21
Verification report PURROT ® Prepared by: Thorkild Q. Frandsen, ETA-Danmark Prepared for proposer: PurFil Aps Status: Final version Version: 30-10-2015

Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

Embed Size (px)

Citation preview

Page 1: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

Verification report PURROT®

Prepared by: Thorkild Q. Frandsen, ETA-Danmark Prepared for proposer: PurFil Aps Status: Final version Version: 30-10-2015

Page 2: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 2 of 21

Table of Contents

1. INTRODUCTION ..................................................................................................................................................... 3

1.1. NAME OF TECHNOLOGY ................................................................................................................................................... 3 1.2. NAME AND CONTACT OF PROPOSER.................................................................................................................................... 3 1.3. NAME OF VERIFICATION BODY AND RESPONSIBLE OF VERIFICATION ........................................................................................... 3 1.4. ORGANISATION OF VERIFICATION INCLUDING EXPERTS AND VERIFICATION PROCESS ...................................................................... 3 1.5. DEVIATIONS FROM THE SPECIFIC VERIFICATION PROTOCOL ...................................................................................................... 4

2. DESCRIPTION OF THE TECHNOLOGY AND APPLICATION ........................................................................................ 5

2.1. SUMMARY DESCRIPTION OF THE TECHNOLOGY ...................................................................................................................... 5 2.2. INTENDED APPLICATION INCLUDING MATRIX, PURPOSE, AND TECHNICAL CONDITIONS ................................................................... 6 2.3. VERIFICATION PARAMETERS DEFINITION .............................................................................................................................. 7

3. EXISTING DATA ...................................................................................................................................................... 8

3.1. ACCEPTED EXISTING DATA ................................................................................................................................................ 8

4. EVALUATION .......................................................................................................................................................... 8

4.1. CALCULATION OF PERFORMANCE PARAMETERS ..................................................................................................................... 8 4.2. EVALUATION OF TEST QUALITY......................................................................................................................................... 11 4.3. VERIFICATION RESULTS – VERIFIED PERFORMANCE CLAIMS .................................................................................................... 12 4.4. RECOMMENDATIONS FOR THE STATEMENT OF VERIFICATION ................................................................................................ 14

5. QUALITY ASSURANCE .......................................................................................................................................... 15

6. REFERENCES ......................................................................................................................................................... 17

APPENDIX 1 - TERMS AND DEFINITIONS .......................................................................................................................... 17

APPENDIX 2 – QUICK SCAN.............................................................................................................................................. 21

APPENDIX 3 – PROPOSAL ................................................................................................................................................ 21

APPENDIX 4 – SPECIFIC VERIFICATION PROTOCOL .......................................................................................................... 21

APPENDIX 5 – AMENDMENT AND DEVIATION REPORT FOR VERIFICATION ..................................................................... 21

APPENDIX 6 – TEST PLAN ................................................................................................................................................ 21

APPENDIX 7 – TEST REPORT ............................................................................................................................................ 21

Page 3: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 3 of 21

1. Introduction Environmental technology verification (ETV) is an independent assessment of the performance of a technology or a product for a specified application under defined conditions and quality assurance. This verification is per-formed under the EU ETV Pilot Programme. The verified technology is categorised under the EU ETV technolo-gy area “Materials, waste and resources”.

1.1. Name of technology

The name of the verified technology is PURROT®.

1.2. Name and contact of proposer

The proposer is the Danish company PurFil Aps, Sverigesvej 16, DK-8700 Horsens, Denmark. Contact person of the proposer is Mr. Anders Tange. E-mail: [email protected]. Telephone: +45 40 15 87 77.

1.3. Name of verification body and responsible of verification

This verification is performed by ETA-Danmark A/S, Göteborg Plads 1, DK-2150 Nordhavn, Denmark. Website: www.etadanmark.dk. Verification responsible is Peter Fritzel, ETA-Danmark. Phone: +45 72 24 59 00. E-mail: [email protected].

1.4. Organisation of verification including experts and verification process

The verification is conducted by ETA-Danmark in cooperation with Danish Centre for Verification of Climate and Environmental Technologies, DANETV. An internal and an external technical expert have provided reviews of the planning, conducting and reporting of the verification. The internal verification expert is: Thorkild Qvist Frandsen, DANETV, [email protected]. Phone: +45 21 71 77 61. The external technical expert assigned to this verification and responsible for review of the specific verification protocol and the verification report is Bjørn Malmgren-Hansen, Danish Technological Institute. E-mail: [email protected]. Phone: +45 72 20 18 10. The test and the verification tasks were conducted in two separate steps, as required by the EU ETV pilot pro-gramme (European Commission, 2014). Test activities were undertaken by AgroTech DANETV Test Centre (test body), whereas the verification activities were undertaken by ETA-Danmark (verification body). The relations between the organisations involved in the test and verification of PURROT

® are shown in Figure 1.

Page 4: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 4 of 21

Figure 1. Organisation of the test and verification of PURROT®

The verification was planned and conducted to satisfy the requirements of the EU ETV Pilot programme as de-scribed in the EU ETV General Verification Protocol (European Commission, 2014) and ETA-Danmark´s internal procedure. An overview of the verification process is given in Table 1.

Table 1. Overview of the three main phases in the verification process and the corresponding documents for each phase.

