305
Vladimir Matveev Jena (Germany)

Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Vladimir MatveevJena (Germany)

Page 2: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Vladimir MatveevJena (Germany)

Lie, Beltrami and Schouten problems

Page 3: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Vladimir MatveevJena (Germany)

Lie, Beltrami and Schouten problemswww.minet.uni-jena.de/∼matveev/

Page 4: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

Page 5: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics and

Page 6: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics and

◮ theory of quadratically integrable Hamiltonian systems andseparations of variables

Page 7: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics and

◮ theory of quadratically integrable Hamiltonian systems andseparations of variablesBenenti-systems, L-systems, cofactor systems,quasi-bi-hamiltonian systems, systems admitting specialconformal Killing tensor

Page 8: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics and

◮ theory of quadratically integrable Hamiltonian systems andseparations of variablesBenenti-systems, L-systems, cofactor systems,quasi-bi-hamiltonian systems, systems admitting specialconformal Killing tensor

study essentially the same object.

Page 9: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics andLevi-Civita Painleve Eisenhart

◮ theory of quadratically integrable Hamiltonian systems andseparations of variablesBenenti-systems, L-systems, cofactor systems,quasi-bi-hamiltonian systems, systems admitting specialconformal Killing tensorLevi-Civita Painleve Eisenhart

study essentially the same object.

Page 10: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics andLevi-Civita Painleve Eisenhart Weyl Thomas Douglas HallRashevskii Solodovnikov Yamauchi Aminova Venzi MikesShandra

◮ theory of quadratically integrable Hamiltonian systems andseparations of variablesBenenti-systems, L-systems, cofactor systems,quasi-bi-hamiltonian systems, systems admitting specialconformal Killing tensorLevi-Civita Painleve Eisenhart Benenti Braden IbortMagri Marmo Crampin Sarlet Tondo Saunders CantrijnKolokoltsev Rastelli Chanu Ranada Santander KiyoharaBolsinov Fomenko Kozlov Waalkens Dullin Pucacco

study essentially the same object.

Page 11: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics andLevi-Civita Painleve Eisenhart Weyl Thomas Douglas HallRashevskii Solodovnikov Yamauchi Aminova Venzi MikesShandra

◮ theory of quadratically integrable Hamiltonian systems andseparations of variablesBenenti-systems, L-systems, cofactor systems,quasi-bi-hamiltonian systems, systems admitting specialconformal Killing tensorLevi-Civita Painleve Eisenhart Benenti Braden IbortMagri Marmo Crampin Sarlet Tondo Saunders CantrijnKolokoltsev Rastelli Chanu Ranada Santander KiyoharaBolsinov Fomenko Kozlov Waalkens Dullin Pucacco

study essentially the same object.We apply methods of one in the other

Page 12: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Two separately developed theories,

◮ theory of geodesically equivalent metrics andLevi-Civita Painleve Eisenhart Weyl Thomas Douglas HallRashevskii Solodovnikov Yamauchi Aminova Venzi MikesShandra

◮ theory of quadratically integrable Hamiltonian systems andseparations of variablesBenenti-systems, L-systems, cofactor systems,quasi-bi-hamiltonian systems, systems admitting specialconformal Killing tensorLevi-Civita Painleve Eisenhart Benenti Braden IbortMagri Marmo Crampin Sarlet Tondo Saunders CantrijnKolokoltsev Rastelli Chanu Ranada Santander KiyoharaBolsinov Fomenko Kozlov Waalkens Dullin Pucacco

study essentially the same object.We apply methods of one in the other and obtain the announcedclassical problems

Page 13: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Definitions

Page 14: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Definitions

1. Two metrics (on one manifold) are geodesically equivalent ifthey have the same unparametrized geodesics

Page 15: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Definitions

1. Two metrics (on one manifold) are geodesically equivalent ifthey have the same unparametrized geodesics

2. A vector field is projective w.r.t. a metric, if its flow takes(unparametrized) geodesics to geodesics.

Page 16: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

Page 17: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Page 18: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

Page 19: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane,

Page 20: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Page 21: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere:

Page 22: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

Page 23: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)

Page 24: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

Page 25: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

◮ a is a diffeomorphism

Page 26: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

◮ a is a diffeomorphism

◮ a takes great circles (geodesics) to great circles (geodesics)

Page 27: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

◮ a is a diffeomorphism

◮ a takes great circles (geodesics) to great circles (geodesics)

◮ a is an isometry iff A ∈ O(n + 1).

Page 28: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

◮ a is a diffeomorphism

◮ a takes great circles (geodesics) to great circles (geodesics)

◮ a is an isometry iff A ∈ O(n + 1).

Thus, Sl(n + 1) acts by geodesic-preserving transformations on Sn,

Page 29: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Examples of Lagrange 1789 and of Beltrami 1865

����

���

���

���

���

���

���

��������

����

������

������

������

������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����

��������

����

��������

0

f(X)X

Radial projection f : S2 → R2

takes geodesics of the sphere togeodesics of the plane, becausegeodesics on sphere/plane are in-tersection of plains containing 0with the sphere/plane.

Beltrami (1865) modified Lagrange example to constructprojective vector fields of the sphere: He observed:

For every A ∈ SL(n + 1)we construct−−−−−−−−→ a : Sn → Sn, a(x) := A(x)

|A(x)|

◮ a is a diffeomorphism

◮ a takes great circles (geodesics) to great circles (geodesics)

◮ a is an isometry iff A ∈ O(n + 1).

Thus, Sl(n + 1) acts by geodesic-preserving transformations on Sn, and

its algebra sl(n + 1) can be viewed as the algebra of projective vector

fields

Page 30: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Page 31: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869)

Page 32: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to

Page 33: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

,

Page 34: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

, (if

they have sense).

Page 35: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

, (if

they have sense).

Every two nonproportional geodesically equivalent Riemannianmetrics on the surface

Page 36: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

, (if

they have sense).

Every two nonproportional geodesically equivalent Riemannianmetrics on the surface have this form in a neighbourhood of almostevery point.

Page 37: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

, (if

they have sense).

Every two nonproportional geodesically equivalent Riemannianmetrics on the surface have this form in a neighbourhood of almostevery point.

Page 38: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

, (if

they have sense).

Every two nonproportional geodesically equivalent Riemannianmetrics on the surface have this form in a neighbourhood of almostevery point.

Pseudo-Riemannian case:

Page 39: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Example of Dini 1869

Theorem (Dini 1869) The metric(X (x) − Y (y))(dx2 + dy2)

is geodesically equivalent to(

1Y (y) −

1X (x)

) (dx2

X (x) + dy2

Y (y)

)

, (if

they have sense).

