle cross-section and themaximum bending moment of the member are calculated by hand, by Shell3  

element and by the StabLab software.

A) Calculat ion by hand

Section : welded symmetric I section

flange  b 200 mm   tf    1 2 m m

web hw   400 mm   tw   8 mm

Elastic modulus   E 210000  N

mm2

Length of member    L 8000 m m

Load  p 30  kN

m

Inertia moment   Iy   2 b   tf 

hw

2

tf 

2

 

 

 

 

2

  tw

hw3

12   246359467 mm

4

Maximum deflection   ez.max5

384

 p L4

E Iy   30.927 mm

Maximum bending moment   My.max p L

2

8240 kN m

F i g.4   Structural member loaded by uniformly distributed load in the

vertical plane (welded I section with 200- 12 f lange and 400-8 web)

Page 7: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 7/50

 

7

B) Computation by Shel l3 e lement

Figure 5 shows the deflections of the member with the numerical value ofthe maximum deflection (self-weight is neglected).

F i g.5   Deflections of the member  subjected to bending (with δ=50mm FE size)

C) Computation by StabLab

Figure 6 shows the deflections of the member with the numerical value of

the maximum deflection. Figure 7   shows the bending diagram with themaximum bending moment at the middle cross-section (self-weight isneglected).

F i g.6   Deflections of the member subjected to bending (with n=16 FE)

Page 8: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 8/50

 

8

F i g.7   Bending moment diagram of the member subjected to bending

Evaluation  

Table 2 shows the maximum value of the vert ical deflections calculated by hand

and computed by Shel l3   e lement and by the StabLab software. The results are

accurate .

Tab.2 Stress analys is of member subjected to bending

section property theory1 

StabLab Shel l33 

Beam72

 

n result 1 /2 δ   result 1 /3

Welded I

200-10 ;

400-8

ez .m a x  [mm]   30.927

4 29,373 1 ,053 100 31,200 0 ,991

6*

30,232 1 ,023 50 31,3760 ,986

8 30,533 1 ,013 25 31,4270 ,984

16 30,823 1 ,003

My .m a x [kNm]   2404 240

1 ,0006* 240

8 240

16 240

*) given by the automatic mesh generation (default)

Notes

In the table n   denotes the number of the finite element in the Beam7   model,δ  denotes the size of the finite ele ments in [mm] in the Shell3  model.

The distributed load on the Beam7  model is concentrated into the FE nodes,therefore the deflections depend on the number of the fi nite elements.

The Shell3   model involves the effect of the shear deformation, therefore itshows larger deflections.

Page 9: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 9/50

 

9

WE-03 Member in torsion (concentrated twist moment)

Figure 8   shows a simple fork supported structural member which is loaded by a concentrated twist mome nt at the mi ddle cross -s ection. The me mber wasanalysed by hand, by Shell3  element and by the StabLab software.

A) Calculat ion by hand

Section: Welded symm etric I section

flange  b 300 mm   tf    1 6 m m

web hw   300 mm   tw   1 0 m m

Sectional properties (by GSS m odel)   It1

32 b   tf 

3   hw tw3   919200 mm

4

hs   hw   tf    316 mm

Iz   2 t f   b

3

12   72000000 mm

4

I   Iz

hs2

4   1797408000000mm

6

h hw   2 t f    332 mm

Elastic m odulus E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Parameter G ItE I

  0.4441

m

Concentrated torsional mom ent   Mx   2 5 kN   m

Member length   L 4000 m m

Cross-secti on positi on   L2L

22000 mm

Parameters z  L

22000 mm

z0   0 mm

Rotation*   max

Mx

2

E   I

L2

Lz

sinh   L2  sinh   L( )

  sinh   z( ) 

 

 

    0.067 rad

max.deg   max   3.852 deg

F i g.8   Simple fork supported structural member loaded by

concentrated twist moment at the middle cross-section  

Page 10: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 10/50

 

10

B) Computation by Shel l3 e lement

Figure 9 shows the deformation of the member with the numerical value ofthe maximum rotation (self-weight is neglected). Figure 10   shows the axialstress distribution in the middle cross-section.