Phase Responsible Document

1. Preparation phase Verification body Quick scan report

Contract with proposer

Specific verification protocol

2. Testing phase Test body Test plan

Test report

3. Verification phase Verification body Verification report

Statement of Verification

Quality assurance was undertaken using both internal and external experts. An overview of the quality assur-ance of the whole verification process is given in section 5. The Statement of Verification will be issued by the ETA-Danmark Verification body after completion of the verification process.

1.5. Deviations from the specific verification protocol

According to the specific verification protocol for PURROT at least three batch tests had to be undertaken for each of the matrices included in the verification. However, for the matrix sow slurry only two batches were un-dertaken. The impact of the deviation on the verification process is described in section 4.2.3. Two other devia-tions with limited impacts are also described in section 4.2.3.

EU ETV

Pilot Programme

Verification body

ETA-Danmark Proposer

(Technology supplier)

PurFil

External expert

Internal expert

Test body

AgroTech DANETV

Test Centre

Page 5: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 5 of 21

2. Description of the technology and application

2.1. Summary description of the technology

PURROT® is intended for separation of dry matter from liquid wastes in order to facilitate a more effective utilisa-

tion of the dry matter for production of bioenergy. At the same time a more effective utilisation of the nutrients is achieved thereby reducing nutrient losses to the environment. Examples of such liquid wastes are slurry from livestock housing systems or digested biomass from biogas plants. It could also be liquid wastes from different types of industrial production. In the typical situation treatment of liquid wastes with PURROT

® results in two output fractions: 1) A solid frac-

tion and 2) A liquid fraction. However, it is possible to change the settings of the PURROT® technology so that

three output fractions are produced as a result of the treatment. PURROT

® operates without addition of chemical additives like polymers and coagulants. PURROT

® operates

automatically and no persons are needed to start and stop the separator. Figure 2 is a photo of PURROT®.

Figure 2. Photo of PURROT®. In the container to the right of PURROT

® the solid output fraction is collected.

In PURROT®

five separation principles are integrated into one machine. The five principles are described sepa-

rately in the following. 1. A vertical curved sieve. The liquid waste is pumped to the inside wall of the filter screen. 2. A drum (rotor filter). The filter screen itself is placed around a drum. The screen has small holes (40 microns or less). The drum is rotating slowly (normally 1-5 rotations/minute). A spiral is fixed at the inside wall of the screen. The dryer and dryer sludge is moved from one end to the other end of the drum. A flow meter installed

Page 6: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 6 of 21

at the inlet is measuring the actual flow and the total amount of liquid waste treated. Data from the flow meter is used for controlling the speed of the pump for the liquid waste to be fed into the separator. Further, an ultra-sound level-transmitter inside the drum is measuring the actual liquid level. Data from these measurements are used for regulating the speed of the inlet pump, so the desired level can be obtained inside the drum. 3. A horizontal vibration sieve. The drum is vibrating with an amplitude of 2 mm as fast as 60 Hz (3000 times/minute) in a circular (tangential) direction. As a result the screen around the drum is acting as a normal self-cleaning vibration sieve. 4. A high pressure screw press. Integrated in the drum filter, the primarily drained solution is lifted up into a fun-nel above and entering a screw press. Here the solid content can be raised from approximately 10 % to more than 40 % of total solids (TS). The draining takes place in a perforated pipe where excess liquid is recycled to the drum without using any pumps. The modules are mounted with both a pressure screw and a back-pressure screw. These are coordinated in relation to each other by the programmable logic controller (PLC). It means that it is possible via the PLC to adjust the total solids content of the solid output fraction to a lower level, if this is requested by the customer. 5. A hydro cyclone. Finally, before the filtrate is leaving the PURROT

® smaller sediments (like clay) can be sepa-

rated from the filtrate using a hydro cyclone. These sediments can be recycled and absorbed in new dry matter. Alternatively, the sediments can be taken out as a third output fraction from PURROT

®.

The screen in the PURROT® will at intervals automatically be cleaned in place (CIP) using for instance a miner-al acid. Cleaning is needed in order to avoid lime and struvite blocking the holes. The CIP-procedure can be triggered when a certain volume of liquid waste is treated or it can be triggered by a reduced flux through the screen. The complete PURROT

® installation is controlled by the PLC, which is connected to the internet using a wireless

connection. Via the internet both the owner of the PURROT® and the service company can get information from

the specific installation of PURROT®. This includes information to the service company when service is needed.

It could also be information to the owner that the storage facility for solid fraction is full and needs to be emptied.

2.2. Intended application including matrix, purpose, and technical conditions

The intended application of PURROT® is described in terms of the matrix and the purposes. Matrix is the type of

material that the technology is intended to treat. The purposes of PURROT®

are the measurable properties that are affected by the technology and how it is affected.

2.2.1. Matrix

PURROT® was verified for treatment of three types of liquid wastes:

1) Digested biomass from a biogas plant with a dry matter content of 6.2 – 6.4 %. 2) Slurry from a pig farm (sow slurry) with a dry matter content of 2.9 – 3.2 %. 3) Slurry from dairy farm with a dry matter content of 7.0 – 8.0 %

2.2.2. Purposes

The overall purpose of PURROT® is to upgrade liquid wastes to useful products with added value. This is done

by separating the liquid wastes into a solid fraction and a liquid fraction. As a result dry matter and organic bound nutrients are concentrated in the solid fraction. This facilitates the utilization of the individual components in the solid fraction. Such components are for instance, organic dry matter for energy purposes and phospho-rous for fertilising purposes.