Every two nonproportional geodesically equivalent Riemannianmetrics on the surface have this form in a neighbourhood of almostevery point.

Pseudo-Riemannian case: Two more series of normal forms:Bolsinov, Pucacco, M∼ 2008

Page 40: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Page 41: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→

Page 42: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g

Page 43: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

Page 44: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)

Page 45: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It :

Page 46: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R,

Page 47: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).

Page 48: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

Page 49: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g ,

Page 50: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M

Page 51: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

Page 52: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

Page 53: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

Page 54: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture

Page 55: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture(Bolsinov, M∼ 2003/ Crampin, Scarlet 2003/ Benenti 2004 / Kruglikov,M∼ 2006

Page 56: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture(Bolsinov, M∼ 2003/ Crampin, Scarlet 2003/ Benenti 2004 / Kruglikov,M∼ 2006 ; Bolsinov, Pucacco, M∼ 2008 )

Page 57: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture(Bolsinov, M∼ 2003/ Crampin, Scarlet 2003/ Benenti 2004 / Kruglikov,M∼ 2006 ; Bolsinov, Pucacco, M∼ 2008 )

There is no problem to quantize the system

Page 58: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture(Bolsinov, M∼ 2003/ Crampin, Scarlet 2003/ Benenti 2004 / Kruglikov,M∼ 2006 ; Bolsinov, Pucacco, M∼ 2008 )

There is no problem to quantize the system (replace the integrals bycommuting differential operators)

Page 59: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture(Bolsinov, M∼ 2003/ Crampin, Scarlet 2003/ Benenti 2004 / Kruglikov,M∼ 2006 ; Bolsinov, Pucacco, M∼ 2008 )

There is no problem to quantize the system (replace the integrals bycommuting differential operators) (Topalov, M∼ 2001

Page 60: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometry: Relation with integrable systems

Given g , g on Mn we construct−−−−−−−−→ L := g−1g ·

(det gdet g

) 1n+1

∀t ∈ R define−−−−−−−−−→ St := (L − t · Id)−1 · det(L − t · Id)consider−−−−−→ It : TMn → R, It(ξ) := g(St(ξ), ξ).Theorem (Topalov, M∼ 1998):If g ∼ g , then, ∀t1, t2 ∈ R, the functions Iti are commuting integrals forthe geodesic flow of g (i.e. for the Hamiltonian H(ξ) := g(ξ, ξ))

A function I : TM → R is an integral of the geodesic flow of g , if forevery geodesic γ : R → M the function I (γ, γ) : R → R is constant in t.

The family contains n integrals which are functionally independentalmost everywhere, if and only if there exists a point such that theminimal polynomial of g−1g has degree n.

There is no problem to introduce potential energy in the picture(Bolsinov, M∼ 2003/ Crampin, Scarlet 2003/ Benenti 2004 / Kruglikov,M∼ 2006 ; Bolsinov, Pucacco, M∼ 2008 )

There is no problem to quantize the system (replace the integrals bycommuting differential operators) (Topalov, M∼ 2001 ; Bolsinov,Pucacco, M∼ 2008)

Page 61: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

Page 62: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:

Page 63: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:Sinjukov-Topalov hierarchy as a way of constructing integrablesystems

Page 64: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:Sinjukov-Topalov hierarchy as a way of constructing integrablesystems

◮ One application of integrable systems to geodesic equivalence:

Page 65: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:Sinjukov-Topalov hierarchy as a way of constructing integrablesystems

◮ One application of integrable systems to geodesic equivalence:What closed manifolds admit geodesically equivalent Riemannianmetrics?

Page 66: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:Sinjukov-Topalov hierarchy as a way of constructing integrablesystems

◮ One application of integrable systems to geodesic equivalence:What closed manifolds admit geodesically equivalent Riemannianmetrics?

◮ Combining methods from integrable systems and differentialgeometry: solution of Lie Problem

Page 67: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:Sinjukov-Topalov hierarchy as a way of constructing integrablesystems

◮ One application of integrable systems to geodesic equivalence:What closed manifolds admit geodesically equivalent Riemannianmetrics?

◮ Combining methods from integrable systems and differentialgeometry: solution of Lie Problem (joint with Bryant, Manno) andof Lichnerowicz-Obata conjecture

Page 68: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Plan:

◮ Geometric sense of the integrals

◮ One application of geodesic equivalence to integrable systems:Sinjukov-Topalov hierarchy as a way of constructing integrablesystems

◮ One application of integrable systems to geodesic equivalence:What closed manifolds admit geodesically equivalent Riemannianmetrics?

◮ Combining methods from integrable systems and differentialgeometry: solution of Lie Problem (joint with Bryant, Manno) andof Lichnerowicz-Obata conjecture

Page 69: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

Page 70: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997

Page 71: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 ,

Page 72: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 ,

Page 73: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)

Page 74: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

Page 75: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

Page 76: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfaces

Page 77: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Page 78: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1

Page 79: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Page 80: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :

Page 81: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q ,

Page 82: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.

Page 83: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.

Page 84: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.

Page 85: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof:

Page 86: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ]

Page 87: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ] = 0

Page 88: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ] = 0 + 0

Page 89: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ] = 0 + 0 = 0.

Page 90: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ] = 0 + 0 = 0.Since the forms σ, m∗σ are preserved by the flow,

Page 91: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ] = 0 + 0 = 0.Since the forms σ, m∗σ are preserved by the flow, a function constructedinvariantly by using these forms must automatically be an integral.

Page 92: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Symplectic nature of these integrals

(Topalov 1997independently

−−− Tabachnikov 1998 , Foulon 1986 , Pollicott)Consider Hamiltonian systems

(N2n, ω,H,XH) and (N2n, ω, H,XH)

and their energy surfacesQ2n−1 := {H(x) = h} and Q2n−1 := {H(x) = h}

Suppose there exists m : Q2n−1 → Q2n−1 such that dm(XH) = λ(x)XH

Then we can construct integrals for XH :indeed: consider σ := ω|Q , σ := ω|Q and the pull-back m∗σ.Lemma: The flow of XH preserves σ, m∗σ.Proof: LXH

m∗σ = ıXHd [m∗σ] + d [ıXH

m∗σ] = 0 + 0 = 0.Since the forms σ, m∗σ are preserved by the flow, a function constructedinvariantly by using these forms must automatically be an integral. Sothe coefficients of the characteristic polynomial of one form with respectto the second are integrals.