F ig .9    Maximum rotation of the middle cross -section

Bimoment* B Mx

sinh   L2  sinh   L( )

  sinh   z( )   20.009kN m2

Torsinal moment*   Mt   Mx

L2

L

sinh   L2 sinh   L( )

cosh    z0  

 

 

    3.696kN m

M   Mx

sinh   L2 sinh   L( )

cosh    z0   8.804kN m

Check equilibrium Mx.int   Mt   M   12.5kN m

Warping stress   ef h

2

tf 

2   158 mm

max   ef  b

2   23700 mm

2

x.maxB

Imax   263.8   N

mm2

*) Csellár, Halász, Réti: Thin-walled steel struc tures, Muszaki Könv kiadó 1965, Budapest ,

Hungary , pp. 129-131 (in hungarian)

Page 11: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 11/50

 

11

F i g.10    Axial stress distribution in the middle cross -section (with 25mm FE)

C) Computation by StabLab

Figure 11 shows the deflections of the member with the numerical value of

the maximum rotation (self-weight is neglected). Figure 12   shows the bimo me nt diagram with the ma ximu m bimo me nt at the mi ddle cross -section. Figure 13   shows the warping normal stress in the middle cross-section.

F i g.11    Rotation of the member due to concentrated twist moment

Page 12: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 12/50

Page 13: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 13/50

 

13

Notes

In the table n   denotes the number of finite element in the Beam7   model, δ  denotes the size of the finit e elements in [mm] in the Shell3  model.A stiffener was applied in the shell model at mid-span in order to avoid anylocal deformation due to the introduction of the concentrated twist.

Page 14: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 14/50

 

14

WE-04 Member in torsion (torsion by transverse concentrated load on mono-

symmetric I section)

Figure 14   shows a simple fork supported member with mono-symmetricwelded I section which is loaded by a concentrated transverse force in the centroidof the middle cross-section. The member was analysed by hand, by Shell3   elementand by the StabLab software.

A) Calculat ion by hand

Section : Welded monsymmetric I section

top flange  b1   200 mm   tf1   12 m m

web hw   400 mm   tw   8 mm

bottom flange  b2   100 mm   tf2   12 m m

Sectional properties Iz1   tf1

 b13

12   8000000 mm

4   Iz2   tf2

 b23

12   1000000 mm

4

Iz   Iz1   Iz2   9000000 mm4

It1

3 b1 tf1

3   b2 tf2

3   hw tw

3   241067 mm

4

I

z1Iz1   Iz2

  0.889   hs   hw

t

f12

t

f22   412 mm

I   f    1   f    Iz   hs2

  1.5088 1011

  mm6

ZS   248.4 mm (by GSS model of ConSteel)

zD   123.4 mm (by GSS model of ConSteel)

Elastic modul us   E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Parameter G It

E I  0.784

1

m

Member length   L 6000 m m

Transverse force   Fy   10 kN

F i g.14  Simple fork supported member with mono-symmetricwelded I section loaded by concentrated transverse force in the

centroid  

Page 15: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 15/50

 

15

Torsional moment   Mx   Fy zD   1.234kN m

Cross-secti on positi on   L2

L

23000 mm

z  L

23000 mm   z0   0 mm

Rotation*   max

Mx

2

E   I

L2

Lz

sinh   L2  sinh   L( )

  sinh    z( ) 

 

 

    3.172 deg

Bimoment*   B Mx

sinh    L2  sinh    L( )

  sinh    z( )   0.773kN m2

Torsinal moment*   Mt   Mx

L2

L

sinh   L2 sinh    L( )

cosh    z0  

 

 

    0.501kN m

M   Mx

sinh    L2 sinh   L( )

cosh    z0   0.116kN m

Check equilibrium   Mx.int   Mt   M   0.617kN m

Warping stress   2   18311 mm2

(by GSS model of ConSteel)

.2B

I2   93.8

  N

mm2

Bending moment   Mz   FyL

4   15 k N m

Bending stress   Mz2

Mz

Iz

 b2

2   83.33

  N

mm2

 Axial stress in bottom flange   x2

  .2

  Mz2

  177.14  N

mm2

*) Csellár, Halász, R éti: Thin-walled s teel struc tures, Muszaki Könv kiadó 1965, Budapest,

Hungary, pp. 129-131 (in Hungarian)

Page 16: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 16/50

 

16

B) Computation by Shel l3 e lement

Figure 15 shows the deformation of the member with the numerical value ofthe maximum rotation (self-weight is neglected).