Page 7: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 7 of 21

When pig slurry, cow slurry and digested biomass from biogas plants are treated with PURROT®

the following

effects are claimed:

Minimum 55 % of the organic dry matter (volatile solids) in the liquid waste is recovered in the solid fraction.

Minimum 35 % of phosphorous in the liquid waste is recovered in the solid fraction.

Minimum 15 % of the total-nitrogen in the liquid waste is recovered in the solid fraction.

Minimum 35 % of the organic bound nitrogen in the liquid waste is recovered in the solid fraction.

Electricity consumption is maximum 2.0 kWh per ton liquid waste treated with PURROT®.

2.3. Verification parameters definition

In this section the different parameters evaluated as part of the verification are described. Performance parameters are defined taking into account e.g. regulatory requirements, application based needs, and state of the art performance. For the verification of PURROT

® the following performance parameters have

been defined:

Share of the organic dry matter (volatile solids) in the liquid waste recovered in the solid fraction.

Share of the total-nitrogen (Total-N) in the liquid waste recovered in the solid fraction.

Share of the organic bound nitrogen (organic-N) in the liquid waste recovered in the solid fraction.

Share of phosphorous (P) in the liquid waste recovered in the solid fraction. An overview of the analytical parameters used for calculation of the performance parameters is given in Table 2. For each of the analytical parameters the analytical method is specified together with the unit used for present-ing the results.

Table 2. Analytical parameters used for calculation of performance parameters and the corresponding analytical method.

Analytical parameter Analytical method Unit

Organic dry matter (volatile solids, VS) DIN 19684-3 Percent of sample

Total nitrogen (total-N) DIN ISO 13878 Kg/ton

Ammonium nitrogen (NH4-N) DIN 38406-5-2 (E 5-2) Kg/ton

Phosphorous (P) DIN EN ISO 11885 (E 22) Kg/ton

The operational parameters evaluated as part of this verification are:

Capacity of PURROT® measured as tons of liquid waste treated per hour.

Electricity consumption of PURROT® measured as kWh per ton of liquid waste treated.

The user manual and implications on occupational health and environment were not evaluated as part of this verification. In addition to the performance parameters and operational parameters some other parameters were evaluated as part of this verification. In order to characterise the solid output fraction the parameters listed in Table 3 were analysed.

Page 8: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 8 of 21

Table 3. List of additional parameters to be analysed in the input flow and the two output flows from PURROT®.

Parameter Analytical method Unit

Dry matter (Total solids, TS) DIN EN 12880. Analytical method for measuring VS is DIN 19684-3. Percent of sample

Potassium (K) DIN EN ISO 11885 (E 22) Kg/ton

Potassium oxide (K2O) EN ISO 11885 Kg/ton

In Table 4 the performance parameters for this specific verification are presented. The figures mentioned in the “Value” column refer to the performance claims of the proposer.

Table 4. Parameter definition table. Parameter Value Existing legal

requirements Test or measurement methods Available test data

Share of the organic dry matter (volatile solids) in the liquid waste recovered in the solid fraction.

Minimum 55 % Not applicable The same test method was used for all four parameters. A series of batch tests were undertaken. In each batch test the volume of liquid waste treated was measured. Also the weight of solid frac-tion produced during the batch was determined. From these data it was calculated how the weight of the liquid weight treated was distributed on the output products after separation assum-ing that no losses take place during the treatment. During the batch test samples were taken from input flow and output fractions coming from the separator. After chemical analyses have been done it was possible to make mass balances on the four parameters. Based on the mass balances the separation efficien-cies could be calculated.

Not applicable

Share of the total-nitrogen (Total-N) in the liquid waste recovered in the solid frac-tion.

Minimum 15 % Not applicable Not applicable

Share of the organic bound nitrogen (organic-N) in the liquid waste recovered in the solid fraction.

Minimum 35 % Not applicable Not applicable

Share of phosphorous (P) in the liquid waste recovered in the solid fraction.

Minimum 35 % Not applicable Not applicable

3. Existing data

3.1. Accepted existing data

No existing data have been used in the present verification.

4. Evaluation

4.1. Calculation of performance parameters

The methods for calculation of the performance parameters are described below. The four performance parameters are expressions of the separation efficiency with respect to selected compo-nents. In this verification separation efficiency is defined as the proportion of a given component in the input liquid waste that ends up in the solid fraction after separation. The separation efficiency is expressed as a per-cent. Separation efficiency (SE) is calculated as shown below.

Page 9: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 9 of 21

𝑆𝐸iS =

(MS × CiS)

(Minput × Ciinput

)× 100

Where:

𝑆𝐸iS = Percent of component i in input waste recovered in solid output fraction (S).

Minput,S = Mass of liquid waste (input) and solid output (S) fraction respectively.

Ciinput,S

= Concentration of component i in input waste (input) and solid output fraction (S) respectively.

To calculate the separation efficiencies mass balances with respect to nutrients, total solids and volatile solids have been calculated for each batch. The mass balance calculations are based on the measured concentrations of nutrients and solids and the weight of input and output fractions. If the weight can be determined with reasonable accuracy and no losses occur during the separation process it is acceptable to measure the weight of two mass flows only and then calculate the weight of the third mass flow.

