21
Vibrational mode theory for dielectric materials & electron-boson interactions in amorphous materials Caroline Gorham 3 October 2013 ____________________________________ _______ [email protected] carolinesgorham.com

Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Embed Size (px)

Citation preview

Page 1: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Vibrational mode theory for dielectric materials & electron-boson interactions in amorphous materials

Caroline Gorham3 October 2013

___________________________________________

[email protected]

Page 2: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Work thus far,

- vibrational mode theory for dielectric materials

Page 3: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

D(ω) : density of statesvp : phase velocityv : group velocity

l: mean free path, l=v*τ where τ is scattering timef(ω, T) : Bose-Einstein distribution

Thermal conductivity (k) in dielectric materials

Page 4: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Density of States considerations

Non-localized (v = vp )

(sl)Softly-

localized (v < vp, λ>d )

(ql)Quasi-

localized (v << vp, λ<d )

(fl)Fully-

localized (inter-a, v(ω)/ω < ξ(ω))

[28]

Findings in agreement with MD studies of thermal conductivity in periodic v. aperiodic/q-periodic dielectric material [38]

d: average length of medium range order (m.r.o)a: average nearest neighbor distanceξ(ω) : length of full-localizationd : fracton (fully-localized vibration) dimensionv(ω)/ω < ξ(ω) : fully-localized vibration

(eso)“Einstein

Uncoupled oscillator”

Page 5: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Propagating vibrations :: v=vp as generalization from Debye-Holloway model

Soft and quasi-localized vibrations :: sine-type Born von Karman dispersion relationship

fully-localized vibrations :: derived from the relationship between diffusivity [] and relaxation times []

Vibrational velocities

Page 6: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

softly-localized vibrations :: relaxation is described by the Soft-Potential model [31,32]

quasi-localized vibrations :: relax predominately by a frequency-dependent boundary scattering mechanism [33]

fully-localized vibrations :: normal mode decomposition relaxation times by Larkin et al. [x], along with diffusivity data, allows one to determine that the fully-local vibration will transition to other modes anharmonically, at ξ(ω)

Vibrational mean free paths

Page 7: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________
Page 8: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Amorphous silicon (a-Si)

Page 9: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

a-Si mode properties: Dispersion

Page 10: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

a-Si mode properties: Density of states and diffusivity

Page 11: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

a-Si thermal properties: Heat capacity and thermal conductivity

Page 12: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

a-Si thermal properties: thermal conductivity accumulation and MFP v. wavenumber

Page 13: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Work to go,

- electron-boson interactions in amorphous materials

- application of science to organic semiconducting material, i.e., fullerene and fullerene derivatives

Page 14: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Funding - Nasa Space Technology Research Fellow 2013-?

Optimizing materials for energy harvesting on interplanetary return missions - Theorized thermo-photovoltaic (TPV) maximal efficiency of 85% [1, 2]

- Parameters affecting power conversion efficiencies: photon absorption [4,5], e- excitation [6,7], diffusion of electron-hole pairs to their electrodes [7,8], waste heat removal [9], thermal

emission spectra of the emitter [10,11] and black-body absorption in receiver

- Current inefficiency due to: 1) incurred resistances due to improperly spaced electron energy levels for charge generation and 2) e- transportation to and 3) collection at

electrodes caused by poor spatial geometries [12,13]

___________________________________________

Abstract can be found here: http://www.nasa.gov/spacetech/strg/2013_nstrf_gorham.html#.Uh4SXGSutmk

[3] [21]

Page 15: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Organic semiconducting polymer: small-band gap [14], low thermal conductivity [15], controllable fractal-dendtritic growth [16,17,18], thin-film morphology [19], cost-effective [20],

current organic-photovoltaic efficiency ~10-15% [21]

[21]

Recent increased efficiencies due to [21]:

1) Use of high dielectric constant materials2) materials with more ordered nano-morphologies 3) better charge transport properties and less electronic traps 4) 3rd generation concepts: hot carrier cell, multi e—hole pairs per photon, impurity photovoltaic and multiband cells