F i g.15    Maximum rotat ion of the middle cross -section

C) Computation by StabLab

Figure 16 shows the deformed member with the numerical value of themaximum rotation (self-weight is neglected). Figure 17  shows the bimomentdiagram with the maximum bimoment at the middle cross-section. Figure 18 

shows the warping normal stress in the middle cross-section.

F i g.16    Rotation of the member due to concentrated transverse force in thecentroid of the middle cross-section (n=16)

Page 17: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 17/50

 

17

F i g.17    Bimoment of the member (n=16)

F i g.18   Warping normal stress in the middle cross-section (n=16)

Page 18: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 18/50

Page 19: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 19/50

Page 20: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 20/50

 

20

A) Calculat ion by hand

B) Computation by StabLab

Figure 20 shows the second order bending moment di agram of themember which was computed by the StabLab software using the Beam7  finite element model.

F i g.20    Bending moment diagram of the member (n=16)

Section:IPE 360

Sectional properties (ProfilARBED)   A 7273 mm2

Iz   10430000 mm4

Elastic modulus   E 210000  N

mm2

L 8000 m mLength of member 

Distributed load intensity   p 1  kN

m

Compressive force   Fx   200 kN

Crirical foce   F

cr.x

2

E   Iz

L2

337.8 kN

Bending moment by first order theory Mz1 p L

2

88 kN m

Moment amplifier factor   1

1Fx

Fcr.x

2.452

Bending moment by second order theory Mz2    M z1   19.61kN m

Maximum compressive stress   ymax   85 m m

c.max

Fx

A

Mz2

Iz ymax   187.3

  N

mm2

Page 21: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 21/50

Page 22: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 22/50

 

22

WE-06 Member subjected to biaxial bending and compression

Figure 21   shows a simple fork supported member with IPE360 equivalentwelded section (flange: 170-12,7; web: 347-8) subjected to biaxial bending aboutthe minor axis due to concentrated end moments and to compressive force.

Deflections of middle cross-section of the member are calculated by hand, byShell3  model and by the StabLab software using Beam7  model.

F i g.21   Simple fork supported member with IPE360 section

 subjected to biaxial bending and compression  

Page 23: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 23/50

 

23

A) Calculat ion by hand (using approximated method)  

*) Chen, W. and Atsuta, T.: Theory of Beam-Columns, Vol. 2: Space

 behavior and design, McGRAW -HILL 1977, p . 192

Section:IPE360 equivalent welded I section

Sectional properties (by EPS model )   A 6995 m m2

Iy   155238000 mm4

  Iz   10413000 mm4

It   291855 mm4

  I   313000000000 mm6

r 0

Iy

A

Iz

A   153. 887mm

Elastic modulus   E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

L 8000 m mLength of member 

P 100 kNCompressive force

My   4 5 k N   m   Mz   7.5 kN   mEnd

moments

Critical axial forces   Pcr.y

2

E   Iy

L2

5027 kN

Pcr.z

2

E   Iz

L2

337.2 kN

Pcr.1

r 02

2

E   I

L2

G It

 

 

 

 

  1423.5 kN

Displacements*

2

8

My Mz

Pcr.y Pcr.z   P

Pcr.y

Pcr.z   P

Pcr.z

Pcr.y   P

  4

Pcr.z   Pcr.y

P

My2

Pcr.z   P

Mz2

Pcr.y   P   r 0

2Pcr.   P

  0.087

umax1

Pcr.z   P

  2

8Mz   C My 

   

  55.53   mm

vmax1

Pcr.y   P

2

8My   C Mx

 

 

 

    11.25mm

max   C 4.991   deg

Page 24: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 24/50

 

24

B) Computation by Shel l3 e lement

Figure 22 shows the second order deflection of t he member which was

computed by Shell3 finite element model.