Minput = ML + MS Where:

Minput = Mass of untreated liquid waste

ML = Mass of liquid output fraction

MS = Mass of solid output fraction

The separation efficiency of PURROT

® has been measured by undertaking 2-3 batch tests for each of the 3

types of liquid wastes (matrices) in focus. Each batch test lasted 180 minutes. In each batch test a certain amount of liquid waste was treated in PURROT and the amount of resulting output fractions was measured. Some batch tests were done so that only two output fractions were produced: Filtrate fraction and solid fraction. Some batches were done so that the sediments from the hydro cyclone were taken out of the filtrate as a third output fraction. It has no influence on the performance parameters whether the sediment fraction is taken out or not. Figure 3 is a simplified illustration of the test set-up used for testing PURROT

®.

Figure 3. Simplified illustration of the set-up for the test of PURROT® including the four sampling points (SP).

Page 10: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 10 of 21

Figure 4 is a photo from one of the batch tests undertaken at the biogas plant of Aarhus University.

Figure 4. Photo from one of the batch tests undertaken at the biogas plant of Aarhus University. The solid output fraction is collected in the blue container to the left.

Table 5 shows the results from testing PURROT used for separation of cow slurry. The separation efficiencies are calculated as an average from three batches. Batch 1 and 2 were undertaken without producing a sediment fraction, whereas batch 3 was done so that a sediment fraction was produced.

Table 5. Cow slurry. Separation efficiency of PURROT® treating cow slurry with a total solids content of 7.0 – 8.0 %.

Parameter Share recovered in the solid output fraction after separation with PURROT [95 % confidence interval]

Weight 12 % [5 – 18]

Total Phosphorous 23 % [16 – 31]

Total Nitrogen 19 % [10 – 27]

Total solids, TS 54 % [41 – 67]

Volatile solids, VS 60 % [47 – 73]

Organic bound Nitrogen 29 % [15 – 42]

It is seen in Table 5 that 60 % of the volatile solids of the input slurry are recovered in the solid fraction after separation with PURROT. Table 6 shows the results from testing PURROT used for separation of digested biomass taken from a biogas reactor. The separation efficiencies are calculated as an average from three batches. Batch 1 was undertaken without producing a sediment fraction, whereas batch 2 and 3 were done so that a sediment fraction was pro-duced.

Page 11: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 11 of 21

Table 6. Digested biomass. Separation efficiency of PURROT® treating digestate with a total solids content of 6.2 – 6.4 %.

Parameter Share recovered in the solid fraction after separation with PURROT [95 % confidence interval]

Weight 10 % [7 – 13]

Total Phosphorous 46 % [35 – 58]

Total Nitrogen 22 % [18 – 26]

Total solids, TS 56 % [55 – 57]

Volatile solids, VS 62 % [60 – 64]

Organic bound Nitrogen 33 % [22 – 45]

It is seen in table 6 that 22 % of the total nitrogen in the digested biomass is recovered in the solid fraction after separation with PURROT. If the solid fraction is allocated for other purposes than fertilizing on the fields belong-ing to the biogas plant less area is required for spreading the digested biomass. According to the Danish rules and the separation efficiency of PURROT it is possible to achieve around 35 % reduction in the land required for spreading the nutrients of the digested biomass. Table 7 shows the results from testing PURROT used for separation of pig slurry. The separation efficiencies are calculated as an average from two batches. Batch 1 was undertaken without producing a sediment fraction, whereas batch 2 was done so that a sediment fraction was produced.

Table 7. Pig slurry. Separation efficiency of PURROT® treating sow slurry with a total solids content of 2.9 – 3.2 %.

Parameter Share recovered in the solid output fraction after separation with PURROT [95 % confidence interval]

Weight 4 % [-8 – 15]

Total Phosphorous 33 % [28 – 39]

Total Nitrogen 9 % [6 – 13]

Total solids, TS 44 % [4 – 85]

Volatile solids, VS 54 % [-5 – 114]

Organic bound nitrogen Data not sufficient to calculate the share.

It is seen in Table 7 that the weight of the solid fraction constitutes 4 % of the input slurry weight.

4.2. Evaluation of test quality

4.2.1. Control data

A test system control was performed by Arne Grønkjær-Hansen, AgroTech. The test system control included an evaluation of the weighing device used for weighing the solid output fraction. The calibration of the weighing device was checked on test site by weighing units with known weight. In addition, it was checked that the sam-ples taken during the batch tests were cooled down immediately after sampling. Cooling was done by placing the samples in a cooling box with ice. It was concluded from the test system control, that the test system and the equipment used was suitable for the test activities. Spread sheets used for data recorded during the batch tests and used for the subsequent calculations were subject to control on a sample basis (spot validation of at least 5 % of the data). The data in the spread sheets were found to be identical to the data registered on paper during the batch tests.

4.2.2. Audits

A test system audit with inspection of the test set-up at the test site was done by Peter Fritzel from ETA-Danmark Verification Body on the 14

th of January 2015. As part of the test system audit it was evaluated wheth-

er the testing was done according to the requirements specified in the test plan and in the specific verification protocol. It was concluded from the test system audit, that there was consistency with the test plan and the test

Page 12: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 12 of 21

set-up and that measurements were carried out as described. The audit report of Peter Fritzel is included as Appendix 4 in the test report.

