57
2013 MULTIDISCIPLINARY UNIVERSITY 1962 2013 11 Faculties Facult y of Mechanics and Techno logy , Faculty of Electronics, Communications and Computers, Faculty of Sciences, Faculty of Mathematics, Faculty of Letters, Faculty of Social Sciences, Faculty of Economics, Faculty of Law and Administration, Faculty Physical Education and Sports, Faculty of Theology, Faculty of Education Sciences ~ 12 000 students in b achelor and master d egrees, ~ 20 0 PhD stu dents , Teaching & Research personal ( ~ 600 persons)

VVAWorkshop Pitesti

Embed Size (px)

Citation preview

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 1/249

2013

MULTIDISCIPLINARY UNIVERSITY

1962 2013

11 FacultiesFaculty of Mechanics and Technology,

Faculty of Electronics, Communications and Computers,Faculty of Sciences, Faculty of Mathematics, Faculty of Letters, Faculty of Social Sciences, Faculty of Economics,

Faculty of Law and Administration, Faculty Physical Education and Sports, Faculty of Theology, Faculty of Education Sciences

~ 12 000 students in bachelor and master degrees,

~ 200 PhD students,

Teaching & Research personal ( ~ 600 persons)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 2/249

o r g a n i z e

THE ONE DAY SCIENTIFIC WORKSHOPe n t i t l e d

Variable Valve Actuation (VVA).

A technique towards more efficient engines18 April 2013

University of Pitesti, Romania

Amphitheatre CC1, B-dul Republicii nr. 71, Pitesti

OPENING SPEECHES

Mihai BRASLASU  – Vice Rector of the University of Pitesti, Romania

Thierry MANSANO  – Head of Engine Calibration Department of Renault Technologie Roumanie (DCMAP - RTR)

Pierre PODEVIN  – Cnam Paris, LGP2ES, EA21, France. Co-organizer 

Adrian CLENCI  – Head of Automotive and Transports Department – University of Pitesti, Romania. Organizer

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 3/249

o r g a n i z e

THE ONE DAY SCIENTIFIC WORKSHOPe n t i t l e d

Variable Valve Actuation (VVA).

A technique towards more efficient engines18 April 2013

University of Pitesti, Romania

Amphitheatre CC1, B-dul Republicii nr. 71, Pitesti

PROGRAMME

10h00 – 11h00: Giovanni CIPOLLA, Politecnico di Torino, Italy, former GM Powertrain.

Variable Valve Actuation (VVA): why?

11h00 – 12h00: Eduard GOLOVATAI SCHMIDT, Schaeffler Technologies AG, Germany.

Consistent Enhancement of Variable Valve Actuation (VVA)

12h00 – 13h30: Lunch Break

14h00 – 15h00: Stéphane GUILAIN, Renault France, Powertrain Design and Technologies Division.

VVT/VVA and Turbochargers: which synergies can we expect from these technologies?

15h00 – 16h00: Hubert FRIEDL, AVL GmbH Austria, Powertrain Systems Passenger Cars.

Trends in Applications of VVA Systems for Fuel Efficient Powertrain

16h00 – 16h30: Coffee Break16h30 – 17h30: Romain Le FORESTIER, VOLVO Powertrain, France.

 Advanced combustion and heavy duty engine integration of a hydraulic camless system

17h30 – 18h30: Adrian CLENCI, University of Pitesti , Romania , Pierre PODEVIN, Le Cnam de Paris, France.

VVA technique as a way to improve Spark Ignition Engine efficiency. Results obtained at the University of Pitesti

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 4/249

The Scientific Workshop

Variable Valve Actuation (VVA).

 A technique towards more efficient engine

WHY ORGANISING?

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 5/249

The Scientific Workshop

Variable Valve Actuation (VVA).

