16
Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height 67m Rotor diameter 66m Pcs 2 Available May 2015 Voltage/grid frequency 20kV/50hZ Power control Pitch Transformer station Inklusiv transformer

Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

  • Upload
    dotuong

  • View
    243

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

Vestas V66 Vestas V66 1650kW Built year 2000

Type V66

Built year 2000

Nominel effect 1650

Hub height 67m

Rotor diameter 66m

Pcs 2

Available May 2015

Voltage/grid frequency 20kV/50hZ

Power control Pitch

Transformer station Inklusiv transformer

Page 2: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

General Specifications

V66-1.65 MW

OptiSlip® Wind Turbine

943511 VER 10

__________________________________________________________________________________

Page 3: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 2 of 15

__________________________________________________________________________________

Contents .............................................................................................................................................Page

1. Introduction ...................................................................................................................................3

2. Wind Climate .................................................................................................................................3

3. Wind Turbine Description............................................................................................................4

4. Main Data.......................................................................................................................................5

5. OptiSlip® Description....................................................................................................................5

6. Power Curve and Noise.................................................................................................................6

6.1 Power Curve VESTAS V66-1.65 MW (Hub height 67 m) ...................................................6 6.2 Annual Production V66-1.65 MW.........................................................................................7 6.3 Noise V66-1.65 MW..............................................................................................................8

7. Specifications..................................................................................................................................8

7.1 Rotor V66...............................................................................................................................8 7.2 Blades.....................................................................................................................................8 7.3 Tower (steel) ..........................................................................................................................9 7.3 Weights (Approx.) .................................................................................................................9

8. Components of the Wind Turbine ...............................................................................................9

8.1 Blades.....................................................................................................................................9 8.2 Blade Bearing.........................................................................................................................9 8.3 Blade Hub ..............................................................................................................................9 8.4 Main Shaft..............................................................................................................................9 8.5 Bearing Housing ..................................................................................................................10 8.6 Main Bearings ......................................................................................................................10 8.7 Machine Foundation ............................................................................................................10 8.8 Yaw System .........................................................................................................................10

8.8.1 Yaw Gears...............................................................................................................10 8.9 Tower ...................................................................................................................................10 8.10 Gearbox ......................................................................................................................11 8.11 Couplings....................................................................................................................11 8.12 Generator ....................................................................................................................11 8.13 Parking Brake .............................................................................................................12 8.14 Hydraulic Unit ............................................................................................................12 8.15 Anemometer ...............................................................................................................12 8.16 Wind Vane ..................................................................................................................12 8.17 Control Unit ................................................................................................................13 8.18 Transformer ................................................................................................................14

9. Installation....................................................................................................................................14

9.1 Terrain..................................................................................................................................14 9.2 Climatic Conditions .............................................................................................................14 9.3 Grid Connection...................................................................................................................14

9.3.1 Harmonics and Capacitors for Power Factor Correction........................................15 9.4 General Reservations ...........................................................................................................15

Page 4: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 3 of 15

__________________________________________________________________________________

1. Introduction The VESTAS 1.65 MW wind turbine is based on the experience gained from the V63-1.5 MW. The VESTAS V66 - 1.65 MW with a rotor diameter of 66 m uses the superior VESTAS

OptiSlip® concept. This feature secures a smooth power output and at the same time a significant reduction of the loads compared to normal pitch- or stall regulated wind turbines.

The special VESTAS OptiTip® feature is standard on the VESTAS V66-1.65 MW turbine. This

feature provides that the blade tip angle is optimal at all times with respect to power performance and noise emission.

2. Wind Climate The wind climate for a given site is normally specified by a Weibull wind distribution described

by an A and a C factor. The A factor is proportional to the mean wind speed, and the C factor defines the shape of the Weibull distribution or in other words long term variation of hours at different wind speeds. Turbulence is a factor to describe short term wind variations/fluctuations. Below the design conditions for the VESTAS V66-1.65 MW wind turbine are listed.

IEC class Vave

1)

[m/s]

Weibull shape parameter

[-]

Turbulence at 15 m/s

[%]

Reference wind2)

[m/s]

Reference wind 3)

[m/s] IA 10.0 2 18 50 70

DIBt III prescribes a higher A-parameter than GL zone II

Wind speed and turbulence referring to hub height. The turbulence is changing in proportion to type of site, tower height and approval.