4.2.3. Deviations

Three deviations from the specific verification protocol are reported. An overview with a description of the devia-tion and the impact/consequence is given in Table 8.

Table 8. Summary of deviations from the specific verification protocol. No. Description of deviation Impact / consequence

Dev 1 According to the specific verification protocol minimum 3 batch tests for each matrix are required to verify the performance of PURROT. For sow slurry only 2 batches were undertaken.

There is higher uncertainty related to the evaluation of performance parameters for sow slurry. Thus, the performance of PURROT cannot be verified for this matrix, sow slurry.

Dev 2 In the specific verification protocol the operational parameter capacity is calculated as volume liquid treated per hour of opera-tion. However, in this verification report this parameter is ex-pressed as tons liquid treated per hour.

This has no significant impact since it is assumed that 1 cubic meter of liquid waste equals 1 ton of liquid waste.

Dev 3 In the specific verification protocol the operational parameter electricity consumption is expressed as kWh per cubic meter liquid waste treated. Instead, in this verification report this pa-rameter is expressed as kWh per ton liquid treated.

This has no significant impact since it is assumed that 1 cubic meter of liquid waste equals 1 ton of liquid waste.

4.3. Verification results – verified performance claims

4.3.1. Performance parameters

An overview of the verified performance for the three matrices pig slurry, cow slurry and digested biomass is given in Table 9.

Table 9. Verified performance for the selected performance parameters. 95 % confidence intervals are shown in brackets. Parameter Pig slurry Cow slurry Digested biomass

Share of the organic dry matter (volatile solids) in the liquid waste recovered in the solid fraction.

54 % [-5 – 114]

60 % [47 - 73]

62 % [60 – 64]

Share of the total-nitrogen (Total-N) in the liquid waste recovered in the solid fraction.

9 % [6 – 13]

19 % [10 – 27]

22 % [18 – 26]

Share of the organic bound nitrogen (organic-N) in the liquid waste recovered in the solid fraction.

Data not sufficient 29 %

[15 – 42] 33 %

[22 – 45]

Share of phosphorous (P) in the liquid waste recovered in the solid fraction.

33 % [28 – 39]

23 % [16 – 31]

46 % [35 – 58]

4.3.2. Operational parameters

The capacity of PURROT® is calculated this way:

Capacity =(Weight of liquid waste treated during the batch)

(Duration of batch measured in hours)

Page 13: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 13 of 21

The electricity consumption of PURROT

® is calculated as follows:

Electricity consumption =(Number of kWh consumed during the batch)

(Weight of liquid waste treated during the batch)

In the measurements it is assumed that 1 m

3 of liquid waste equals 1 ton. Procedures for measuring treated

volume and electricity are described in the test report (see Appendix 7). Test results regarding capacity and electricity of PURROT

® are shown in table 10.

Table 10. Measured capacity and electricity consumption of PURROT®. 95 % confidence intervals are shown in brackets.

Matrix Capacity (tons of input biomass treated per hour)

Electricity consumption (kWh/ton treated biomass)

Sow slurry (TS = 3.1 %) 2.2

[0.9 – 3.5] 1.4

[-1.4 – 4.1]

Cow slurry (TS = 7.6 %) 0.64

[0.54 – 0.74] 5.4

[3.6 – 7.2]

Digested biomass (TS = 6.3 %) 0.92

[0.87 – 0.96] 3.4

[3.0 – 3.8]

In Table 10 it is seen that there are large variations in both the capacity and the electricity consumption depend-ing on the type of liquid waste treated. The higher the dry matter content the lower the capacity and the higher the electricity consumption of PURROT

®. Thus, for sow slurry with a low dry matter content the capacity is high

and the electricity consumption is low compared with cow slurry and digested biomass.

4.3.3. Environmental parameters

The relevant environmental parameters are included as performance parameters as described in section 4.3.1.

4.3.4. Additional parameters with comments or caveats where appropriate

In order to facilitate an evaluation of the solid output fraction as a fuel for bioenergy samples from separation of the three matrices with PURROT

® have been analysed in order to determine the calorific value. The calorific

value is a measure of the energy potential of the solid output fraction if this is used in incineration plants or gasi-fication plants. Table 11 shows the measured calorific values of the solid output fractions from separating the three different matrices with PURROT

®.

Table 11. Calorific value of solid output fraction from separation with PURROT®. 95 % confidence intervals are in brackets.

Matrix Dry matter content (% TS)

Gross calorific value*

(MJ/kg dry matter) Net calorific value (MJ/kg dry matter)

Solid fraction from separation of sow slurry 31.2

[30.5 – 31.8] 16.2

[15.5 – 16.8] 15.5

[14.9 – 16.1]

Solid fraction from separation of cow slurry 38.2

[34.8 – 41.6] 18.9

[18.8 – 19.0] 17.6

[17.5 – 17.8]

Solid fraction from separation of digested biomass 35.4

[30.5 – 40.3] 18.4

[18.0 – 18.8] 17.2

[16.8 – 17.6] * The method used for measuring the gross calorific value was DS/CEN/TS 14918. Measurements are based on 6 samples for cow slurry and digested biomass and 3 samples for sow slurry. For sow slurry the net calorific value is calculated from the gross calorific value.