F i g.22    Deformation of the member by Shell3 FE model ( δ=43mm)

C) Computation by StabLab

Figure 23 shows the second order deflection of t he member which wascomputed by the StabLab software using the Beam7 finite element model.

F i g.23    Deformation of the member by Beam7 FE model (n=16)

Page 25: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 25/50

 

25

Evaluation

Table 6 shows the second order bending moment and the maximum axial

compressive stress value of the middle cross-section calculated by approximatedtheory and computed by Shell3   e lement and by the StabLab software. The accuracyof the approximated hand calculation is a bit pure, but the StabLab results of

Beam7  model comparing with the Shell3  model are accurate .

Tab.6 Second order stress analysis of member in bending and compression

sect ion displacement theory

(approximati

on)

StabLab

Beam7   Shel l3

n result δ   result

IPE360equivalent

welded I

section

170-12,7

347-8

ey .m a x [mm]   55,53

2 53,00   43 51,174 53,38   25 53,03

6* 53,46  

009,1)25(3

)16(7

  Shell 

n Beam

 16 53,50

e z .m a x [mm]   11,25

2 11,10   43 10,81  

4 11,10   25 10,83  

6* 11,10  025 ,1

 )25( csShell 

 )16 n( csBeam

  

 16 11,10

φ .m a x [deg]   4,991

2 4,172   43 4,2874 4,216   25 4,433

6* 4,229  956,0

)25(3

)16(7

  Shell 

n Beam 16 4,239

*) given by the automatic mesh generation (default)

Notes

In the Table 6   n   denotes the number of the finite elements of the Beam7  model, δ  denotes the maximum size of the shell finite elements of the Shell3  model in [mm].

Page 26: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 26/50

 

26

3 Stability analysis 

The s tabi l i ty ana lysis of s imple s t ruc tura l members using the StabLab sof tware based on

the Beam7   f ini te element models are checked by hand calculation and optionally by the

Shell3   f ini te element models in the following Worked Examples   (WE-07   to WE-12 ) .

WE-07 Lateral torsional buckling (double symmetric section & constant

bending moment)

Figure 24   shows a simple fork supported member with welded section(flange: 200-12; web: 400-8) subjected to bending about the major axis due toconcentrated end moments. Critical moment of the member is calculated by

hand and by the StabLab software using the Beam7  model.

A) Calculat ion by hand

Section : welded symmetric I section

flange  b 200 mm   tf    1 2 m m

web hw   400 mm   tw   8 mm

Sectional properties   Iz   2 tf   b

3

12   16000000 mm4

It1

32 b   tf 

3   hw tw

3   298667 mm

4

I

tf  b3

24hw   tf 

2   678976000000 mm

6

Elastic modulus E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Member length   L 6000 m m

Critical moment   Mcr 

2

E   Iz

L2

I

Iz

L2

G   It

2 E   Iz

  241.31kN m

F ig .24   Simple fork supported member subjected to bending aboutthe major axis (LTB)  

Page 27: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 27/50

 

27

B) Computation by StabLab

Figure 25 shows the member subjected to lateral torsional bucklingwhich was computed by the StabLab software using the Beam7  f initeelement model.

F i g.25    LTB of simple supported structural member (n=16)

Evaluation

Table 7 shows the cri t ical moment for la teral torsional buckling of the member

which calculated by hand and computed by the StabLab software using the Beam7  

model. The result is accurate .

Tab.7 Stability analysis of member in bending (LTB, L=6000mm)

section critical force theory1 

Beam72

 

n result 1 /2

Welded I200-12 ; 400-

8

Mc r  [kNm]   241,31

2 243,24 0 ,992

4 241,87 0 ,998

6* 241,79 0 ,998

16 241,77 0 ,998

*) given by the automatic mesh generation (default)

Note

In the Table 7   n   denotes the number of the finite elements of the Beam7  model.