 A technique towards more efficient engine

HISTORYof 

VARIABLE VALVE ACTUATION at UNIVERSITY of PITESTI

1977: a mechanical cam phasing device (VVT) applied on the gasoline engine of the 4WD ARO vehicle byProfessor Vasile Dumitrescu and his team;

1977 - 1990 : various VVA solutions were created and tested by Professor Vasile Dumitrescu and his team

1985 - 1990 : various VVA solutions by Professor Dumitru Cristea and his team:

- variable intake valve lift mechanism by rocker arm’s variable length;

- cylinder deactivation by intake&exhaust valves deactivation

1985 – present : several Continuous Variable intake Valve Lift mechanisms were developed by

Professor Vasile Hara and his team

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 6/249

The Scientific Workshop

Variable Valve Actuation (VVA).

 A technique towards more efficient engine

Variable intake Valve Liftby

Professor Vasile Hara and his teamUNIVERSITY of PITESTI & le Cnam de Paris

1985 – 1990: 2 engine prototypes (4 in-line cylinders gasoline engine) were built with the aid of Dacia plant

2005: re-launching the research on ViVL by Hara&Clenci in cooperation with le cnam de Paris

 A carburetor engine featuring

manual actuation of intake valve law

 A single point injection engine featuring

automatic actuation of intake valve law

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 7/249

The Scientific Workshop

Variable Valve Actuation (VVA).

 A technique towards more efficient engine

Variable intake Valve Liftby

Professor Vasile Hara and his teamUNIVERSITY of PITESTI & le Cnam de Paris

March 2006: successful operational tests of the throttle-less engine at idle operation

The single point injection engine featuring throttle-less control thanks to the ViVL

Stable idle operation @ 800 rpm &  λ = 1.6 (lean mixture)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 8/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 9/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 10/249

The Scientific Workshop

Variable Valve Actuation (VVA).

 A technique towards more efficient engine

Variable intake Valve Liftby

Professor Vasile Hara and his teamUNIVERSITY of PITESTI and le Cnam de Paris

September 2012 – April 2013: adaptation of a crossflow engine head (hemispheric combustion chamber)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 11/249

The Scientific Workshop

Variable Valve Actuation (VVA).

 A technique towards more efficient engine

Variable intake Valve Liftby

Professor Vasile Hara and his team

UNIVERSITY of PITESTI and le Cnam de Paris

1985 - ……. - present

 A side mounted camshaft and

overhead valves version featuring

wedge type combustion chamber 

 An overhead camshaft version featuring

bowl-in piston combustion chamber 

 A crossflow engine head featuring a side

mounted camshaft and overhead valves version

featuring pent-roof combustion chamber 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 12/249

o r g a n i z e

THE ONE DAY SCIENTIFIC WORKSHOPe n t i t l e d

Variable Valve Actuation (VVA).

A technique towards more efficient engines18 April 2013

University of Pitesti, Romania

Amphitheatre CC1, B-dul Republicii nr. 71, Pitesti

PROGRAMME

10h00 – 11h00: Giovanni CIPOLLA, Politecnico di Torino, Italy, former GM Powertrain.

Variable Valve Actuation (VVA): why?

11h00 – 12h00: Eduard GOLOVATAI SCHMIDT, Schaeffler Technologies AG, Germany.

Consistent Enhancement of Variable Valve Actuation (VVA)

12h00 – 13h30: Lunch Break

14h00 – 15h00: Stéphane GUILAIN, Renault France, Powertrain Design and Technologies Division.

VVT/VVA and Turbochargers: which synergies can we expect from these technologies?

15h00 – 16h00: Hubert FRIEDL, AVL GmbH Austria, Powertrain Systems Passenger Cars.

Trends in Applications of VVA Systems for Fuel Efficient Powertrain

16h00 – 16h30: Coffee Break16h30 – 17h30: Romain Le FORESTIER, VOLVO Powertrain, France.

 Advanced combustion and heavy duty engine integration of a hydraulic camless system

17h30 – 18h30: Adrian CLENCI, University of Pitesti , Romania , Pierre PODEVIN, Le Cnam de Paris, France.