Table 12 shows the average content of main nutrients and solids in the input cow slurry and in the solid output fraction resulting from separation with PURROT

®.

Page 14: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 14 of 21

Table 12. Cow slurry. Content of main nutrients and solids in input slurry and solid output fraction resulting from PURROT®.

95 % confidence intervals are shown in brackets. Cow slurry Total solids

(%) Volatile solids

(%) Total nitrogen

(kg/ton) Ammonium-N

(kg/ton)* Organic N

(kg/ton) Phosphorous

(Kg/ton) Potassi-

um (kg/ton)

Input slurry 7.63 [6.20-9.07]

6.33 [5.07-7.59]

3.06 [2.82-3.30]

1.67 [1.59-1.75]

1.39 [1.07-1.71]

0.62 [0.60-0.65]

3.57 [1.57-5.57]

Solid fraction 38.4 [29.8-46.9]

35.6 [27.6-43.7]

4.77 [3.89-5.64]

1.65 [1.51-1.80]

3.11 [2.30-3.92]

1.23 [0.89-1.56]

2.95 [1.27-4.63]

*The content of ammonium-N is not analysed in laboratory but calculated as the difference between content of total nitrogen and ammonium-N.

Table 13 shows the average content of main nutrients and solids in the input digested biomass and in the solid output fraction resulting from separation with PURROT

®.

Table 13. Digestate biomass. Content of main nutrients and solids in input and solid output fraction resulting from PURROT

®.

95 % confidence intervals are shown in brackets. Digested biomass

Total solids (%)

Volatile solids (%)

Total nitrogen (kg/ton)

Ammonium-N (kg/ton)

Organic N (kg/ton)

Phosphorous (Kg/ton)

Potassium (kg/ton)

Input biomass 6.30 [5.97-6.63]

5.06 [4.86-5.25]

2.33 [2.12-2.55]

1.52 [1.46-1.58]

0.81 [0.61-1.01]

0.62 [0.52-0.72]

2.43 [2.32-2.55]

Solid fraction 35.3 [22.0-48.6]

32.0 [19.1-44.8]

4.84 [4.06-5.62]

2.09 [1.72-2.46]

2.75 [2.21-3.29]

2.85 [2.05-3.66]

2.64 [2.44-2.85]

*The content of ammonium-N is not analysed in laboratory but calculated as the difference between content of total nitrogen and ammonium-N.

Table 14 shows the average content of main nutrients and solids in the input sow slurry and in the solid output fraction resulting from separation with PURROT

®.

Table 14. Sow slurry. Content of main nutrients and solids in input slurry and solid output fraction resulting from PURROT®.

95 % confidence intervals are shown in brackets. Sow slurry Total solids

(%) Volatile solids

(%) Total nitrogen

(kg/ton) Ammonium-N

(kg/ton) Organic N

(kg/ton) Phosphorous

(Kg/ton) Potassium

(kg/ton)

Input slurry 3.07 [0.95–5.18]

2.16 [0.53–3.79]

2.50 [0.24–4.75]

2.23 [1.85–2.61]

0.27 [-2.37–2.90]

0.60 [0.05 –1.15]

1.52 [0.51–2.53]

Solid fraction 36.9 [-36.1-110.0]

32.0 [-28.1-92.1]

7.18 [-1.50-15.87]

3.00 [2.15-3.85]

4.18 [-3.65-12.02]

5.40 [-10.72-21.52]

1.47 [0.39-2.55]

*The content of ammonium-N is not analysed in laboratory but calculated as the difference between content of total nitrogen and ammonium-N.

4.4. Recommendations for the Statement of Verification

Based on the verified performance described in section 4.3 it is recommended to issue a Statement of Verifica-tion including results on the following parameters: Performance parameters:

Share of the organic dry matter (volatile solids) in the liquid waste recovered in the solid fraction.

Share of the total-nitrogen (Total-N) in the liquid waste recovered in the solid fraction.

Share of the organic bound nitrogen (organic-N) in the liquid waste recovered in the solid fraction.

Share of phosphorous (P) in the liquid waste recovered in the solid fraction. Operational parameters:

Capacity of PURROT® expressed in terms of tons of liquid treated per hour in operation

Electricity consumption of PURROT® expressed in terms of kWh per ton of liquid treated

Additional parameters:

Content of main nutrients, total solids and volatile solids in the liquid waste and in the solid output fraction from sep-aration with PURROT

®.

Page 15: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 15 of 21

The above mentioned parameters can be verified for PURROT

® treating cow slurry and digested biomass. Due

to lack of data the performance of PURROT® cannot be verified for treating sow slurry.

5. Quality assurance The test activities were undertaken by AgroTech Test Centre (test body). AgroTech has a quality management system covering ETV test activities that follows the principles of EN ISO 9001. In addition, AgroTech holds an EN ISO 9001 certification covering all its services including tests of environmental technologies and bioenergy technologies. A copy of the Certificate is seen below. It is judged that the quality management system fulfils the requirements of the General Verification Protocol (Chapter C.III) and thereby AgroTech Test Centre is qualified for participation in the EU ETV verification process.