The stop wind speeds are a design parameter. The maximum wind speeds are also important for the loads on the wind turbine. The maximum allowable extreme wind speeds are listed in the below mentioned table.

IEC class wind gust max. acc.[m/s2]

Stop wind speed/restart wind speed [m/s]

IA 70 25/20

Page 5: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 4 of 15

__________________________________________________________________________________

3. Wind Turbine Description The VESTAS V66 - 1.65 MW is a pitch regulated upwind wind turbine with active yaw and a

rotor with three blades. The turbine is equipped with two generators in order to lower the noise level and increase the annual output.

At wind speeds below approx. 7 m/s the turbine will have the secondary generator connected to

the grid giving rotor speed of approx. 15.4 rpm. The blades are made of glass fibre reinforced epoxy. Each blade consists of two blade shells,

bonded to a supporting beam. Special steel root inserts connect the blade to the blade bearing. The blade bearing is a 4 point ball bearing bolted to the blade hub.

The main shaft transmits the power to the generators through the gearbox. The gearbox is a

combined planetary and helical gearbox. From the gearbox the power is transmitted via a maintenance free composite coupling to the primary generator, and via a transmission shaft to the secondary generator. The primary generator is a special asynchronous 4-pole generator with VESTAS OptiSlip®. The secondary generator is a standard asynchronous 4-pole generator. Connection to the grid is done via thyristors which after cut-in are by-passed using a contactor.

The pitch system together with the unique VESTAS OptiSlip® generator feature keeps the

power at nominal at high wind speeds independent of air temperature and air density. At lower wind speeds the pitch system optimizes the power output by choosing the optimal pitch angle, VESTAS OptiTip® depending on the wind speed.

The turbine brakes by full-feathering of the blades. A parking brake is mounted on the HS-shaft

in connection with the gearbox. All functions of the turbine are monitored and controlled by several microprocessor based

control units. The controller system incl. transformer is placed in the nacelle. Blade pitch changes are activated by a hydraulic system. This system also supplies pressure to the brake system. Each blade is equipped with a hydraulic cylinder, which enables the blade to rotate 95°

Yawing is performed by four electrical yaw gears, which meshes with a large toothed yaw ring

mounted on the top of the tower. The yaw bearing system is a plain bearing system with built-in friction and self-locking.

The glass fibre reinforced nacelle cover protects all the components in the nacelle. Access to the

nacelle from the tower is through a central opening. The nacelle houses the internal 800 kg service crane, which can be enlarged for hoisting of main components (8000 kg).

Steel tubular tower is supplied painted (Please see under 9.2 Climatic conditions). Service lift in

the tubular tower is an option.

Page 6: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 5 of 15

__________________________________________________________________________________

4. Main Data

Model Rotor Diameter

RPM [Nominal]

Hub Height

V66 - 1.65 66 m 19,8/15,4 60/67/78 m

5. OptiSlip® Description The slip in an asynchronous generator is defined as the difference between the synchronous speed and the actual speed for the generator. The slip for big non-regulated asynchronous generators is about 1%. When the generator is completely loaded the rpm are then 1% higher than without the load, which is why a speed change is conditional on a load change and vice versa. The VESTAS OptiSlip® allows the slip of the generator electronically to vary from 1% to 10% and so saying VESTAS has reduced the dependency between speed and load. Using the VESTAS OptiSlip® the power in a wind gust will not be sent directly on to the grid. The connection between wind power and supplied power is softened and the mechanical loads on the wind turbine are smoothened out. The wind power in the wind gust is however not lost; it is shortly stored in the flywheel which consist of blades, gear and generator. The power in the wind gust is leading to a short acceleration. VESTAS OptiSlip® and the VESTAS pitch regulation then reduce the rpm to a constant speed by means of which the stored power is released and sent on to the grid. An optimum slip controller with VESTAS OptiSlip® provides a good grid quality and minimizes the load on the wind turbine at the same time. VESTAS OptiSlip® was introduced in 1994 and is working on thousands of VESTAS wind turbines all over the world. The V66-1.65 MW wind turbine is only equipped with the VESTAS OptiSlip® feature on the primary generator, and not the secondary generator, as the loads are relatively small when the wind turbine is running with the secondary generator connected.

