31
Vibrational Spectroscopy Vibrational Spectroscopy of Large Molecules: of Large Molecules: Anharmonic Algorithms Anharmonic Algorithms and Applications and Applications R. Benny Gerber The Hebrew University of Jerusalem, Israel and University of California at Irvine, USA

Vibrational Spectroscopy of Large Moleculescassam/Workshop10/Presentations/...Vibrational Spectroscopy of Large Molecules: Anharmonic Algorithms and Applications R. Benny Gerber The

  • Upload
    others

  • View
    39

  • Download
    0

Embed Size (px)

Citation preview

  • Vibrational Spectroscopy Vibrational Spectroscopy of Large Molecules:of Large Molecules:Anharmonic Algorithms Anharmonic Algorithms and Applicationsand Applications

    R. Benny GerberThe Hebrew University of Jerusalem, Israeland University of California at Irvine, USA

  • Importance:Importance:

    Vibrational spectroscopy is a major tool for studying properties of large molecules.

    In some cases, it is a unique tool.

  • Determination of Structure by Determination of Structure by Spectroscopy : Spectroscopy : (SO(SO44--22))--(H(H22O)O)nn

    Miller, Y.; Chaban, G.M.; Zhou, J.;Asmis,K.R.; Neumark,D.M.; Gerber,R.B., J.C.P. 127, 9 (2007).

  • Determination of Structure by Determination of Structure by Spectroscopy : Spectroscopy : The complex GThe complex G--C of C of nucleic acid basesnucleic acid bases

    B.Brauer, R. B. Gerber, M. Kabeláč, P. Hobza, J. M. Bakker, A. G. Abo Riziq, M. S. de Vries, JPC A, 109, 6924, (2005).

  • Identification of intermediates in Identification of intermediates in processes : processes : The photocycle of Photoactive The photocycle of Photoactive Yellow Protein (PYP)Yellow Protein (PYP)

    AA Adesokan, DH Pan, E AA Adesokan, DH Pan, E Fredj, RA Mathies, RB Gerber J. Am. Chem. Soc.(2007).

    Hellingwerf et al. J Phys Chem A 2003.

  • Testing potential functions (Force Testing potential functions (Force Fields) for large moleculesFields) for large molecules

    (A) The native state globular structure of ubiquitin. (B) The A state conformation, stable at low pH methanol water stable at low pH methanol water solution.

    Moil MD simulation package with the AMBER force field

    Segev, E; Wyttenbach, T; Bowers, MT, Gerber RB. P.C.C.P. 10, 21 (2008)

  • Outline of LectureOutline of Lecture

    I. The challenges

    II. Principles of the method

    III. Algorithms, and how they scale with N (no. of atoms)atoms)

    IV. Applications

    V. Structures of sugars

    VI. Spectra of long chains of hydrocarbons and imaging of Lipids

    VII. Conclusions and future directions

  • The Harmonic ApproximationThe Harmonic Approximation

    W

    21 2

    1),...,( jj

    N

    joN qkWqqW ∑+= jq - Normal modes

    ...........)2

    1()

    2

    1( 2211.....1 ++++=Ε vvnvv ωω hh

    q1

    q2

  • The Challenges of Anharmonic The Challenges of Anharmonic CalculationsCalculations

    A Quantum Mechanical Problem for Many Interacting Degrees of Freedom

    � Find method to solve it

    � Develop algorithm that scales well with N

    � Apply for realistic potentials

  • VSCFVSCF, , First Step: Separable First Step: Separable ApproximationApproximation

    Assume :

    ),...,( 1 NxxΨ - Vibrational wavefunction

    )()....()(),...,( 22111 NNN xxxxx ϕϕϕ=Ψ )()....()(),...,( 22111 NNN xxxxx ϕϕϕ=ΨJ. M. Bowman, J.Chem.Phys. (1978)G. D. Carney, L. Sprandel, C.W. Kern, Adv.Chem.Phys. (1978)M. Cohen, S. Gretia, R.M. McEachran, Chem.Phys.Lett. (1979)R. B. Gerber, M. A. Ratner, Chem.Phys.Lett. (1979)

    Key question: Which coordinates to use? Key question: Which coordinates to use?