Page 93: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g

Page 94: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:

Page 95: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Page 96: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Theorem (Topalov, Matveev 2001):

Page 97: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Theorem (Topalov, Matveev 2001): Assume g ∼ g . Then, for everyreal-analytic function F , the metrics gF (L) and gF (L) are geodesicallyequivalent (if they have sense.)

Page 98: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Theorem (Topalov, Matveev 2001): Assume g ∼ g . Then, for everyreal-analytic function F , the metrics gF (L) and gF (L) are geodesicallyequivalent (if they have sense.)

The example of Beltrami gives us a pair of geodesically equivalentmetrics.

Page 99: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Theorem (Topalov, Matveev 2001): Assume g ∼ g . Then, for everyreal-analytic function F , the metrics gF (L) and gF (L) are geodesicallyequivalent (if they have sense.)

The example of Beltrami gives us a pair of geodesically equivalentmetrics. If we apply the above Theorem to it for functions F (x) = x andF (x) = x2,

Page 100: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Theorem (Topalov, Matveev 2001): Assume g ∼ g . Then, for everyreal-analytic function F , the metrics gF (L) and gF (L) are geodesicallyequivalent (if they have sense.)

The example of Beltrami gives us a pair of geodesically equivalentmetrics. If we apply the above Theorem to it for functions F (x) = x andF (x) = x2, we get the metrics of the ellipsoid and of the Poissonspheres.

Page 101: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

We can construct many new integrable systems

Given g , g let us construct L as above: L := g−1g ·(

det gdet g

) 1n+1

For every (1, 1)-tensor B, define:gB(ξ, η) := g(B(ξ), η)gB(ξ, η) := g(B(ξ), η)

Theorem (Topalov, Matveev 2001): Assume g ∼ g . Then, for everyreal-analytic function F , the metrics gF (L) and gF (L) are geodesicallyequivalent (if they have sense.)

The example of Beltrami gives us a pair of geodesically equivalentmetrics. If we apply the above Theorem to it for functions F (x) = x andF (x) = x2, we get the metrics of the ellipsoid and of the Poissonspheres.

Page 102: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

Page 103: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865:

Page 104: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

Page 105: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

English Translation: DESCRIBE all geodesically equivalent metrics

Page 106: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

English Translation: DESCRIBE all geodesically equivalent metrics

◮ locally was done by Dini (1869) for dim 2, Levi-Civita (1896)for dim n (almost everywhere for Riem. case)

Page 107: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

English Translation: DESCRIBE all geodesically equivalent metrics

◮ locally was done by Dini (1869) for dim 2, Levi-Civita (1896)for dim n (almost everywhere for Riem. case) Bolsinov,Pucacco, M∼ (for dim 2 for pseudo-Riemannian case)

Page 108: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

English Translation: DESCRIBE all geodesically equivalent metrics

◮ locally was done by Dini (1869) for dim 2, Levi-Civita (1896)for dim n (almost everywhere for Riem. case) Bolsinov,Pucacco, M∼ (for dim 2 for pseudo-Riemannian case)

◮ I will answer the topologicall question: what closed manifoldscan admit nonproportional geodesically equivalent Riemannianmetrics

Page 109: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

English Translation: DESCRIBE all geodesically equivalent metrics

◮ locally was done by Dini (1869) for dim 2, Levi-Civita (1896)for dim n (almost everywhere for Riem. case) Bolsinov,Pucacco, M∼ (for dim 2 for pseudo-Riemannian case)

◮ I will answer the topologicall question: what closed manifoldscan admit nonproportional geodesically equivalent Riemannianmetrics

Page 110: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Application to topology: motivation:

◮ Beltrami 1865: La seconda ... generalizzazione ... del nostroproblema, vale a dire: riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della primacorrispondano linee geodetiche della seconda.

English Translation: DESCRIBE all geodesically equivalent metrics

◮ locally was done by Dini (1869) for dim 2, Levi-Civita (1896)for dim n (almost everywhere for Riem. case) Bolsinov,Pucacco, M∼ (for dim 2 for pseudo-Riemannian case)

◮ I will answer the topologicall question: what closed manifoldscan admit nonproportional geodesically equivalent Riemannianmetrics

◮ I also know the description of all metrics – too long for this talk

Page 111: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Page 112: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional.

Page 113: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

Page 114: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Page 115: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

Page 116: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

Page 117: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

Page 118: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

Page 119: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

Page 120: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

Page 121: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

Page 122: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

Page 123: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

Page 124: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

Page 125: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Page 126: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Page 127: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Corollary 1 (Topalov, M∼ 2001): A closed orientable surface admittingnonproportional geodesically equivalent metrics is S2 or T 2.

Page 128: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Corollary 1 (Topalov, M∼ 2001): A closed orientable surface admittingnonproportional geodesically equivalent metrics is S2 or T 2.

Corollary 2 (M∼ 2003):

Page 129: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Corollary 1 (Topalov, M∼ 2001): A closed orientable surface admittingnonproportional geodesically equivalent metrics is S2 or T 2.

Corollary 2 (M∼ 2003): A closed 3-manifold admitting nonproportionalgeodesically equivalent metrics is Lp,q or Seifert manifold with zero Eulernumber.

Page 130: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Corollary 1 (Topalov, M∼ 2001): A closed orientable surface admittingnonproportional geodesically equivalent metrics is S2 or T 2.

Corollary 2 (M∼ 2003): A closed 3-manifold admitting nonproportionalgeodesically equivalent metrics is Lp,q or Seifert manifold with zero Eulernumber. (Lp,q are covered by S3, Seifert manifold with zero Euler numberare 3-manifolds admitting metrics with reducible holonomy groups.)

Page 131: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What closed manifolds admit geodesically equivalentRiemannian metrics?

Theorem (Matveev 2008) Suppose M is closed connected. LetRiemannian metrics g and g on M be geodesically equivalent andnonproportional. Then, one of the following statements holds:

◮ the manifold is diffeomorphic to a reducible space form:

Mdiffeo≈ Sn/G , where G ⊆ O(n + 1)

is discrete

acts freely on Sn

= G1 + G2

,

OR◮ it admits a metric with reducible holonomy group.

Corollary 1 (Topalov, M∼ 2001): A closed orientable surface admittingnonproportional geodesically equivalent metrics is S2 or T 2.

Corollary 2 (M∼ 2003): A closed 3-manifold admitting nonproportionalgeodesically equivalent metrics is Lp,q or Seifert manifold with zero Eulernumber. (Lp,q are covered by S3, Seifert manifold with zero Euler numberare 3-manifolds admitting metrics with reducible holonomy groups.)