Page 7: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 6 of 15

__________________________________________________________________________________

6. Power Curve and Noise

6.1 Power Curve VESTAS V66-1.65 MW (Hub height 67 m) Power curve calculated on basis of NACA 63.xxx and FFA-W3. Parameters for calculated curves:

Frequency: 50/60 Hz. Rotor diameter: 66 meter Rotor speed: 19.8/15.4 rpm. [Nominal] Tip angle: Pitch regulated Turbulence: 10 %

The power curve is measured on the low-voltage side of the transformer, which means that losses in transformer and high-voltage cables are not included.

Electrical-power [kW] as a function of wind speed at hub height [m/s] and air density [kg/m3]

V10

[m/s] 1,225 1,06 1,09 1,12 1,15 1,18 1,21 1,24 1,27

4 13,5 6,8 8,0 9,2 10,5 11,7 12,9 14,1 15,3

5 80,8 65,1 68,0 70,8 73,7 76,5 79,4 82,3 85,1

6 169 141 146 151 157 162 167 172 177

7 289 244 253 261 269 277 285 293 301

8 448 381 393 406 418 430 442 454 466

9 644 549 567 584 601 618 635 652 669

10 858 734 757 779 802 824 847 869 892

11 1069 917 945 973 1000 1028 1055 1083 1110

12 1263 1089 1120 1153 1185 1216 1248 1280 1309

13 1431 1247 1283 1319 1352 1384 1415 1451 1472

14 1552 1393 1428 1463 1492 1516 1540 1569 1580

15 1617 1514 1540 1567 1586 1599 1611 1627 1631

16 1642 1594 1608 1622 1631 1636 1640 1645 1646

17 1649 1633 1638 1643 1646 1647 1648 1649 1650

18 1650 1646 1647 1649 1649 1650 1650 1650 1650

19-->25 1650 1650 1650 1650 1650 1650 1650 1650 1650 Wind speed as 10 minutes average value, at hub height and orthogonal to the rotor plane.

Page 8: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 7 of 15

__________________________________________________________________________________

V66 - 1.65 MWAir density 1.225 kg/m3

0

500

1000

1500

2000

0 5 10 15 20 25

Wind speed [m/s]

Pow

er [k

W]

6.2 Annual Production V66-1.65 MW

V66-1.65 MW

Mean Wind Speed (m/s) (C=2) Annual Production (kWh)

5 1.586.000

6 2.638.000

7 3.789.000

8 4.928.000

9 5.977.000

10 6.881.000

Page 9: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 8 of 15

__________________________________________________________________________________

6.3 Noise V66-1.65 MW Noise Emission V66: (8m/s), 67 m hub height: 102,5 dB (A)

3 4 5 6 7 8 9 10 11 1296

97

98

99

100

101

102

103

104

105

Wind speed in 10 meters height above ground

Sound PowerLevel [dB(A)re 1pW]

Teoretical calculated noise curve for the V66-1650/300 kW turbine in roughnessclass 2 (Hubheight 67m)

Running on the large generator, LWAeq @ 8m/s = 102,5 dB(A) re 1pW

Running on the small generator, LWAeq @ 5m/s = 97,9 dB(A) re 1pW

7. Specifications

7.1 Rotor V66 Diameter: 66 m Swept area: 3421 m2

Rotational speed, rotor: 19.8/15.4 RPM Rotational direction: Clockwise (front view) Orientation: Upwind Tilt: 6° Number of blades: 3 Aerodynamic brakes: Full feathering

7.2 Blades Air foils: NACA63.600+FFA-W3 Length: 32 m Chord (Width) (blade root/blade tip): 2.8 m /0.4 m Twist (blade root/blade tip): 15°/0° Weight: approx. 3,800 kg/pcs.