    R.B. Gerber, M. A. Ratner, Adv.Chem.Phys 70, 92 (1988)

  • Vibrational SelfVibrational Self--Consistent Consistent Field in Normal CoordinatesField in Normal Coordinates

    nnn ΨΕ=ΗΨ

    To solve:

    (1)

    ),...,(2 12

    2

    1

    2

    Nj

    N

    j j

    qqVqm+

    ∂∂

    −=Η ∑=

    h

    )(),...,(1

    1 j

    N

    jjN qqq ∏

    =

    =Ψ ϕ

    VSCF (or Hartree) Approximation:

    (2)

    (3)

  • )()()(2 2

    22

    jjjjjjjj

    qqqVqm

    ϕεϕ =

    +

    ∂∂

    −h

    (4)

    (5)

    SCF equations:

    (4) , (5) are solved by iteration.

    Total Energy is:

    (6)

  • VSCFVSCF--PTPT22: Correcting SCF by : Correcting SCF by Perturbation TheoryPerturbation Theory

    J. O. Jung and R. B. Gerber JCP 105,10332 (1996)

    ),...,( 1 NSCF qqV∆+Η=Η (7)

    )(qVqqVV jN

    jjN ∑

    =

    −=∆1

    1 ),...,(

    Treat ∆V as a small perturbation

    (8)

  • Ab initio Anharmonic Ab initio Anharmonic SpectroscopySpectroscopy

    Direct VSCF, VSCF – PT2 Calculations Using Electronic

    Dr. G.M. Chaban

    Dr. J.O. Jung

    Structure Codes

    G.M. Chaban, J.O. Jung, R.B. Gerber J.Chem.Phys. 111, 1823, (1999)

  • The Pairwise Coupling The Pairwise Coupling ApproximationApproximation

    ),q(qW)(qVV),...,qV(q jii ij

    coupijj

    N

    j

    diagjN ∑∑∑

    >=

    ++=1

    01i ijj >=1

    Satisfactory in most cases for our system

  • Scaling of VSCFScaling of VSCF--PTPT2 2 with Nwith N

    N = 3 Natoms -6(no. of vibrational modes)

    Liat Pele Dr. Brina Brauer

    L. Pele, B. Brauer, and R.B. Gerber, Theor. Chem. Acc. (2007)

    VSCF-PT2 computing time is of O(N3).

    Liat Pele Dr. Brina Brauer

  • Scaling of VSCFScaling of VSCF--PTPT2 2 with Nwith N

    N = 3 Natoms -6(no. of vibrational modes)

    Liat Pele Dr. Brina Brauer

    L. Pele, B. Brauer, and R.B. Gerber, Theor. Chem. Acc. (2007)

    New version reduces VSCF-PT2 computing time from O(N6) to O(N3).

    Liat Pele Dr. Brina Brauer

  • How Many Pairwise Couplings How Many Pairwise Couplings Do We need ?Do We need ?

    Numerical experiments of series of peptides:

    Liat Pele

    of series of peptides:

    NlogN couplings Wij(Qi,Qj) suffice for good accuracy !

    Pele and Gerber J. Chem. Phys. (2008)

  • Numerical Experiments: Mean Numerical Experiments: Mean Accuracy of (separable) VSCFAccuracy of (separable) VSCF

    Improves with N!Improves with N!

    Liat Pele

    Tests for: Di- , Tri and Tetra – Peptides.

    Deviations of VSCF from VSCF-PT2 are computed.

    Pele and Gerber J. Phys. Chem. C (2010)

    computed.

    Deviations decrease as logN.

  • The Protonated ImidazoleThe Protonated Imidazole--Water Water Cluster, (ImHCluster, (ImH++))--HH22OO

    CC-VSCF calculations with MP2/DZP and IRPD

    Experiments for (ImH+)-H2O-N2:

    AA Adesokan, GM Chaban, O Dopfer and RB GerberIR Photodissociation experiments by Prof. O. Dopfer

    Yemi Adesokan

  • (ImH+)(H2O)-N2. Assignment and comparison of theoreticalharmonic and anharmonic frequencies in wave numbers tothose obtained from experiments.