Material selection

Page 16: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Fullerenes and fullerene derivatives

[22]

[23]

[24]

Fullerenes

Fullerene

Derivatives

C120O [25]

Active layer materials for polymer-based organic solar cells. PQT-12 and P3HT are donors while PCBM are acceptors [23]– thus blends will be used

Page 17: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Wiedemann-Franz Law [36]

k in electrically conducting amorphous materials (k = kV + ke)

kV [W/m/K]: vibrational thermal conductivityke [W/m/K]: : electrical thermal conductivityL [WΩ/K2]: Lorenz numberσ [S/m]: electrical conductivityT [K]: temperature

Thus, ultimately, I plan to:- Tune the spectrum of vibrational localization to control the vibrational band-gaps [37],

thereby: minimizing vibrational thermal conduction and electron-boson coupling

- Tune the spectrum of e- localization to control the electronic energy-levels and band-gaps, thereby: optimizing photon absorption of the wavelengths abundant on the Martian surface and in Outer Space and subsequent charge generation

- Understand the conduction electron-boson coupling factor for each vibrational regime:

Page 18: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

Bibliography[1] Nils-Peter Harder and Peter Wurfel. Theoretical limits of thermo-photovoltaic solar energy conversion. Semiconductor Science and Technology , 18(5):S151, 2003. [2] K.M. Barnes. Solar thermo-photovoltaic efficiency potentials: surpassing photovoltaic device efficiencies . PhD thesis, Massachusetts Institute of Technology, 2012.[3] Shanhui Fan and Peter Peumans. Ultra-high efficiency thermo-photovoltaic solar cells using metallic photonic crystals as intermediate absorber and emitter. Global Climate & Energy Project, Stanford University, 2008.[4] Gang Chen, Svetlana V. Boriskina, and Selcuk Yerci. Light trapping in thin crystalline silicon photovoltaic cells. 2012.[5] V.V. Tyagi, S.C. Kaushik, and S.K. Tyagi. Advancement in solar photovoltaic/ thermal (pv/ t) hybrid collector technology. Renewable and Sustainable Energy Reviews , 16(3):1383 – 1398, 2012.[6] G. Yu and A. J. Heeger. Charge separation and photovoltaic conversion in polymer composites with internal donor/ acceptor hetero-junction. Journal of Applied Physics , 78(7):4510–4515, 1995.[7] A. J. Breeze, Z. Schlesinger, S. A. Carter, H. Tillmann, and H.-H Horhold. Improving power efficiencies in polymer-polymer blend photovoltaic materials. Solar Energy Materials and Solar Cells , 83(2-3):263–271, 2004.[8] R. Alex Marsh, Justin M. Hodgkiss, Sebastian Albert-Seifried, and Richard H. Friend. Effect of annealing on p3ht:pcbm charge transfer and nano-scale morphology probed by ultrafast spectroscopy. Nano Letters , 10(3):923–930, 2010.[9] Yansha Jin, Chen Shao, John Kieffer, Kevin P. Pipe, and Max Shtein. Origins of thermal boundary conductance of interfaces involving organic semiconductors. Journal of Applied Physics , 112(9):093503, 2012.[10] A Licciulli, D Diso, G Torsello, S Tundo, A Ma ezzoli, M Lomascolo, and M Mazzer. The challenge of high-performance selective emitters for thermo-photovoltaic applications. Semiconductor Science and Technology , 18(5):S174, 2003.