Page 10: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 9 of 15

__________________________________________________________________________________

7.3 Tower (steel) Top diameter for all towers: 2.3 m Bottom diameter for all towers 4.0 m Hub Height Weight 3-parted, modular tower: 60 m 91 tonnes 3-parted, modular tower: 67 m 107 tonnes 4-parted, modular tower: 78 m 146 tonnes

The exact hub height is included 0.4 m (distance from the foundation section to earth), furthermore is included 1.7 m (distance from top flange to hub)

7.3 Weights (Approx.) (60m) (67m) (78m) Tower: 91 t 107 t 146 tonnes Nacelle: 57 t 57 t 57 tonnes Rotor: 23 t 23 t 23 tonnes TOTAL (tower): 171 t 187 t 226 tonnes

8. Components of the Wind Turbine

8.1 Blades Principle: Shells bonded to supporting beam Material: Glass fibre reinforced epoxy Blade connection: Stainless steel root inserts

8.2 Blade Bearing Type: 4 point ball bearing

8.3 Blade Hub Type: Cast ball hub Material: EN-GJS-400-18U-LT

8.4 Main Shaft Type: Cast, hollow trumpet shaft Material: EN-GJS-400-18U-LT

Page 11: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 10 of 15

__________________________________________________________________________________

8.5 Bearing Housing Type: Cast foot housing with lowered center Material: EN-GJS-400-18U-LT

8.6 Main Bearings Type: Spherical roller bearings from recognised

suppliers

8.7 Machine Foundation Type: Cast EN-GJS-400-18U-LT

8.8 Yaw System Type: Plain bearing system with built-in friction Material: Forged yaw ring heat treated. Plain bearings

PETP Yawing speed: < 0.5°/s

8.8.1 Yaw Gears Type: Planetary-/worm gear combination, 2 step

planetary/1 step self locking worm gear Motor: 1.5 kW, 6 pole, asynchronous

8.9 Tower Type: Conical tubular Height: 60, 67 and 78 m Material: S 235JO/JR Surface treatment: Painted Corrosion class, outside: C5-I (ISO 12944-2) Corrosion class, inside C3 (ISO 12944-2) Lift: As an option VESTAS offers lift

Page 12: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 11 of 15

__________________________________________________________________________________

8.10 Gearbox 50 Hz 60Hz Type: 1 planetary stage/2 helical

stages 1 planetary stage/2 helical stages

Power rating: 3.0 MW 3.0 MW Ratio: 1:79 1:95 Ratio (secondary generator): 1:98,1 1:118 Cooling: Oil pump with oil cooler Oil pump with oil cooler Oil heater: 2 kW 2 kW Vestas has more sub-suppliers of gearboxes. All gearboxes

are in compliance with Vestas specifications

8.11 Couplings Main shaft-gearbox: Shrink disc, conical Gearbox -primary generator: Composite shaft Gearbox-secondary generator:

Cardan shaft

8.12 Generator Primary Generator Secondary

generator 50 Hz/(60Hz) 50 Hz/(60Hz) Type: Asynchronous, 4 poles 4 poles Rated power: 1.65 MW/(1.65 MW) 300 kW/(300 kW) Voltage: 690 VAC 690 VAC Frequency: 50 Hz/(60Hz) 50 Hz/(60Hz) No. of poles: 4 4 Class of insulation: F F Class of protection: IP54 IP54 Nominal speed: 1575 RPM/(1890 RPM) 1515/(1819 RPM) Rated current: 1517 A/(1485 A) 296A/(295 A) Power factor: 0.91/(0.93) 0.85 Power factor correction: 600 kVAr 150 kVAr Resulting power factor: 0.98 0.99 Resulting current: 1409A 253A Vestas has more sub-suppliers of generators. All

generators are in compliance with Vestas specifications

Page 13: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 12 of 15

__________________________________________________________________________________

8.13 Parking Brake Type: Disc Brake Diameter: 600 mm Disc material: SJV300

8.14 Hydraulic Unit

Pump capacity: 25 l/min Max. pressure: 200 bar Brake pressure: 35 bar Pressure switches: Piezoelectrical Oil quantity: 200 l Motor: 11 kW