Page 132: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

Page 133: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

Page 134: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

In dimension 2, the integral I0 is

Page 135: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

In dimension 2, the integral I0 is

I0(ξ) :=

(det(g)

det(g)

) 23

g(ξ, ξ).

Page 136: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

In dimension 2, the integral I0 is

I0(ξ) :=

(det(g)

det(g)

) 23

g(ξ, ξ).

Assume the surface is neither torus nor the sphere.

Page 137: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

In dimension 2, the integral I0 is

I0(ξ) :=

(det(g)

det(g)

) 23

g(ξ, ξ).

Assume the surface is neither torus nor the sphere. The goal is toshow that g and g are proportional.

Page 138: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

In dimension 2, the integral I0 is

I0(ξ) :=

(det(g)

det(g)

) 23

g(ξ, ξ).

Assume the surface is neither torus nor the sphere. The goal is toshow that g and g are proportional.

Because of topology, there exists x0 such that g|x0= g|x0

.

Page 139: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Proof of Corollary 1:

(Two geodesically equivalent metrics on the surface if genus ≥ 2are proportional)

In dimension 2, the integral I0 is

I0(ξ) :=

(det(g)

det(g)

) 23

g(ξ, ξ).

Assume the surface is neither torus nor the sphere. The goal is toshow that g and g are proportional.

Because of topology, there exists x0 such that g|x0= g|x0

. Weassume g|x1

6= g|x1and find a contradiction.

Page 140: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2:

Page 141: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)

Page 142: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Page 143: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Case 1: There exists a point of the manifold such that that thepolynomial det(g − λg) has 3 different roots. Then, the geodesicflow of g is Liouville-integrable.

Page 144: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Case 1: There exists a point of the manifold such that that thepolynomial det(g − λg) has 3 different roots. Then, the geodesicflow of g is Liouville-integrable.Theorem ( Kruglikov, Matveev 2006): Then, the topologicalentropy of g vanishes.

Page 145: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Case 1: There exists a point of the manifold such that that thepolynomial det(g − λg) has 3 different roots. Then, the geodesicflow of g is Liouville-integrable.Theorem ( Kruglikov, Matveev 2006): Then, the topologicalentropy of g vanishes.(And therefore modulo the Poincare conjecture the manifold canbe covered by S3, S2 × S1 or by S1 × S1 × S1.)

Page 146: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Case 1: There exists a point of the manifold such that that thepolynomial det(g − λg) has 3 different roots. Then, the geodesicflow of g is Liouville-integrable.Theorem ( Kruglikov, Matveev 2006): Then, the topologicalentropy of g vanishes.(And therefore modulo the Poincare conjecture the manifold canbe covered by S3, S2 × S1 or by S1 × S1 × S1.)

Page 147: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Case 1: There exists a point of the manifold such that that thepolynomial det(g − λg) has 3 different roots. Then, the geodesicflow of g is Liouville-integrable.Theorem ( Kruglikov, Matveev 2006): Then, the topologicalentropy of g vanishes.(And therefore modulo the Poincare conjecture the manifold canbe covered by S3, S2 × S1 or by S1 × S1 × S1.)Case 2: At every point the number of roots of the polynomial is≤ 2.Then precisely the same trick as in dimension 2 works.

Page 148: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Explanation of Corollary 2: (A closed 3-manifold admittingnonproportional geodesically equivalent metrics is Lp,q or Seifertmanifold with zero Euler number.)Assume dim(M) = 3

Case 1: There exists a point of the manifold such that that thepolynomial det(g − λg) has 3 different roots. Then, the geodesicflow of g is Liouville-integrable.Theorem ( Kruglikov, Matveev 2006): Then, the topologicalentropy of g vanishes.(And therefore modulo the Poincare conjecture the manifold canbe covered by S3, S2 × S1 or by S1 × S1 × S1.)Case 2: At every point the number of roots of the polynomial is≤ 2.Then precisely the same trick as in dimension 2 works.

Page 149: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Combining the methods from integrable systems anddifferential geometry: Lie problem

Page 150: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Combining the methods from integrable systems anddifferential geometry: Lie problem

Lie 1882: Problem II: Man soll die Form des Bo-genelementes einer jeden Flache bestimmen,deren geodatische Kurven mehrere infinitesimaleTransformationen gestatten

Page 151: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Combining the methods from integrable systems anddifferential geometry: Lie problem

Lie 1882: Problem II: Man soll die Form des Bo-genelementes einer jeden Flache bestimmen,deren geodatische Kurven mehrere infinitesimaleTransformationen gestattenEnglish translation: Describe all 2 dim metrics admitting at leasttwo projective vector fields

Page 152: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Combining the methods from integrable systems anddifferential geometry: Lie problem

Lie 1882: Problem II: Man soll die Form des Bo-genelementes einer jeden Flache bestimmen,deren geodatische Kurven mehrere infinitesimaleTransformationen gestattenEnglish translation: Describe all 2 dim metrics admitting at leasttwo projective vector fieldsRepeating Def: A vector field is projective (w.r.t. a metric), if itsflow takes unparameterized geodesics to geodesics.

Page 153: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (Bryant, Manno, M∼ 2007) If a two-dimensionalmetric g of nonconstant curvature has at least 2 projective vectorfields such that they are linear independent at the point p, thenthere exist coordinates x , y in a neighborhood of p such that themetrics are as follows.

Page 154: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (Bryant, Manno, M∼ 2007) If a two-dimensionalmetric g of nonconstant curvature has at least 2 projective vectorfields such that they are linear independent at the point p, thenthere exist coordinates x , y in a neighborhood of p such that themetrics are as follows.

1. ǫ1e(b+2) xdx2 + ǫ2beb xdy2, where

b ∈ R \ {−2, 0, 1} and ǫi ∈ {−1, 1}

2. a(

ǫ1e(b+2) xdx2

(eb x+ǫ2)2+ eb xdy2

eb x+ǫ2

)

, where a ∈ R \ {0},

b ∈ R \ {−2, 0, 1} and ǫi ∈ {−1, 1}

3. a(

e2 xdx2

x2 + ǫdy2

x

)

, where a ∈ R \ {0}, and ǫ ∈ {−1, 1}

4. ǫ1e3xdx2 + ǫ2e

xdy2, where ǫi ∈ {−1, 1},

5. a(

e3xdx2

(ex+ǫ2)2+ ǫ1e

xdy2

(ex+ǫ2)

)

, where a ∈ R \ {0}, ǫi ∈ {−1, 1},

6. a(

dx2

(cx+2x2+ǫ2)2x+ ǫ1

xdy2

cx+2x2+ǫ2

)

, where a > 0, ǫi ∈ {−1, 1},

c ∈ R.