VVA technique as a way to improve Spark Ignition Engine efficiency. Results obtained at the University of Pitesti

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 13/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 14/249

 International committee

 Prof. G. DESCOMBES - Cnam - France

 Prof. G. DUMITRASCU - UTI - Roumanie

 Prof. M. FEIDT – U de Lorraine – France Prof. C. FERROUD – Cnam - France

 Prof. D. GENTILE - Cnam - France

 Prof. B. HORBANIUC - UTI - Roumanie

 Prof. I. IONEL - UPT – Roumanie

 Prof. V. LAZAROV - TUS - Bulgarie

 Prof. C. MARVILLET - Cnam - France

 Prof. G. POPESCU - UPB - Roumanie

 Prof. C. PORTE - Cnam - France

 Prof. D. QUEIROS-CONDE - U Paris Ouest - France

 Prof. I. SIMEONOV - BAS - Bulgarie

Siteweb :

 http://turbo-moteurs.cnam.fr/cofret2014/ 

Contact : co [email protected]

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 15/249

Topics of the congress

1. Thermodynamics - Heat and mass transfer

Combustion and gas dynamic

 2. Process Engineering 3. Thermal machines

 4. Renewable and low-carbon energy, Polygeneration,

 Electricity as energy carrier, Energy storage,

 Management and control of energy flow,

 Economy and Energy

 5. Environment and Sustainable Development,

 Recycling, New Energy Resources

6. Green chemistry

7. Environmental education and training

 Environmental legislation

Siteweb :

 http://turbo-moteurs.cnam.fr/cofret2014/ 

Contact : co [email protected]

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 16/249

Thèmes du colloque

1. Thermodynamique , Transfert de chaleur

et de masse, Combustion et Gazodynamique.

 2. Génie des Procédés. 3. Machines thermiques.

 4. Energie renouvelables et décarbonée, Polygénération,

 Electricité vecteur énergétique, Stockage de l’énergie,

Gestion et contrôle des flux d'énergie,

 Economie et Energétique.

 5. Environnement et Développement Durable, Recyclage,

 Nouvelles Ressources Energétiques.

6. Chimie verte.

7. Enseignement et formation environnemental 

 Législation environnementale .

Siteweb :

 http://turbo-moteurs.cnam.fr/cofret2014/ 

Contact : co [email protected]

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 17/249

Giovanni CipollaGM-PoliTo Institute for Automotive Research & Education (IARE) Director 

Politecnico di Torino, Italy

DEE CT

Development

Engineering 

Consultingfor

 Energy 

in

 Torino

18 April 2013   1by G. CipollaDEE CT

Exploratory Workshop:

“ Variable Valve Actuation (VVA).

 A technique towards more efficient engines”University of Pitesti, Romania

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 18/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 19/249

Variable Valve Actuation (VVA) : 

WHY  ? 

 

18 April 2013   3by G. CipollaDEE CT

Lecture topics :

 ICE (Internal Combustion Engine) control requirements

 V xy 

 (Variable systems) needs & options in Automotive 

ICEs

 VVA

 (Variable

 Valve

 Actuation)

 rationales

 for

 ICE

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 20/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 21/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 22/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 23/249

“Full Load”

 ICE operation conditions

18 April 2013   7by G. CipollaDEE CT

Power 

Torque

Power    Torque

Speed  (rpm)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 24/249

Efficiencies trends of  ICE 

f  

(rpm, 

pme) 

]

18 April 2013   8by G. CipollaDEE CT

bmep (bar)

    E    f    f

    i   c    i   e   n   c   y

vol  comb

mech

total

rev’s (rpm)

vol  comb

mech

total

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 25/249

IC Engine map 

(i.e. 

“overall 

efficiency”  or 

“specific 

fuel 

consumption”)

18 April 2013   9by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 26/249

Areas of  ICE in‐vehicle operating conditions 

on 

Engine 

map

18 April 2013   10by G. CipollaDEE CT

TORQUE TORQUE 

RPMRPM

“Performance”

Motorway 

driving“Usual”

Urban/Extra‐urban 

driving

Homologation 

Driving Cycle

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 27/249

Variable Valve Actuation (VVA) : 

WHY  ? 