8.15 Anemometer Type: Optoelectrical with heating

8.16 Wind Vane Type: Optoelectrical with heating

Page 14: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 13 of 15

__________________________________________________________________________________

8.17 Control Unit Power current: 50 Hz / (60 Hz) Voltage: 3 x 690 VAC 50 Hz/60 Hz Lockable circuit breaker: 1600 A Power supply for light: 1x 10 A, 230 VAC/ (1 x 10 A, 110 V VAC) Generator cut in: By thyristors Computer: CPU: 3x 80c186-25 MHz, 1 x 80c188XL-16 MHz Communication: ArcNet Program memory: EPROM (flash) Programming language: Modula-2 Configuration: Modules Operation: Numeric keyboard + function keys Display: 4 x 40 characters Processor Supervision/control:: Yawing Hydraulics Surroundings (wind, temperature) Rotation Generator Pitch system Grid Power factor correction Thyristors Remote monitoring Information: Operating data Production Operation log Alarm log Commands: Run/Pause Man. Yaw start/stop Maintenance routine REMOTE SUPERVISION Possibility of connection of serial

communication

Page 15: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 14 of 15

__________________________________________________________________________________

8.18 Transformer 50 Hz/(60 Hz) Type: Cast resin Rated Power: 1670 kVA Vector group: Dyn High voltage: 6 - 33 kV (36 kV (Um) equipment voltage) HV - Tappings: ±2 x 2.5% Impedance voltage: 6% Low voltage: 690V

9. Installation

9.1 Terrain If the terrain within a 100 m radius of the turbine has a slope of more than 10° (18%), particular

considerations have to be taken.

9.2 Climatic Conditions The turbine is designed for ambient temperature ranging from -20°C to +40°C. Outside these

temperatures the turbine stops, and special considerations must be taken. With regards to the wind conditions the turbine has been designed in accordance with IEC 1400-

1 class I, DS472 (Teknisk Grundlag), Germanischer Lloyd of 1993, class II and NEN 6996/2, Den Helder.

The turbines can be placed in wind farms with a distance of min. 5 rotor diameters (330 m)

between turbines. If the turbines are placed in one row, along predominant wind direction, the distance between the turbines must as a min. be 4 rotor diameters (264 m).

The relatively humidity can be 100 % (max. 10 % in time). Corrosion protection is designed for

long lifetime see special differentiation on tower see 8.9 Tower.

9.3 Grid Connection The turbine has to be connected to High-voltage grid at 6 - 33 kV, where 36 kV (Um) is the

highest equipment voltage. The cable connection is made in the bottom of the tower. The transformer in the turbine must be adjusted to the grid voltage. At the ordering VESTAS

needs your precise information about grid voltage, with regards to choice of the transformer's nominal voltage and winding connection. As an option VESTAS offers switch gear.

The voltage of the High-voltage grid shall be within +5/-5%. Steady variations within +1/-3 Hz

are acceptable. Intermittent or rapid fluctuations off the grid's frequency may cause serious damage to the turbine. Grid drop-outs must only take place once a week as an average over the lifetime of the turbine. A ground connection of max. 10 Ω must be present.

Page 16: Vestas V66 - lso.bylso.by/files/Vetrogeneratory/lso.by Vestas V66 1,65.pdf · Vestas V66 Vestas V66 1650kW Built year 2000 Type V66 Built year 2000 Nominel effect 1650 Hub height

VESTAS V66- 1.65 MW OptiSlip® Wind Turbine Date: 2007-10-22 Class: 1 Item no.: 943511 VER 10 Page: 15 of 15

__________________________________________________________________________________

9.3.1 Harmonics and Capacitors for Power Factor Correction The 5th and 7th. harmonics are sinusoidal voltage with frequencies at 250Hz and 350Hz (50

Hz), 300 Hz and 420 Hz (60 Hz) respectively. Harmonics are caused by different equipment (e.g. welding machines), which via a transformer is connected to same power supply systems as the wind turbine. Harmonics in the power supply systems reduce the lifetime of the capacitor.

• The 5th and 7th harmonics have to be below 3% and 1% respectively.

9.4 General Reservations All data are valid at sea level (ρ=1.225 kg/m3). At other altitudes a certain derating may be

necessary. With a combination of e.g. high wind, low voltage and high temperature, periodic operation

disturbances and generator power derating may occur. It is generally recommended that the grid voltage is as close to nominal as possible. In connection with drop-out of grid and very low temperatures, a certain time for heating-up,

must be expected. If the wind turbine is placed in more than 1000 m above sea level, a higher temperature rise than

usual might occur in generator, transformer and other electrical components. In this case a periodic reduction of rated power might occur, even if the ambient temperature is within the specified limits.

Furthermore, also at sites in more than 1000 m above sea level there will be an increased risc of

the icing-up. Due to continuous development and updating of our products, VESTAS reserves the right to

change the specifications.