The external laboratory used to undertake the chemical analyses was Agrolab, Institut Koldingen GmbH, Bres-lauer Strasse 60, 31157 Sarstedt, Germany. Agrolab holds an accreditation according to EN ISO/IEC 17025 and proof of accreditation is included in the test report for PURROT

®. According to the document “Anlage Zur

Akkreditierungsurkunde D-PL-14047-01-00 nach DIN EN ISO/IEC 17025:2005” submitted by the German Na-

Page 16: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 16 of 21

tional Accreditation Body, DAkkS, all analyses done by Agrolab as part of this test are covered by the accredita-tion (DAkkS, 2015). The measurements of calorific values were undertaken by Danish Technological Institute (DTI). DTI does not hold an accreditation according to EU ISO/IEC 17025 covering that type of measurements. Consequently, it is recommended not to include the results regarding calorific values in the Statement of Verification. A test system audit on one of the test sites, the biogas plant of Aarhus University. Since similar test systems including similar test equipment were used on both test sites it was judged necessary to undertake the test sys-tem audit on one test site only. The test system audit was done by Peter Fritzel from ETA-Danmark Verification Body on the 14

th of January 2015. As part of the test system audit it was evaluated whether the testing was done

according to the requirements specified in the test plan and in the specific verification protocol. Based on the audit it was concluded, that there was consistency with the test plan and set up and that measurements were carried out as described. Furthermore, a test performance audit was done by Thorkild Frandsen from ETA-Danmark verification body. The performance audit included an evaluation of the uncertainty on the mass balances that constitute the basis for calculating the separation efficiencies. This evaluation is done by calculating the Ri-value as a measure of to what extent the mass of nutrients and solids led into the separator is recovered in the solid and liquid output fractions (expressed as a percent). The Ri-value is calculated as described below.

Ri =Mi

I − ( Mi L + Mi

S)

MiI × 100

Where: Ri = Percent of component i not recovered in liquid or solid output fraction

𝑀𝑖𝐼,𝐿,𝑆 = Mass of component i in the input waste (I), liquid (L) or solid (S) output fraction

According to the specific verification protocol Ri has to be less than +/- 25 %. If this is not the case the result has to be omitted from the calculation of separation efficiency. For all batches undertaken with cow slurry and di-gested biomass the Ri-value is less than +/- 25 %. However, for both batches with sow slurry the Ri-value for organic bound nitrogen exceeds 25 %. Thus, for PURROT

® applied for sow slurry no verification can be made

regarding separation efficiency with respect to organic bound nitrogen. The test performance audit also included an inspection of the Procedure for Procurement which is part of AgroTech´s EN ISO 9001 certified quality man-agement system. Here Agrolab is listed as one of the approved laboratories of AgroTech and the quality of the analyses performed by Agrolab for AgroTech is evaluated on a continuous basis. The specific verification protocol and the verification report required external review according to the EU ETV General Verification Protocol (European Commission, 2014). The external review was undertaken by Bjørn Malmgren-Hansen (BMH) from Danish Technological Institute. Furthermore, the verification body (ETA-Danmark) has reviewed and approved the test plan and the test report. This review was done by Thorkild Qvist Frandsen (TQF). During the verification process the proposer represented by Anders Tange (AT) had the following tasks:

To review the specific verification protocol

To review and approve the test plan

To review the test report and the verification report

Page 17: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 17 of 21

6. References Deutsche Akkreditierungsstelle GmbH (2015): Anlage Zur Akkreditierungsurkunde D-PL-14047-01-00 nach DIN EN ISO/IEC 17025:2005. Urkundeninhaber: Agrolab, Breslauer Strasse 60, 31157 Sarstedt. 42 pages. European Commission (2014): EU Environmental Technology Verification pilot programme. General Verification Protocol. Version 1.1 - July 7

th, 2014.

Frandsen, T.Q. (2014): Specific Verification Protocol. PURROT. ETA-Danmark. Version 10-10-2014 with clarifi-cations regarding QA added 17-11-2014. International Standardization Organisation (2008): EN ISO 9001. Quality management systems - Requirements. 15.11.2008.

Appendix 1 - Terms and definitions

Term Definition Comments

Accreditation Meaning as assigned to it by Regulation

(EC) No 765/2008

EC No 765/2008 is on setting out the require-

ments for accreditation and market surveillance

relating to the marketing of products

Additional parameter Other effects that will be described but are

considered secondary

None

Amendment A change to a specific verification protocol

or a test plan done before the verification

or test step is performed

None

Analytical laboratory Independent analytical laboratory used to

analyse test samples

The test centre may use an analytical laborato-

ry as subcontractor

Application The use of a technology specified with

respect to matrix, purpose (target and

effect) and limitations

The application must be defined with a preci-

sion that allows the user of a technology verifi-

cation to judge whether his needs are compa-

rable to the verification conditions

DANETV Danish centre for verification of environ-

mental technologies

None

Deviation A change to a specific verification protocol

or a test plan done during the verification

or test step performance

None

Page 18: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 18 of 21

Term Definition Comments

Environmental technol-

ogies

Environmental technologies are all tech-

nologies whose use is less environmentally

harmful than relevant alternatives

The term technology covers a variety of prod-

ucts, processes, systems and services

Evaluation Evaluation of test data for a technology for

performance and data quality

None

General verification

protocol (GVP)

Description of the principles and general

procedure to be followed by the ETV pilot

programme when verifying an individual

environmental technology.