 

18 April 2013   11by G. CipollaDEE CT

Lecture topics :

 ICE (Internal Combustion Engine) control requirements

 V xy 

 (Variable systems) needs & options in Automotive 

ICEs

 VVA

 (Variable

 Valve

 Actuation)

 rationales

 for

 ICE

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 28/249

ICE control “3 layers variability & control”  scenario  for

 

in‐

vehicle 

ICE 

optimization

18 April 2013   12by G. CipollaDEE CT

Fuel 

Throttle

Turbo

Mani‐

folds

ValvesExhaust

CR

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 29/249

Variable Compression Ratio (VCR)

18 April 2013   13by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 30/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 31/249

Variable Intake System (VIS)

18 April 2013   15by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 32/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 33/249

Variable Valve systems (VVx)

18 April 2013   17by G. CipollaDEE CT

VVT (Variable Valve Timing): motion of cam phasing device

VVL (Variable Valve Lift): switching to different cam profiles

VVA (Variable Valve Actuation): combined VVT & VVL features

Camless actuation {electromagnetic systems

electrohydraulic systems

Duration Lift Phasing, Lift and

Opening Duration

Phasing

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 34/249

Waste Gate Turbo (WGT) 

18 April 2013   18by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 35/249

Variable Geometry Turbine (VGT)

18 April 2013   19by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 36/249

 DUAL LOOP EGR SYSTEM

 DUAL LOOP EGR SYSTEM

 LOW PRESSURE EGR SYSTEM

 LOW PRESSURE EGR SYSTEM

 AFM

 Air

clea

ner TC

VGT Turbocharger 

   I  n   t  e  r  c  o  o   l  e  r

 Aftertr eatment system

EGR Valve

Inlet Throttle

Exhaust Gas Recirculation (EGR)

18 April 2013   20by G. CipollaDEE CT

 HIGH PRESSURE EGR SYSTEM

 HIGH PRESSURE EGR SYSTEM

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 37/249

Variable Exhaust System (VES)

18 April 2013   21by G. CipollaDEE CT

“4 in 1”

manifold 

indipendent 

pipes     V    o

     l    u    m    e    t    r     i    c    e     f     f     i    c     i    e    n    c    y

Engine speed (RPM)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 38/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 39/249

Longitudinal sound waves in air & gas

18 April 2013   23by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 40/249

ICE like Organ‐Trumpet‐Trombone music instruments

18 April 2013   24by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 41/249

ICE wave generation & matching with pipe frequency

18 April 2013   25by G. CipollaDEE CT

Pressure waves situation

at ICE “design point”

 rev’s

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 42/249

Pressure waves matching during gas exchange  over the whole ICE speed range

18 April 2013   26by G. CipollaDEE CT

Pressure waves situation

out of  ICE “design point”

 rev’s Valve timing sensitivity on ICE 

fuel economy & emissions

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 43/249

Variable Valve systems (VVx)

18 April 2013   27by G. CipollaDEE CT

LiftPhasing, Lift and

Opening Duration

DurationPhasing

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 44/249

WOT torque shaping

18 April 2013   28by G. CipollaDEE CT

“narrow” overlap

High low‐end torque 

(for driveability)

“large” overlap

High max power

(for performance)

VVT 

High performance 

(over whole

 speed

 range)

narrowlarge

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 45/249

Unthrottled load control

18 April 2013   29by G. CipollaDEE CT

Conventional 

throttling

Early intake 

valve closing

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 46/249

Charge motion, Kinetic energy and Combustion optimization 

by means of  Swirl & Tumble control

18 April 2013   30by G. CipollaDEE CT

(throttled)   (VVA)K‐epsilon

Flow field

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 47/249

“effective”  VCR effect (at fixed “geometrical”  CR) 

by means of  IVC shift

18 April 2013   31by G. CipollaDEE CT

Influence of  Intake Valve Closing (IVC) on 

effective compression ratio at low speed

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 48/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 49/249

Internal EGR

18 April 2013   33by G. CipollaDEE CT

1. a post-opening of the exhaust valve during the intake phase

2. a pre-opening of the intake valve during the exhaust phase

0

1

2

3

4

5

6

7

8

9

10

0 90 180 270 360 450 540 630 720CA [deg]

   V  a   l  v  e   l   i   f   t   [  m  m

   ]

0

1

2

3

45

6

7

8

9

10

0 90 180 270 360 450 540 630 720CA [deg]