Page 155: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

Page 156: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th):

Page 157: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field.

Page 158: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

Page 159: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

Page 160: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

Page 161: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

Page 162: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

Page 163: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

Page 164: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Page 165: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Page 166: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Page 167: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Page 168: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Yamauchi (1974) pro-ved the conjecture as-suming that the scalarcurvature is constant

Page 169: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Yamauchi (1974) pro-ved the conjecture as-suming that the scalarcurvature is constant

Solodovnikov (1956)proved the conjecture

Page 170: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Yamauchi (1974) pro-ved the conjecture as-suming that the scalarcurvature is constant

Solodovnikov (1956)proved the conjectureassuming that all ob-jects are real analytic

Page 171: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Yamauchi (1974) pro-ved the conjecture as-suming that the scalarcurvature is constant

Solodovnikov (1956)proved the conjectureassuming that all ob-jects are real analytic

Page 172: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Yamauchi (1974) pro-ved the conjecture as-suming that the scalarcurvature is constant

Solodovnikov (1956)proved the conjectureassuming that all ob-jects are real analyticand that n ≥ 3.

Page 173: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Schouten 1924: List all complete metrics admittingcomplete projective vector field

I proved Lichnerowicz-Obata-Solodovnikov Conjecture (50th): Let acomplete Riemannian manifold (of dim ≥ 2) admit a complete projectivevector field. Then, the manifold is covered by the round sphere, or thevector field is affine.

It is hard to relax the assumptions

History of L-O-S conjecture:

France(Lichnerowicz)

Japan(Yano, Obata, Tanno)

Soviet Union(Raschewskii)

Couty (1961) provedthe conjecture assu-ming that g is Einsteinor Kahler

Yamauchi (1974) pro-ved the conjecture as-suming that the scalarcurvature is constant

Solodovnikov (1956)proved the conjectureassuming that all ob-jects are real analyticand that n ≥ 3.

Pseudo-Riemannian case was considered: Venzi 85, Barnes 93, Hall 95.

Page 174: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

Page 175: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

Page 176: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)

Page 177: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)

Page 178: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

Page 179: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.

Page 180: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class),

Page 181: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form Υ

Page 182: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

Page 183: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

Page 184: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively:

Page 185: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Page 186: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Then, on the level of equations

Page 187: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Then, on the level of equations

All metrics geodesically equivalent to a connection Γ are solutions of thesystem

Page 188: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Then, on the level of equations

All metrics geodesically equivalent to a connection Γ are solutions of thesystem[

∂∂k

gij − giαΓαkj − gjαΓα

ki

]

− Υigkj − Υjgki = 0

Page 189: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Then, on the level of equations

All metrics geodesically equivalent to a connection Γ are solutions of thesystem[

∂∂k

gij − giαΓαkj − gjαΓα

ki

]

− Υigkj − Υjgki = 0

on unknowns gij and Υi .

Page 190: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Then, on the level of equations

All metrics geodesically equivalent to a connection Γ are solutions of thesystem[

∂∂k

gij − giαΓαkj − gjαΓα

ki

]

− Υigkj − Υjgki = 0

on unknowns gij and Υi . The system is nonlinear

Page 191: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Geometric theory of PDE: Solution of Lichnerowich/Lie

(Lichnerowicz Conjecture: Among closed Riemannian manifolds, onlythe round sphere admits essential projective vector fields)(Lie Problem: Describe all 2-dim metrics with two projective vector

fields)

We reformulate it on the language of PDE.Folklor (Levi-Civita 1896): Two symmetric affine connections Γ and Γhave the same (unparametrized) geodesics (=belong to the sameprojective class), iff for a 1-form ΥΓi

jk = Γijk + Υjδ

ik + Υkδ

ij

(Alternatively: Tracefreepartof(Γ − Γ) = 0). )

Then, on the level of equations

All metrics geodesically equivalent to a connection Γ are solutions of thesystem[

∂∂k

gij − giαΓαkj − gjαΓα

ki

]

− Υigkj − Υjgki = 0

on unknowns gij and Υi . The system is nonlinear and

contains artificial unknown Υ

Page 192: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Page 193: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889.

Page 194: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstance

Page 195: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstance

Page 196: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/

Page 197: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 /

Page 198: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.

Page 199: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Page 200: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Page 201: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Here σab := g ab · det(g)1/(n+1) should be understood as an element ofS2M ⊗ (Λn)

2/(n+1)M.

Page 202: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Here σab := g ab · det(g)1/(n+1) should be understood as an element ofS2M ⊗ (Λn)

2/(n+1)M. In particular,

∇aσbc =

∂xaσbc + Γb

adσdc + Γcdaσ

bd

︸ ︷︷ ︸

Usual covariant derivative

−2

n + 1Γd

da σbc

︸ ︷︷ ︸

addition coming from volume form

Page 203: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Here σab := g ab · det(g)1/(n+1) should be understood as an element ofS2M ⊗ (Λn)

2/(n+1)M. In particular,

∇aσbc =

∂xaσbc + Γb

adσdc + Γcdaσ

bd

︸ ︷︷ ︸

Usual covariant derivative

−2

n + 1Γd

da σbc

︸ ︷︷ ︸

addition coming from volume form

Advantages:

Page 204: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Here σab := g ab · det(g)1/(n+1) should be understood as an element ofS2M ⊗ (Λn)

2/(n+1)M. In particular,

∇aσbc =

∂xaσbc + Γb

adσdc + Γcdaσ

bd

︸ ︷︷ ︸

Usual covariant derivative

−2

n + 1Γd

da σbc

︸ ︷︷ ︸

addition coming from volume form

Advantages:

1. It is a linear PDE-system of the first order.

Page 205: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Here σab := g ab · det(g)1/(n+1) should be understood as an element ofS2M ⊗ (Λn)

2/(n+1)M. In particular,

∇aσbc =

∂xaσbc + Γb

adσdc + Γcdaσ

bd

︸ ︷︷ ︸

Usual covariant derivative

−2

n + 1Γd

da σbc

︸ ︷︷ ︸

addition coming from volume form

Advantages:

1. It is a linear PDE-system of the first order.

2. The system does not depend on the choice of Γ within a projectiveclass.

Page 206: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Trick: One can exclude Υ and linearize the system:

Dim 2: R. Liouville 1889. : Liouville regarded this linearity as aremarkably lucky circumstanceDim n: Sinjukov 1962/ Mikes, Berezovski 1989 / Bolsinov, M∼ 2003.Theorem (Eastwood, M∼ 2007) g is geodesically equivalent to aconnection Γi

jk iff σab := g ab · det(g)1/(n+1) is a solution of

Tracefreepartof(∇aσ

bc)

= 0.