Page 19: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

[11] G. Attolini, M. Bosi, C. Ferrari, and F. Melino. Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size. Applied Energy , (0), 2012.[12] S. Sun, Z. Fan, Y. Wang, and J. Haliburton. Organic solar cell optimizations. Journal of materials science , 40(6):1429–1443, 2005.[13] Barry C. Thompson and Jean M.J. Frechet. Polymer–fullerene composite solar cells. Angewandte Chemie InternationalEdition , 47(1):58–77, 2008.[14] Stoichko D. Dimitrov, Artem A. Bakulin, Christian B. Nielsen, Bob C. Schroeder, Junping Du, Hugo Bronstein, Iain McCulloch, Richard H. Friend, and James R. Durrant. On the energetic dependence of charge separation in low-bandgap polymer/ fullerene blends. Journal of the American Chemical Society , 134(44):18189–18192, 2012.[15] J. C. Duda, P. E. Hopkins, Y. Shen, and M. C. Gupta. Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM. Phys. Rev. Lett., 110(1):015902, 2013.[16] Hui Liu and Petra Reinke. C60 thin film growth on graphite: Coexistence of spherical and fractal-dendritic islands. The Journal of Chemical Physics , 124(16):164707, 2006.[17] Hui Liu, Zhibin Lin, Leonid V. Zhigilei, and Petra Reinke. Fractal structures in fullerene layers: Simulation of the growth process. The Journal of Physical Chemistry C , 112(12):4687–4695, 2008.[18] Uwe Hahn, Fritz V¨ogtle, and Jean-Francois Nierengarten. Synthetic strategies towards fullerene-rich dendrimer assemblies. Polymers , 4(1):501–538, 2012.[19] Thomas Kietzke. Recent advances in organic solar cells. Adv. in Opto-Elect. , 2007(40285), August 2007.[20] Claudia N. Hoth, Pavel Schilinsky, Stelios A Choulis, Srinivasan Balasubramanian, and Christoph J. Brabec. Applications of Organic and Printed Electronics , chapter 2. Springer, 2012.[21] Scharber MC, Sariciftci NS. Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci (2013).[22] http://en.wikipedia.org/wiki/Fullerene[23] W. Cai et al., Solar Energy Materials & Solar Cells 94:114-127 (2010).

Bibliography

Page 20: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

[24] M. Jørgensen et al. Solar Energy Materials & Solar Cells 92:686–714 (2008).[25] K. Komatsu, G Wang, Y. Murata, T. Tanaka and K. Fujiwara, Mechanochemical synthesis of characterization of the fullerene dimer C120

[26] Gunes et al. Chem. Rev. 107:1324-1338, 10.1021/cr050149z (2007).[27] Caroline S. Gorham. Analytical model for thermal conductivity in tetrahedrally-bonded dielectric solids. (Unpublished). 2013.[28] Alexander, S. and Laermans, C. and Orbach, R. and Rosenberg, H. M. Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz. Phys. Rev. B., 28(8):4615-4619. 1983. [29] J. Shiomi and S. Maruyama, Phys. Rev. B 73, 205420 (2006).[30] C. H. Baker, D. A. Jordan, and P. M. Norris, Phys. Rev. B 86, 104306 (2012).[31] U. Buchenau, Y. M. Galperin, V. L. Gurevich et al. Phys. Rev. B 46, 2798 (1992).[32] M. A. Ramos and U. Buchenau, Phys. Rev. B 55, 5749 (1997).[33] Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, Nano letters 11, 2206 (2011). [34] X. Yu and D. M. Leitner, The Journal of Chemical Physics 122, 054902 (2005).[35] D. M. Leitner, Annu. Rev. Phys. Chem. 59, 233 (2008).[36] Franz, R. and Wiedemann, G. “Ueber die Warme-Leitungsfahigkeit der Metalle”. Annalen der Physik (in German). 165(8):497-531 (1853). [37] A. Majumdar, Microscale Thermophysical Engineering 2, 5 (1998).[38] J. Michalski, Thermal conductivity of amorphous solids above the plateau: Molecular-dynamics study. Phys. Rev. B. 45,13 (1992).[39]Z. Mao, A. Garg and S. B. Sinnott, Nanotechnology, 10:273 (1999). [40]J. W. Kang and H. J. Hwang. Fullerene nano ball bearings: an atomistic study. Institute of Phys Publishing: Nanotechnology, 15, 614-621 (2004).

Bibliography

Page 21: Vibrational mode theory for dielectric materials & electron- boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________

APPENDIX 1: Parameters