   V  a   l  v  e   l

   i   f   t   [  m  m   ]

1

2

Emissions fuel consumption & performance trade‐off

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 50/249

Emissions, fuel consumption & performance trade‐off  

(by IVC control)

18 April 2013   34by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 51/249

Engine‐Brake effect (for Diesel)

18 April 2013   35by G. CipollaDEE CT

INTAKE

EXHAUST

NORMAL 

OPERATION

ENGINE BRAKE 

OPERATION

     V    a     l    v    e

     l     i     f    t     (    m    m     )

Engine crank

 angle

 (CA)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 52/249

Variable Valve Actuation (VVA) : 

Closing Remarks

VVA systems offer great opportunities to fulfill such requirements 

with relatively simple, reliable & economic engineering solutions

18 April 2013   36by G. CipollaDEE CT

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 53/249

Giovanni CipollaGM-PoliTo Institute for Automotive Research & Education (IARE) Director 

Politecnico di Torino, Italy

DEE CT

Development

Engineering 

Consultingfor

 Energy 

in

 Torino

18 April 2013   37by G. CipollaDEE CT

Exploratory Workshop:

“ Variable Valve Actuation (VVA).

 A technique towards more efficient engines”University of Pitesti, Romania

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 54/249

Prof. Dr.-Ing. Kurt Kirsten, Eduard Golovatai-Schmidt

Research & Development, Engine Systems Division

Schaeffler AG & Co. KG

Consistent Enhancement

of Variable Valve Actuation

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 55/249

Page 2

1 Motivation to Use Variable Valve Trains

2 Process of Conventional Combustion Engines

3 Overview of Different Variable Valve Trains

4 Degree of Improvement of Conventional Combustion Engines

5 Variable Valve Train in Combination with Sequential Turbocharging

 Agenda

6 Conclusive Remarks

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 56/249

Page 3

1 Motivation to Use Variable Valve Trains

2 Process of Conventional Combustion Engines

3 Overview of Different Variable Valve Trains

4 Degree of Improvement of Conventional Combustion Engines

 Agenda

1 Motivation to Use Variable Valve Trains

5 Variable Valve Train in Combination with Sequential Turbocharging

6 Conclusive Remarks

Universitatea Pitesti, 18.04.2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 57/249

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 58/249

Universitatea Pitesti, 18.04.2013Page 5

14%14%Propulsion

18%18%Tyres

21%21%Mechanical

Energy

Efficiency Chain in a Gasoline Engine

E N E R G YE N E R G Y

-2% Convection

-11% Raffinery/Transport

-5, -8 % Charge Cycle

-25% Heat Losses Coolant

-25% Heat Losses Exhaust Gas

-8,5% Friction

-2,5% Auxi liary Drive

-3% Powertrain Losses-4% Braking Losses

Sphere of Influence

of Valve Train

Mechanical Energy

after Combustion

32%32%87%87%Engine

89%89%Petrol

Station

100%100%Crude Oil

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 59/249

Page 6

1 Motivation to Use Variable Valve Trains

2 Process of Conventional Combustion Engines

3 Overview of Different Variable Valve Trains

4 Degree of Improvement of Conventional Combustion Engines

5 Conclusive Remarks

 Agenda

2 Process of Conventional Combustion Engines

5 Variable Valve Train in Combination with Sequential Turbocharging

6 Conclusive Remarks

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 60/249

Page 7

Technologies for future Gasoline Engines

Variable Charge

Motion

Variable ChargeVariable Charge

MotionMotion

Variable Valve

 Actuation

Variable ValveVariable Valve

 Actuation Actuation

GDI

Stratified

GDIGDI

StratifiedStratified

Controlled

 Auto-ignition

ControlledControlled

 Auto Auto--ignitionignition

Cylinder

Deactivation

CylinderCylinder

DeactivationDeactivation

Super / Turbo-

Charging

Super / TurboSuper / Turbo--

ChargingCharging

Improved

Engine

Efficiency

ImprovedImproved

EngineEngine

EfficiencyEfficiency

Shifting ofOperation

Points

Shifting ofShifting ofOperationOperation

PointsPoints

Reduced

parasitic

losses,

improvedenergy

management

ReducedReduced

parasiticparasitic

losses,losses,

improvedimprovedenergyenergy

managementmanagement

Most of the GasolineMost of the Gasoline

engine technologiesengine technologies

under developmentunder developmentare heading forare heading for

improved thermalimproved thermal

efficienyefficieny

Improved friction andImproved friction and

energy managementenergy management

as addas add--on to anyon to any

technologytechnology

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 61/249

Page 8

Engine Speed [rpm]