Here σab := g ab · det(g)1/(n+1) should be understood as an element ofS2M ⊗ (Λn)

2/(n+1)M. In particular,

∇aσbc =

∂xaσbc + Γb

adσdc + Γcdaσ

bd

︸ ︷︷ ︸

Usual covariant derivative

−2

n + 1Γd

da σbc

︸ ︷︷ ︸

addition coming from volume form

Advantages:

1. It is a linear PDE-system of the first order.

2. The system does not depend on the choice of Γ within a projectiveclass. (short tensor calculations)

Page 207: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Page 208: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Page 209: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Beltrami 1865: For every solution y(x) the curve (x , y(x)) is are-parametrized geodesic.

Page 210: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Beltrami 1865: For every solution y(x) the curve (x , y(x)) is are-parametrized geodesic.Corollary If g has two projective vector fields, then its projectiveconnection has two point-symmetries.

Page 211: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Beltrami 1865: For every solution y(x) the curve (x , y(x)) is are-parametrized geodesic.Corollary If g has two projective vector fields, then its projectiveconnection has two point-symmetries.

Page 212: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Beltrami 1865: For every solution y(x) the curve (x , y(x)) is are-parametrized geodesic.Corollary If g has two projective vector fields, then its projectiveconnection has two point-symmetries.It is easy to describe such projective connections (Lie, Cartan, Tresse):

Page 213: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Beltrami 1865: For every solution y(x) the curve (x , y(x)) is are-parametrized geodesic.Corollary If g has two projective vector fields, then its projectiveconnection has two point-symmetries.It is easy to describe such projective connections (Lie, Cartan, Tresse):in a certain coordinate system they are as follows: (A,B,C ,D ∈ R )yxx = exA + Byx + Ce−x(yx)

2 + De−2x(yx)3.

Page 214: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

How to use system: dim 2: preliminaries

Def: Projective connection of an affine connection Γ is

yxx = −Γ211 + (Γ1

11 − 2Γ212)yx

+ (−Γ222 + 2Γ1

12)(yx)2 + Γ1

22(yx)3

Beltrami 1865: For every solution y(x) the curve (x , y(x)) is are-parametrized geodesic.Corollary If g has two projective vector fields, then its projectiveconnection has two point-symmetries.It is easy to describe such projective connections (Lie, Cartan, Tresse):in a certain coordinate system they are as follows: (A,B,C ,D ∈ R )yxx = exA + Byx + Ce−x(yx)

2 + De−2x(yx)3.

Lie Problem is equivalent to “Which of them come from a metric”

Page 215: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007)

Page 216: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

Page 217: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

Page 218: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Page 219: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Thus, the projective connection came from a metric iff this systemof PDE has a nontrivial solution.

Page 220: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Thus, the projective connection came from a metric iff this systemof PDE has a nontrivial solution.

To solve the Lie problem = to determine constants A,B,C ,D

Page 221: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Thus, the projective connection came from a metric iff this systemof PDE has a nontrivial solution.

To solve the Lie problem = to determine constants A,B,C ,D suchthat the system above withK0 = exA, K1 = B, K2 = Ce−x , K3 = De−2x

Page 222: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Thus, the projective connection came from a metric iff this systemof PDE has a nontrivial solution.

To solve the Lie problem = to determine constants A,B,C ,D suchthat the system above withK0 = exA, K1 = B, K2 = Ce−x , K3 = De−2x

has a nontrivial solution

Page 223: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Thus, the projective connection came from a metric iff this systemof PDE has a nontrivial solution.

To solve the Lie problem = to determine constants A,B,C ,D suchthat the system above withK0 = exA, K1 = B, K2 = Ce−x , K3 = De−2x

has a nontrivial solution

This is an algorithmically-solvable problem

Page 224: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Theorem (R. Liouville 1889 – Eastwood/ M∼ 2007–Bryant/Manno/M∼ 2007) A 2-dimensional metric g has a givenprojective connection

yxx = K0 + K1yx + K2(yx)2 + K3(yx)

3

iff the entries of the matrix adef= (det(g))

−2/3g satisfy a system of 4

linear PDE of first order.

∂a11

∂x+ 2K0a12 − 2/3K1a11 = 0

2 ∂a12

∂x+ ∂a11

∂y+ 2K0a22 + 2/3K1a12 − 4/3K2a11 = 0

∂a22

∂x+ 2 ∂a12

∂y+ 4/3K1a22 − 2/3K2a12 − 2K3a11 = 0

∂a22

∂y+ 2/3K2a22 − 2K3a12 = 0

Thus, the projective connection came from a metric iff this systemof PDE has a nontrivial solution.

To solve the Lie problem = to determine constants A,B,C ,D suchthat the system above withK0 = exA, K1 = B, K2 = Ce−x , K3 = De−2x

has a nontrivial solution

This is an algorithmically-solvable problem(if we can differentiate, multiply and add).

Page 225: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutions

Page 226: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy

Page 227: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

Page 228: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

Page 229: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Page 230: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Page 231: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

Page 232: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

and substitute (∗) inside.

Page 233: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

and substitute (∗) inside.

Step 2: Differentiate the obtained equations by xα and substitute (∗)inside.

Page 234: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

and substitute (∗) inside.

Step 2: Differentiate the obtained equations by xα and substitute (∗)inside.Step 3: Differentiate the obtained equations by xα and substitute (∗)inside.

Page 235: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

and substitute (∗) inside.

Step 2: Differentiate the obtained equations by xα and substitute (∗)inside.Step 3: Differentiate the obtained equations by xα and substitute (∗)inside.Step 4: Differentiate the obtained equations by xα and substitute (∗)inside.

Page 236: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

and substitute (∗) inside.

Step 2: Differentiate the obtained equations by xα and substitute (∗)inside.Step 3: Differentiate the obtained equations by xα and substitute (∗)inside.Step 4: Differentiate the obtained equations by xα and substitute (∗)inside.

Step 100: Differentiate the obtained equations by xα and substitute (∗)

inside.

Page 237: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Standard algorithm to understand the dimension of the space ofsolutionsDifferentiate every equation of the above system w.r.t. xx , xy , yy andsolve the obtained equations w.r.t. third derivatives.