    NH stretch (towards water)289728903217

    Water asym stretch372336964011

    Water sym stretch3639 36483884

    MODE DESCRIPTIONIRPDCC-VSCF(Ab initio)

    Harmonic(Ab initio)

    Ab initio = MP2/DZP

    Mean VSCF- experiment deviation : 0.6%

    Mean harmonic – experiment deviation: 7.1%

    C5-H stretchapp 317232213392

    C3-H stretchapp 317231653372

    C1-H stretch, C2-H stretchapp 317232053380

    NH stretch (towards N2)340433883587

    NH stretch (towards water)289728903217

  • Approach:

    Improving “Low Level” Improving “Low Level” Potentials for Potentials for

    Spectroscopy CalculationsSpectroscopy CalculationsDr. BrinaBrauer

    Dr. G.M. Chaban

    Modify the PM3 potential by:

    VNEW(q1,...,qn)=VPM3(λ1q1 ,... λnq)

    ( )

    ( 3)

    harmonicj

    j harmonicj

    abinitio

    PM

    ωλ

    ω=

    Where

  • The Structures of The Structures of αα –– Glucose in a MatrixGlucose in a Matrix

    Agreement with IR experiments supports the structures

    MP2/TZP Energies

    Dr. B. Brauer

  • Expt Calcd "A" Expt Calcd "B" Expt Calcd "X" Conf A G+g- Conf B G-g+ Conf X T

    3632 3644 3634 3640 3604 35603634 3657 3636 3645 3627 36373641 3660 3640 3665 3640 36493645 3682 3645 3671 3645 3655

    OH Stretch Vibrational Frequencies in cm-1

    PhenylPhenyl--ββ--Glucose in the Gas PhaseGlucose in the Gas Phase

    Average Deviation from Experiment < 1%!

    Prof. J. P. Simons Dr. B. Brauer

  • Vibrational Spectroscopy and Imaging of Biological Membranes

    in vivo tissue imaging of a mouse skin

  • Dodecane Dodecane –– Model Molecule for Model Molecule for Lipid MembranesLipid Membranes

    Liat Pele Dr. Jiří Šebek

    Prof. Eric O. Potma

  • Modeling Temperature and Modeling Temperature and Environment EffectsEnvironment Effects

    Dodecane - VSCF (scaled PM3 level)

    0.8

    1R

    elat

    ive

    Ram

    an In

    ten

    sity smoothed spectrum

    VSCF lines

    2600 2800 3000 32000

    0.2

    0.4

    0.6

    Wavenumber [cm-1]

    Rel

    ativ

    e R

    aman

    Inte

    nsi

    ty

    VSCF lines

  • Spectroscopy of DodecaneSpectroscopy of DodecaneH-Dodecane - VSCF (scaled PM3 level)

    0.2

    0.4

    0.6

    0.8

    1

    Rel

    ativ

    e R

    aman

    Inte

    nsi

    ty

    experimentVSCF

    2600 2800 3000 32000

    Wavenumber [cm-1]D-Dodecane - VSCF (scaled PM3 level)

    1800 2000 2200 24000

    0.2

    0.4

    0.6

    0.8

    1

    Wavenumber [cm-1]

    Rel

    ativ

    e R

    aman

    Inte

    nsi

    ty

    experimentVSCF

  • Summary: State of the ArtSummary: State of the Art

    1. Many successful applications for systems up to ~50 atoms

    2. Method is most suitable for: isolated molecules, low temperatures

  • Collaborations with Experimental Collaborations with Experimental GroupsGroups

    Prof. J.P. Prof. M.S. de Prof. G.Meijer and Prof. J.P. Simons

    Prof. M.S. de Vries

    Prof. G.Meijer and Prof. G. Von Helden

    Prof. T. Rizzo

    Prof. I.BarProf. D. M. Neumark

    Prof. O. Dopfer

    Prof. R. A. Mathies

  • The Present FrontierThe Present Frontier

    1) Methods and algorithm for 103 atoms and more (e.g. for protein structure by spectroscopy )

    2) Systems at room temperature, interacting with environment : Can VSCF be used ? How extensive is the applicability ?