   B   M   E   P   [   b  a  r   ]

1.000 2.000 3.000 4.000 5.000 6.000

0

2

4

6

8

10

12

14

16

18

20

Charged Engine

Fuel Economy Improvement by Shifting of Operation Points

120km/h

90km/h

Engine Speed [rpm]

   B   M   E   P   [   b  a  r   ]

1.000 2.000 3.000 4.000 5.000 6.000

0

2

4

6

8

10

12

14

16

18

20

120km/h

90km/h

Naturally Aspired EngineVariable Charge

Motion

Variable ChargeVariable Charge

MotionMotion

Variable Valve

 Actuation

Variable ValveVariable Valve

 Actuation Actuation

GDI

Stratified

GDIGDI

StratifiedStratified

Controlled

 Auto-ignition

ControlledControlled

 Auto Auto--ignitionignition

Cylinder

Deactivation

CylinderCylinder

DeactivationDeactivation

Super / Turbo-

Charging

Super / TurboSuper / Turbo--

ChargingCharging

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 62/249

Page 9

1 Motivation to Use Variable Valve Trains

2 Process of Conventional Combustion Engines

3 Overview of different Variable Valve Trains

4 Degree of Improvement of Conventional Combustion Engines

5 Conclusive Remarks

 Agenda

3 Overview of Different Variable Valve Trains

5 Variable Valve Train in Combination with Sequential Turbocharging

6 Conclusive Remarks

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 63/249

Page 10

Loss Distribution

bLaWe

bWW

bPA

Throttled De-Throttled

Friction

Charge Cycle

Process

Mean Consumption Values for CO2

Emissionsmax

min

bLaWe

Motivation and Basics

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 64/249

Page 11

Required Variabilities

   T  o  r  q  u  e

Engine Speed

Max. TorqueMaximum Volumetric Efficiency

Early Closure (Short Valve Event)

BB  A

Max. Power 

 A A

Full Lift

Late Closure

Greater Overlap

Combustion Optimization

DD

Optimization of Pumping Losses

CC

Optimization of Pumping Losses

FF(Charge Motion)

(Combustion Optimization)

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 65/249

Page 12

IC’

IC

Motivation and Basics

Miller Miller 

 Atkinson Atkinson

Port DeactivationPort Deactivation

Valve PhasingValve Phasing

Cylinder Deactiv.Cylinder Deactiv.

Event LengthEvent Length

De-Throttling Concept

Improved Cycle (Cooling Effect EIC)

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationM ti ti d B i

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 66/249

Page 13

Motivation and Basics

Port DeactivationPort Deactivation

Valve PhasingValve Phasing

Cylinder Deactiv.Cylinder Deactiv.

Event LengthEvent Length

 Atkinson AtkinsonMiller Miller 

IC

IC’

De-Throttling Concept

Excess Gas Mass is recharged during

Compression

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationM ti ti d B i

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 67/249

Page 14

Motivation and Basics

Valve PhasingValve Phasing

Cylinder Deactiv.Cylinder Deactiv.

Event LengthEvent Length

Miller Miller 

Port DeactivationPort Deactivation

 Atkinson Atkinson

Swirl

Port

Conventional

Intake Port Pool

Stable and effective Combustion

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationM ti ti d B i

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 68/249

Page 15

Motivation and Basics

IC’

IC

Swirl

Port

Conventional

Intake Port Pool

Combination of De-Throttling and Charge

Motion

Valve PhasingValve Phasing

 Atkinson Atkinson

Port DeactivationPort Deactivation

Miller Miller 

Cylinder Deactiv.Cylinder Deactiv.