(∗)

∂3a11

∂x3 = f11111(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂2xγ∂xδ)

...∂3a22

∂y3 = f22222(x , y , aαβ ,∂aαβ

∂xγ,

∂2aαβ

∂xγ∂xδ)

Now, let us produce new linear PDE’s of the second order

Step 1: Take∂fijkrm

∂xs−

∂fijkrs∂xm

and substitute (∗) inside.

Step 2: Differentiate the obtained equations by xα and substitute (∗)inside.Step 3: Differentiate the obtained equations by xα and substitute (∗)inside.Step 4: Differentiate the obtained equations by xα and substitute (∗)inside.

Step 100: Differentiate the obtained equations by xα and substitute (∗)

inside.

Page 238: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

At a certain point all new equations we obtain are linearcombinations of the previous equations.

Page 239: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

At a certain point all new equations we obtain are linearcombinations of the previous equations.Then, 18 minus the rank of the systems of equation we obtained isthe dimension of the space of solutions of (∗), i.e. is the dimensionof the space of the metrics corresponding to the above projectiveconnection.

Page 240: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

At a certain point all new equations we obtain are linearcombinations of the previous equations.Then, 18 minus the rank of the systems of equation we obtained isthe dimension of the space of solutions of (∗), i.e. is the dimensionof the space of the metrics corresponding to the above projectiveconnection.Applying the above procedure to the projective connections

admitting 2 point symmetries, we solve the Lie 2nd problem:

Page 241: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

At a certain point all new equations we obtain are linearcombinations of the previous equations.Then, 18 minus the rank of the systems of equation we obtained isthe dimension of the space of solutions of (∗), i.e. is the dimensionof the space of the metrics corresponding to the above projectiveconnection.Applying the above procedure to the projective connections

admitting 2 point symmetries, we solve the Lie 2nd problem:

Theorem (Bryant, Manno, M∼).yxx = exA + Byx + Ce−x(yx)

2 + De−2x(yx)3 comes from a metric

iff A = C = 0 (may be after a coordinate change)

Page 242: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

At a certain point all new equations we obtain are linearcombinations of the previous equations.Then, 18 minus the rank of the systems of equation we obtained isthe dimension of the space of solutions of (∗), i.e. is the dimensionof the space of the metrics corresponding to the above projectiveconnection.Applying the above procedure to the projective connections

admitting 2 point symmetries, we solve the Lie 2nd problem:

Theorem (Bryant, Manno, M∼).yxx = exA + Byx + Ce−x(yx)

2 + De−2x(yx)3 comes from a metric

iff A = C = 0 (may be after a coordinate change)

Of cause, we also have a hand-written proof.

Page 243: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.

Page 244: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.

Page 245: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.

Page 246: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then,

Page 247: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ,

Page 248: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.

Page 249: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

Page 250: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

Page 251: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix.

Page 252: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we get

Page 253: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

Page 254: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or

Page 255: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

Page 256: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case

Page 257: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ

Page 258: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g

Page 259: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g which is impossible for closed manifolds.

Page 260: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g which is impossible for closed manifolds. In the

second case

Page 261: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g which is impossible for closed manifolds. In the

second case the determinant of σ vanishes at some point

Page 262: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g which is impossible for closed manifolds. In the

second case the determinant of σ vanishes at some point (because

cos(t) vanishes for some t)

Page 263: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g which is impossible for closed manifolds. In the

second case the determinant of σ vanishes at some point (because

cos(t) vanishes for some t) implying that g = σ · det(σ) vanishes

somewhere.

Page 264: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Lichnerowicz problem

Denote by σ the space of solutions.Assume σ is two-dimenional.Every projective vector field v does not change the equations.Then, for every solution σ ∈ σ, then Lvσ is also a soluiton. Thus, Lv isa linear mapping :σ → σ.Then, for every basis σ1, σ2 ∈ σ

Lv

�σ1σ2

�= A

�σ1σ2

�,

where A is a 2 × 2 matrix. Then, for the appropiate choice of the basisσ1, σ2 we getLv

�σ1σ2

�=

�α ∗

0 β

��σ1σ2

�, or Lv

�σ1σ2

�=

�α β

−β α

��σ1σ2

�depending on the eigenvalues of A.

In the left case there exists a solution s.t. Lvσ = ασ implying v is

homothety vector for g which is impossible for closed manifolds. In the

second case the determinant of σ vanishes at some point (because

cos(t) vanishes for some t) implying that g = σ · det(σ) vanishes

somewhere. Lichnerowich conjecture is proved under assumption that

the space of solutions is two-dimenional

Page 265: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically
Page 266: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:)

Page 267: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ)

Page 268: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

Page 269: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

Page 270: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

where { , }g is the Poisson bracket transplanted from T ∗M to TMby the bundle isomorphism ♭g : TM → T ∗M.

Page 271: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

where { , }g is the Poisson bracket transplanted from T ∗M to TMby the bundle isomorphism ♭g : TM → T ∗M. If g is known,

Page 272: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

where { , }g is the Poisson bracket transplanted from T ∗M to TMby the bundle isomorphism ♭g : TM → T ∗M. If g is known,

this equations is visibly linear in a = g/ det(g)2/3

Page 273: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

where { , }g is the Poisson bracket transplanted from T ∗M to TMby the bundle isomorphism ♭g : TM → T ∗M. If g is known,

this equations is visibly linear in a = g/ det(g)2/3 . Since in dim 2the mapping A 7→ comatrix(A) = A−1 · det(A) is linear

Page 274: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

where { , }g is the Poisson bracket transplanted from T ∗M to TMby the bundle isomorphism ♭g : TM → T ∗M. If g is known,

this equations is visibly linear in a = g/ det(g)2/3 . Since in dim 2the mapping A 7→ comatrix(A) = A−1 · det(A) is linear , themapping g−1 · det(g)1/3 7→ g/ det(g)2/3 is a linear isomorphism

Page 275: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

An attempt to explain why the system is linear. (Worksonly in dim 2)

We know (first part of the talk:) if g and g have the same

geodesics, then I0(ξ) :=(

det(g)det(g)

) 23g(ξ, ξ) is an integral of the

geodesic flow of g , i.e.

{(

det(g)det(g)

)23

g , g

}

g

= 0, (∗)

where { , }g is the Poisson bracket transplanted from T ∗M to TMby the bundle isomorphism ♭g : TM → T ∗M. If g is known,

this equations is visibly linear in a = g/ det(g)2/3 . Since in dim 2the mapping A 7→ comatrix(A) = A−1 · det(A) is linear , themapping g−1 · det(g)1/3 7→ g/ det(g)2/3 is a linear isomorphism ,and the equations (∗) can be viewed as linear PDE in in thecomponents of σ := g−1 · det(g)1/3.