Page 28: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 28/50

 

28

WE-08 Lateral torsional buckling (double symmetric section & triangular

bending moment distribution)Figure 26   shows a simple fork supported member with welded section

(flange: 200-12; web: 400-8) subjected to transverse force at middle cross sectionin the main plane of the member. The critical force is calculated by hand and bythe StabLab software using Beam7  model.

A) Calculat ion by hand

Section: welded symmetric I section

flange  b 200 mm   tf    1 2 mm

web hw   400 mm   tw   8 mm

Sectional properties   Iz   2 tf   b

3

12   16000000 mm

4

It1

32 b   tf 

3   hw tw

3   298667 mm

4

I

tf  b3

24hw   tf  2

  678976000000 mm6

Elastic modulus   E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Member length   L 6000 m m

Critical force   C1   1.365

Mcr    C1

2

E   Iz

L2

I

Iz

L2

G   It

2

E   Iz

  329.387kN m

Fcr    4

Mcr 

L   219.6 kN

F i g.26   Simple fork supported member subjected to transverse force (LTB)  

Page 29: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 29/50

 

29

B) Computation by StabLab

Figure 27 shows the LTB of the member subjected to t ransverse force.The critical force is computed by the St abLab software using Beam7  finite element model.

F i g.27    LTB of simple supported structural member subjected to

transverse force (n=16)

Evaluation

Table 8 shows the cri t ical force for la teral torsional buckling of the member which

calculated by hand and computed by the StabLab software using Beam7   model.

The result is accurate .

Tab.8 Stability analysis of member in Bending (LTB, L=6000mm)

section critical force theory1 

Beam72

 

n result 1 /2

Welded I200-12 ; 400-

8

Pc r  [kN]   219,6

2 220,90 ,994

4 219,90 ,999

6* 219,71 ,000

16 219,71 ,000

*) given by the automatic mesh generation (default)

Note

In the Table 8   n   denotes the number of the finite elements of the Beam7  

model.

Page 30: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 30/50

 

30

WE-09 Lateral torsional buckling (mono-symmetric section & constant

moment)Figure 28   shows a simple fork supported member with welded mono-

symmetric I section (flange: 200-12 and 10 0-12; web: 400-8) subjected to equal endmoments. The critical moment is calculated by hand, by Shell3   finite element and by the StabLab software using Beam7  finite element.

F ig .28  Simple fork supported member with mono-symmetric I section subjected to equal end moments (LTB)  

Page 31: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 31/50

 

31

A) Calculat ion by hand

Section: welded mono-symmetric I section

top flange  b1   200 mm   tf1   1 2 m mweb hw   400 mm   tw   8 mm

bottom flange  b2   100 mm   tf2   1 2 m m

Sectional properties ZS   248.4 mm (by GSS model of 

ConSteel)

zD   123.4 mm (by GSS model of 

ConSteel)

Iz1   tf1

 b13

12   8000000 mm

4   Iz2   tf2

 b23

12   1000000 mm

4

Iz   Iz1   Iz2   9000000 mm4

Iy   186493000 mm4 (by GSS model of 

ConSteel)

It1

3 b1 tf1

3   b2 tf2

3   hw tw

3   241067 mm

4

Iz1

Iz1   Iz2  0.889

hs   hw

tf1

2

tf2

2   412 mm

I   f    1   f    Iz   hs2

  150883555556 mm6

e hw   tf2tf1

2

  ZS   169.6 mm

A1   b1 tf1   2400 mm2

  A2   b2 tf2   1200 mm2

qx1

Iy

zD Iz1   A1 e3

  A2   hs   e 3

tw

4e

4hs   e

4

  51.725   mm

z j   zD   0.5qx   149.262 mm

Elastic modulus   E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Member length   L 6000 m m

Critical moment   Mcr 

2

E   I

z

L2

I

Iz

L2

G   I

t

2

E   Iz   z j2   z j

 

 

 

 

  220.77kN m

Page 32: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 32/50

 

32

B) Computation by Shell3 element

Figure 29 shows the LTB of the mono-symmetric member subjected toequal end moments. The critical force is computed by Shell3   finiteelement model.