None

Innovative environ-

mental technologies

Environmental technologies presenting a

novelty in terms of design, raw materials

involved, production process, use, recy-

clability or final disposal, when compared

with relevant alternatives.

None

Matrix The type of material that the technology is

intended for

Matrices could be soil, drinking water, ground

water, degreasing bath, exhaust gas conden-

sate etc.

Method Action described by e.g. generic document

that provides rules, guidelines or charac-

teristics for tests or analysis

An in-house method may be used in the ab-

sence of a standard, if prepared in compliance

with the format and contents required for

standards.

Operational parameter Measurable parameters that define the

application and the verification and test

conditions.

Operational parameters could be temperature,

production capacity, concentrations of non-

target compounds in matrix etc.

(Initial) performance

claim

Proposer claimed technical specifications

of technology. Shall state the conditions of

use under which the claim is applicable

and mention any relevant assumption

made.

The proposer claims shall be included in the

ETV proposal. The initial claims can be devel-

oped as part of the quick scan.

Performance parame-

ters (revised perfor-

mance claims)

A set of quantified technical specifications

representative of the technical perfor-

mance and potential environmental im-

pacts of a technology in a specified appli-

cation and under specified conditions of

testing or use (operational parameters).

The performance parameters must be estab-

lished considering the application(s) of the

technology, the requirements of society (legis-

lative regulations), customers (needs) and

proposer initial performance claims.

Page 19: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 19 of 21

Term Definition Comments

Potential environmen-

tal impacts

Estimated environmental effects or pres-

sure on the environment, resulting directly

or indirectly from the use of a technology

under specified conditions of testing or

use.

None

Procedure Detailed description of the use of a stand-

ard or a method within one body

The procedure specifies implementing a stand-

ard or a method in terms of e.g.: equipment

used.

Product Ready to market or prototype stage prod-

uct/technology, process, system or service

based upon an environmental technology.

In the EU ETV GVP (European Commission,

2014) the term “technology” is used instead of

the term “product”.

Proposer Any legal entity or natural person, which

can be the technology manufacturer or an

authorised representative of the technolo-

gy manufacturer. If the technology manu-

factures concerned agree, the proposer

can be another stakeholder undertaking a

specific verification programme involving

several technologies.

Can be vendor or producer

Purpose The measurable property that is affected

by the technology and how it is affected.

The purpose could be reduction of nitrate con-

centration, separation of volatile organic com-

pounds, reduction of energy use (MW/kg) etc.

Ready to market tech-

nology

Technology available on the market or at

least available at a stage where no sub-

stantial change affecting performance will

be implemented before introducing the

technology on the market (e.g. full-scale

or pilot scale with direct and clear scale-up

instructions).

None

Specific verification

protocol

Protocol describing the specific verification

of a technology as developed applying the

principles and procedures of the EU GVP

and this quality manual.

None

Standard Generic document established by consen-

sus and approved by a recognised stand-

ardization body that provides rules, guide-

lines or characteristics for tests or analysis

None

Page 20: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 20 of 21

Term Definition Comments

Test body Unit that that plans and performs test None

Verification body Unit that plans and performs the verifica-

tion

None

Test/testing Determination of the performance of a

technology for measurements / parame-

ters defined for the application.

None

Test performance audit Quantitative evaluation of a measurement

system as used in a specific test.

E.g. evaluation of laboratory control data for

relevant period (precision under repeatability

conditions, trueness), evaluation of data from

laboratory participation in proficiency test and

control of calibration of online measurement

devises.

Test system audit Qualitative on-site evaluation of test,

sampling and/or measurement systems

associated with a specific test.

E.g. evaluation of the testing done against the

requirements of the specific verification proto-

col, the test plan and the quality manual of the

test body.

Test system control Control of the test system as used in a

specific test.

E.g. test of stock solutions, evaluation of stabil-

ity of operational and/or on-line analytical

equipment, test of blanks and reference tech-

nology tests.

Vendor The party delivering the technology to the

customer. In the EU ETV GVP and in this

quality manual referred to as proposer.

Can be the producer.

Verification Provision of objective evidence that the

technical design of a given environmental

technology ensures the fulfilment of a

given performance claim in a specified

application, taking any measurement

uncertainty and relevant assumptions into

consideration.

None

Page 21: Verification report PURROT - ec.europa.euec.europa.eu/environment/ecoap/sites/ecoap_stayconnected/files/etv/...1.1. NAME OF TECHNOLOGY ... 8 4. EVALUATION ... protocol and the verification

ETV Verification report

Project No.: 011987-07 Date: 30-10-2015

Verification report for PURROT® Page 21 of 21

Appendix 2 – Quick scan The report from the quick scan is attached to the verification report as a separate file.

Appendix 3 – Proposal The verification proposal is attached to the verification report as a separate file.

Appendix 4 – Specific verification protocol The specific verification protocol is attached to the verification report as a separate file.

Appendix 5 – Amendment and deviation report for verification No amendment report has been made for the verification of PURROT

®. The deviation report is attached to the

verification report as a separate file.

Appendix 6 – Test plan The test plan is attached to the verification report as a separate file.

Appendix 7 – Test report The test report is attached to the verification report as a separate file.