Page 276: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Page 277: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold.

Page 278: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvature

Page 279: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvatureExplanation:

Page 280: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvatureExplanation: The above linear system of PDE can be prolonged:

∇aσbc = δa

bµc + δacµb

∇aµb = δa

bρ − 1nPacσ

bc + 1nWac

bdσcd

∇aρ = − 2nPabµ

b + 4nYabcσ

bc

(Mikes 1998

Eastwood, M∼ 2007

)

Page 281: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvatureExplanation: The above linear system of PDE can be prolonged:

∇aσbc = δa

bµc + δacµb

∇aµb = δa

bρ − 1nPacσ

bc + 1nWac

bdσcd

∇aρ = − 2nPabµ

b + 4nYabcσ

bc

(Mikes 1998

Eastwood, M∼ 2007

)

where P is the symmeterized Ricci-tensor, Y the Cotton-York-Tensor andWab

cd the projective Weyl-Tensor for the connection Γ.

Page 282: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvatureExplanation: The above linear system of PDE can be prolonged:

∇aσbc = δa

bµc + δacµb

∇aµb = δa

bρ − 1nPacσ

bc + 1nWac

bdσcd

∇aρ = − 2nPabµ

b + 4nYabcσ

bc

(Mikes 1998

Eastwood, M∼ 2007

)

where P is the symmeterized Ricci-tensor, Y the Cotton-York-Tensor andWab

cd the projective Weyl-Tensor for the connection Γ.

This is a linear system of PDE of the first order on the unknownfunctions σbc , µb , ρ.

Page 283: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvatureExplanation: The above linear system of PDE can be prolonged:

∇aσbc = δa

bµc + δacµb

∇aµb = δa

bρ − 1nPacσ

bc + 1nWac

bdσcd

∇aρ = − 2nPabµ

b + 4nYabcσ

bc

(Mikes 1998

Eastwood, M∼ 2007

)

where P is the symmeterized Ricci-tensor, Y the Cotton-York-Tensor andWab

cd the projective Weyl-Tensor for the connection Γ.

This is a linear system of PDE of the first order on the unknownfunctions σbc , µb , ρ. Moreover,

1. All derivatives of unknowns are expressed as functions of unknowns,i.e. it is a connection.

Page 284: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

What happens if the space of solutions is more thantwo-dimensional?

Theorem (Matveev, 2003) Assume Γ is the Levi-Civita connection of

a Riemannian metric on a closed manifold. If dim(σ)> 3, then g hasconstant curvatureExplanation: The above linear system of PDE can be prolonged:

∇aσbc = δa

bµc + δacµb

∇aµb = δa

bρ − 1nPacσ

bc + 1nWac

bdσcd

∇aρ = − 2nPabµ

b + 4nYabcσ

bc

(Mikes 1998

Eastwood, M∼ 2007

)

where P is the symmeterized Ricci-tensor, Y the Cotton-York-Tensor andWab

cd the projective Weyl-Tensor for the connection Γ.

This is a linear system of PDE of the first order on the unknownfunctions σbc , µb , ρ. Moreover,

1. All derivatives of unknowns are expressed as functions of unknowns,i.e. it is a connection.

2. One can understood this connection as a connection on theprojective tractor bundle E (BC) = E (bc)(−2) + Eb(−2) + E(−2)

Page 285: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated

Page 286: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) .

Page 287: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) . The solutions of the systems areparallel sections of the connection,

Page 288: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) . The solutions of the systems areparallel sections of the connection, and the existence of n−dimensionalspace of is just the condition that the holonomy fix three-dimensionaldistribution.

Page 289: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) . The solutions of the systems areparallel sections of the connection, and the existence of n−dimensionalspace of is just the condition that the holonomy fix three-dimensionaldistribution. Thus condition allows to canonicaly construct smoothfunctions which

Page 290: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) . The solutions of the systems areparallel sections of the connection, and the existence of n−dimensionalspace of is just the condition that the holonomy fix three-dimensionaldistribution. Thus condition allows to canonicaly construct smoothfunctions which

◮ vanish identically iff the metric has constant curvature (localcondition)

Page 291: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) . The solutions of the systems areparallel sections of the connection, and the existence of n−dimensionalspace of is just the condition that the holonomy fix three-dimensionaldistribution. Thus condition allows to canonicaly construct smoothfunctions which

◮ vanish identically iff the metric has constant curvature (localcondition)

◮ explode if the manifold is closed and if they are not zero

Page 292: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Its curvature (integrability conditions) can be explicitely calculated(partially done by Solodovnikov, 1956) . The solutions of the systems areparallel sections of the connection, and the existence of n−dimensionalspace of is just the condition that the holonomy fix three-dimensionaldistribution. Thus condition allows to canonicaly construct smoothfunctions which

◮ vanish identically iff the metric has constant curvature (localcondition)

◮ explode if the manifold is closed and if they are not zero

Page 293: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

Page 294: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case.

Page 295: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy

Page 296: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems

Page 297: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

Page 298: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

Page 299: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)

Page 300: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)◮ the metric is Kahler

Page 301: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)◮ the metric is Kahler

Page 302: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)◮ the metric is Kahler

◮ To generalize for pseudo-Riemannian case

Page 303: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)◮ the metric is Kahler

◮ To generalize for pseudo-Riemannian case (local descriptionin dim 2 – Bolsinov Pucacco M∼ 2008)

Page 304: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)◮ the metric is Kahler

◮ To generalize for pseudo-Riemannian case (local descriptionin dim 2 – Bolsinov Pucacco M∼ 2008)

Page 305: Vladimir Matveev Jena (Germany) › ~matveev › Datei › presentation_rome.pdfTwo separately developed theories, theory of geodesically equivalent metrics and theory of quadratically

Open questions and possible collaborations

◮ To solve the Lichnerowich conjecture in thepseudo-Riemannian case. Joint project with Bolsinov andKiosak

◮ One can try to apply Topalov-Sinjukov hierarhy◮ as a source of integrable systems◮ as test systems for different ways of quantizing

◮ one can try to combine geodesic equivalence with additionaltensor assumptions

◮ the metric is Einstein (Joint project with Kiosak)◮ the metric is Kahler

◮ To generalize for pseudo-Riemannian case (local descriptionin dim 2 – Bolsinov Pucacco M∼ 2008)

Thanks a lot!!!