F i g.29    LTB of simple supported mono-symmetric structural member subjected to equal end moments (δ=50mm)  

C) Computation by StabLab

Figure 30 shows the LTB of the mono-symmetric member subjected toequal end moments. The critical moment is computed by the StabLabsoftware using Beam7   finite element model.

F i g.30    LTB of simple supported mono-symmetric structural member

 subjected to equal end moments (n=16)

Page 33: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 33/50

 

33

Evaluation

Table 9 shows the cri t ical moment for la teral torsional buckling of the member

which calculated by hand, by Shell3   model and computed by the StabLab softwareusing Beam7  model . The resul t i s accura te .

Tab.9 Stability analysis of mono-symmetric member subjected to equal end

moments

section critical force theory1 

Beam72

  Shel l33

 

n result 1 /2 δ   result 1 /3

Welded

mono-

symmetric I200-12 ; 400-

8 ; 100-12

Mc r  [kNm]   220,77

2 221,67 0 ,996 50 219,77 1 ,005

4 220,37 1 ,002 25 217,13 1 ,016

6* 220,30 1 ,002

16 220,28 1 ,002

*) given by the automatic mesh generation (default)

Note

In the Table 9 n   denotes the number of the finite elements of the Beam7  

model, δ  denotes the maximum shell FE size.

Page 34: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 34/50

 

34

WE-10 Lateral torsional buckling (mono-symmetric section & triangular

moment distribution)

Figure 31   shows a simple fork supported member with welded mono-

symmetric I section (flange: 200-12 and 100-12; web: 400-8) subjected totransverse force at the middle cross- section of the member. The critical force iscalculated by hand, by Shell3   finite element and by the StabLab software usingBeam7  finite element.

F i g.31  Simple fork supported member with mono-symmetricwelded I section subjected to transverse force (LTB)  

Page 35: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 35/50

 

35

A) Calculat ion by hand

Section: welded monsymmetric I section

top flange b1   200 mm   tf1   1 2 m m

web hw   400 mm   tw   8 mm

bottom flange  b2   100 mm   tf2   1 2 m m

Sectional properties ZS   248.4 mm (by GSS model of ConSteel)

zD   123.4 mm (by GSS model of ConSteel)

Iz1   tf1

 b13

12   8000000 mm

4   Iz2   tf2

 b23

12   1000000 mm

4

Iz   Iz1   Iz2   9000000 mm4

Iy   186493000 mm4

(by GSS model of ConSteel)

It13

 b1 tf13   b2 tf2

3   hw tw3   241067 mm4

Iz1

Iz1   Iz2  0.889

hs   hw

tf1

2

tf2

2   412 mm

I   f    1   f    Iz   hs2

  150883555556 mm6

e hw   tf2tf1

2   ZS   169.6 mm

A1   b1 tf1   2400 mm2

  A2   b2 tf2   1200 mm2

qx1

Iy

zD Iz1   A1 e3

  A2   hs   e 3

tw

4e

4hs   e 4

  51.725   mm

z j   zD   0.5qx   149.262 mm

Elastic m odulus E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Member length   L 6000 m mCoefficients* C1   1.365   C3   0.411

Critical moment   Mcr    C1

2

E   Iz

L

2

I

I

z

L2

G   It

2

E   Iz

  C3 z j 2   C3 z j

  213.88kN m

Fcr    4Mcr 

L   142.59 kN

*) G. Sedlacek, J. Naumes: Excerpt from the Background Document to

EN 1993-1-1 Flexural buckling and lateral buckling on a common basis:

Stability assessments according to Eurocode 3 CEN / TC250 / SC3 / N1639E - rev2

Page 36: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 36/50

 

36

B) Computation by Shel l3 e lement

Figure 32 shows the LTB of the mono-symmetric member subjected totransverse force. The critical force is computed by Shell3   finite elementmodel.