Event LengthEvent Length

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationS i l N b d Fl C ffi i t M i

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 69/249

Page 16

Swirl Number and Flow Coefficient Mappings

Swirl Number cu / ca [-]

   V

  a   l  v  e   L   i   f   t   S  w   i  r   l    P  o  r   t   [  m  m   ]

Valve Lif t Charge Port [mm]

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

2.02.0

2.52.5

3.03.0

3.53.5

4.04.0

5.05.0

6.06.0

7.07.0

8.08.0

2.52.5

2.02.0

1.51.51.01.0

1.5

1

2

3

4

5

6

7

8

2.5

3.5

Flow Coefficient k

   V

  a   l  v  e   L   i   f   t   S  w   i  r   l    P  o  r   t   [  m  m   ]

Valve Lif t Charge Port [mm]

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Source: Carsten Kopp, Dissertation 2006, Magdeburg

0.0100.010

0.0200.020

0.0300.030

0.0400.040

0.0500.050

0.0600.060

0.0700.070

0.0800.080

0.0900.090

0.1000.100

0.02

0.01

0.03

0.05

0.07

0.08

0.09

0.10

0.04

0.06

Universitatea Pitesti, 18.04.2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 70/249

Consistent Enhancement of Variable Valve ActuationMotivation and Basics

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 71/249

Page 18

Motivation and Basics

 Avoid Interacting of Exhaust Ports (I4 Engine)

Improve EGR Scavenging

Exhaust Gas

Reverse Flow

Exhaust Gas

Reverse Flow

Intake

Opening

Intake

OpeningExhaust

Closing

Exhaust

Closing

Cylinder 1 Cylinder 3 Cylinder 4

PSR

  P Exhaust Gas

Valve PhasingValve Phasing

 Atkinson Atkinson

Port DeactivationPort Deactivation

Miller Miller 

Cylinder Deactiv.Cylinder Deactiv.

Event LengthEvent Length

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationOverview of Valve Train Variabilities

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 72/249

Page 19

Variable Valve TrainVariable Valve Train

Lift and TimingLift and Timing

Overview of Valve Train Variabilities

Discrete (switchable)

Two-StepTappet

Pivot ElementFinger Follower 

Shifting Cam

Roller Lifter 

Three-Step

Rocker ArmShifting Cam

Continuous

Electro-Magnetic

Mechanicale.g. Valvetronic

Electro-HydraulicUniAir 

PhasingPhasing

Continuous

Hydraulic

Electro-Mechanical

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationOverview of Schaeffler Valve Train Variabilities

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 73/249

Page 20

Overview of Schaeffler Valve Train Variabilities

Switchable

Tappet

Switchable

TappetSwitchable Pivot

Element

Switchable Pivot

ElementSwitchable Roller

Finger Follower

Switchable Roller

Finger Follower Shifting Cam

Lobe

Shifting Cam

Lobe

Electro-Hydraulic ActuatedElectro-Hydraulic Actuated

Electro-Mechanical Actuated(Enlarged Temperature Range)

Electro-Mechanical Actuated(Enlarged Temperature Range)

Profile SwitchingProfile Switching

Valve Deactivation(1 Valve per Cylinder)

Valve Deactivation(1 Valve per Cylinder)

Cylinder Deactivation

(All Valves per Cylinder)

Cylinder Deactivation

(All Valves per Cylinder)

Internal EGR(Recharge)

Internal EGR(Recharge)

Internal EGR(Recapture)

Internal EGR(Recapture)

Crossing of Valve

Events

Crossing of Valve

Events

2-Step2-Step

3-Step3-Step

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationOverview of fully variable Valve Train Variabilities

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 74/249

Page 21

Overview of fully variable Valve Train Variabilities

MechanicalMechanical Electro-MagneticElectro-Magnetic Electro-HydraulicElectro-Hydraulic