F i g.32    LTB of s imple supported mono-symmetric structural member subjected to transverse force (δ=25mm)  

C) Computation by StabLab

Figure 33 shows the LTB of the mono-symmetric member subjected totransverse force. The critical force is computed by the StabLab software

using Beam7  finite element model.

F i g.33    LTB of simple supported mono-symmetric structural member

 subjected to transverse force (n=16)

Page 37: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 37/50

 

37

Evaluation

Table 10 shows the cri t ical force for la teral torsional buckling of the member

which calculated by hand, by Shell3   model and computed by the StabLab softwareusing Beam7   e lement. The result is accurate .

Tab.10 Stability analysis of mono-symmetric member subjected to transverse

force

section critical force theory1 

Beam72

  Shel l33

 

n result 1 /2 δ   result 1 /3

Welded

mono-

symmetric I200-12 ; 400-

8 ; 100-12

Fc r  [kNm]   142,59

2 143,13 0 ,996 50 141,5 1 ,008

4 142,13 1 ,003 25 139,4 1 ,023

8* 141,99 1 ,004

16 141,98 1 ,004

*) given by the automatic mesh generation (default)

Note

In the Table 10 n   denotes the number of the finite elements of the Beam7  

model, δ  denotes the maximum shell FE size.

Page 38: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 38/50

 

38

WE-11 Lateral torsional buckling (C section & equal end moments)

Figure 34   shows a simple fork supported member with cold-formed Csection (150x100x30x2) subjected to equal end moments. The critical moment is

calculated by hand and by the St abLab software using Beam7 model.

F i g.34  Simple fork supported member with cold-formed C section subjected to equal and moments (LTB)  

Page 39: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 39/50

Page 40: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 40/50

 

40

B) Computation by StabLab

Figure 34 shows the LTB of the member with C section subjected toequal end moments. The critical moment is computed by the StabLabsoftware using Beam7   finite element model.

F i g.34    LTB of simple supported C structural member subjected toequal end moments (n=16)

Evaluation

Table 11 shows the cri t ical end moment for la teral torsional buckling of the C

member calculated by hand and computed by the StabLab software using Beam7  model. The result is accurate .

Tab.11 Stability analysis of the C member subjected to equal end moments

section critical force theory1 

Beam72

 

n result 1 /2

Cold formed

C150x100x30x2

Mc r  [kNm]   94,108

2 94,070 ,994

4 93,42 1 ,007

6* 93,381 ,008

16 93,381 ,008

*) given by the automatic mesh generation (default)

Note

In the Table 11   n   denotes the number of the finite elements of the Beam7  model.

Page 41: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 41/50

 

41

WE-12 Lateral torsional buckling (C section & equal end moments)

Figure 35   shows a simple fork supported member with cold-formed Csection (150x200x30x2) subjected to equal end moments. The critical moment is

calculated by hand and by the StabLab software using Beam7 model.

F i g.35  Simple fork supported member with cold-formed C section

 subjected to equal and moments (LTB)  

Page 42: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 42/50

 

42

A) Calculat ion by hand

B) Computation by StabLab

Figure 36 shows the LTB of the member with C section subjected toequal end moments. The critical moment is computed by the StabLab

software using Beam7   finite element model.

Section : Cold-formed C sectionwidth of flange  b 200 mmdepth d 150 mmwidth of stiffener d1   30 m m

pla te thickness   t 2 mm

Cross-sectional properties (by ConSteel GSS model )

Iy   6362658 mm4

  Iz   5269945 mm4

It   1734 mm4

  I   35770000000 mm6

e 85.2 m m   es   112.8   mm

Sectional radius*   Af    d t( ) t   296 mm

2

If t d t( )

3

12540299 m m

4

As   d1t

   

  t   58 m m2

Is

t d1t

   

3

12As

d

2

t

2

d1t

2

2

 

 

 

 

2

  209399 mm4

Aw   b  t

   

  t   398 mm2

Iw   Awd

2

t

   

2

  2179448 mm4

h b  t

2   199 mm

qx1

Iz

e Af   e2

  If    2es   As   es2

  Is   2 e   h( ) Iw  t

2e

4h e( )

4

  30.737   mm

zD   187.8 mm

z

 j

  z

D

  0.5q

x

  203.168 mm

Length of member    L 4 000 m m

Critical moment   Mcr 

2

E   Iz

L2

I

Iz

L2

G   It

2

E   Iz

  z j2

  z j

 

 

 

 

  288.68kN m

Page 43: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 43/50

Page 44: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 44/50

 

44

WE-13 Flexural-torsional buckling (U section)

Figure 37   shows a simple fork supported member with cold-formed Usection (120x120x4) subjected to compressive force. The critical force is

calculated by hand, by Shell3  model and by the StabLab software using Beam7

element. 

F i g.37  Simple fork supported member with cold-formed U section

 subjected to compressive force ( f lexural-torsional buckling)  

Page 45: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 45/50

 

45

A) Calculat ion by hand

Section: Cold-formed U sectionwidth of fla nge  b 120 mmdepth d 120 mmplate thickness   t 4 mm

Elastic modulus   E 210000  N

mm2

  G  E

2 1 0.3( )  80769

  N

mm2

Length of member    L 4 000 m m

Cross-sectional properties (by ConSteel GSS model)

A 1408 mm2

Iz   2180000 mm4

  iz   39.4 mm

Iy   3699100 mm4

  iy   51.3 mm

It   7927 mm4

I   5264600000 mm6

  y   90.1 mm

i   iy2

iz2

  y2

  110.915 mm

i p

Iy   Iz

A64.618 mm

Critical forces   Pcr.y

2

E   Iy

L2

479.176 kN

P1

i2

2

E   I

L2

G It

 

 

 

 

  107.48 kN

Critical compressive force

Pcr 

i

2

2 i p2

Pcr.y   P

i

4

4 i p4

Pcr.y   P

2

  Pcr.y P

i

2

i p2

  92.768 kN

Page 46: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 46/50

 

46

B) Computation by Shel l3 e lement

Figure 38 shows flexural torsional buckling of the member with Usection subjected to compressive force. The critical force is computed byShell3  finite element model.

F i g.38    FTB of the simple supported U structural member subjected tocompressive force (δ=25mm)  

C) Computation by StabLab

Figure 39 shows the flexural torsional buckling of the member with U

section subjected to compressive force. The critical force is computed bythe StabLab software using Beam7 finite element model.

F i g.39    FTB of the simple supported U structural member subjected tocompressive force (n=16)

Page 47: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 47/50

 

47

Evaluation

Table 13 shows the cri t ical compressive force for flexural la teral buckling of the

member which calculated by hand, by Shell3   model and computed by the StabLabsoftware using Beam7  e lement . The resul ts a r e accura te .

Tab.13 Stability analysis of member subjected to compressive force

section critical force theory1 

StabLab

Beam72

  Shell33 

n result 1 /2 δ   result 1 /3

U

120x120x4cold formed

Pc r  [kN]   92,77

2 93,24 0 ,995 50 94,42 0 ,983

4 92,86 0 ,999 25 93,55 0 ,992

6* 92,84 0 ,999

16 92,83 0 ,999

*) given by the automatic mesh generation (default)

Notes

In the Table 13   n   denotes the number of the finite elements of the Beam7  model, δ  denotes the maximum size of the shell finite elements in the Shell3  model in [mm].

Page 48: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 48/50

 

48

WE-14 Interaction of flexural buckling and LTB (symmetric I section &

equal end moments and compressive force)

Figure 40   shows a simple fork supported member with welded symmetric I

section (200-12, 400-8) subjected to compressive force and equal end moments.The critical moment with constant compressive force is calculated by hand and bythe StabLab software using Beam7  model.

F i g.40  Simple fork supported member with welded I section subjected to constant compressive force and equal end moments

(interaction)  

Page 49: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 49/50

Page 50: Verification Manual - StabLab.pdf

8/9/2019 Verification Manual - StabLab.pdf

http://slidepdf.com/reader/full/verification-manual-stablabpdf 50/50