 AVL /

Bosch

EHVT

FEV

MV2T

ValeoE-Valve

INA / FIATUniAir/

MultiAir 

Lotus

 AVT

Hilite

Univalve

Honda

 A-VTEC

INA

3CAM

Meta

VVH

Mitsubishi

MIVEC

ToyotaValvematicINAEcoValve NissanVVEL PrestaDeltaValveControl SturmanHVA

Toyota

3D-CAM

Yamaha

CVVT

Delphi

VVA

Fiat

3D-CAM

Mahle

VLD

Suzuki

SNVT

= Systems in Mass Production

BMWValvetronic II

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationComplete Vehicle Simulation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 75/249

Page 22

Engine Map Fuel Consumption

enhanced models (gas exchange and high pressure process)

Complete Vehicle Simulation

 E n g i n e 

 M a p  F u e

 l 

 C o n s u

 m p t i o n

F r e q u e n c  y  D i s t r i b u t i o n 

NEDC

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationEvaluation of Potential: Procedure

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 76/249

Page 23

Evaluation of Potential: Procedure

Basis Motor Downsizing Concept

(turbocharged 4 Cylinder-DI-Engine)

Vehicle ModelMedium-Sized Vehicle

Manual Transmission

bar 

min -1 (Speed)

NEDC

   V  a   l  v  e   L   i   f   t

No Lif tNo Lif tOptimization

Effort

Evaluation

of Potential

of different

Switching

Stages

Cylinder 2Cylinder 2 Cylinder 3Cylinder 3 Cylinder 4Cylinder 4Cylinder 1Cylinder 1

2-Step

2-Step

(CDA)

3-Step

3-Step

(Cylinder

selective)

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationExample of Optimization

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 77/249

Page 24

Example of Optimization

9.6   9.69.9 9.4 6.5

6.0

4.8

3.4

1.9

hV= 4,4 - 4,7 mm

hV= 6,2 - 7,4 mm

hV= 3,5 mm

9.310.8

t in %

10.0

9.5

9.0

8.5

8.0

7.57.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Speed

0 500 1000 1500 2000 2500 min-1 3500

   B   M   E

   P

0

2

4

6

8

10

12

14

16

bar 

20

Fuel Consumption Improvement

relative to Base Version

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationExample of Optimization

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 78/249

Page 25

   V  a   l  v  e   L   i   f   t

°

   V  a   l  v  e   L

   i   f   t

Crank Angle

   P   h  a  s  e

  o   f   I  n   t  a   k  e

Exhaust

Gas Rate

Exhaust

Gas Rate

BMEPg/kWh

Inlet

Pressure

n = 2100 min- , BMEP= 1,1bar 1

Example of Optimization

Lift of Intake

Lowest Consumption

20

30

40

50

60

70

09

2 3 4 5 6 7 mm 9

ºCA

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationExample of Optimization

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 79/249

Page 26

Example of Optimization

Crank Angle

   V  a   l  v  e   L   i   f   t

Crank Angle

   V  a   l  v  e   L   i   f   t

Internal EGR (Residual Gas

)

 Improved Gas Properties

→ Reduction of Proces Temperature

→ Reduction of Energy Losses to Coolant

 But: Increase of Combustion Duration

   P   h  a  s  e

  o   f   I  n   t  a   k  e

Valve Lift

1 2 3 4 5 6 mm 107 8

20

40

60

140

80

0

100

ºCA

Exhaust Gas Rate in %

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationExample of Optimization

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 80/249

Page 27

Example of Optimization

Crank Angle

   V  a   l  v  e   L   i   f   t

Crank Angle

   V  a   l  v  e   L   i   f   t

   P   h  a  s  e

  o   f   I  n   t  a   k  e

Valve Lift

1 2 3 4 5 6 mm 107 8

20

40

60

140

80

0

100

ºCA

Combustion Duration in ºCA

3636

3838

4040

4242

44444646

4848

5050

5252

5454

Universitatea Pitesti, 18.04.2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 81/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 82/249

Consistent Enhancement of Variable Valve Actuation

Degree of improvement of Conventional Combustion Engines

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 83/249

Page 30

Basis2-Step

3-Step2-Step

(CDA)

3-Step(Cylinder

selective)

g p g

2-Step (all Cylinders)2-Step (all Cylinders)

3-Step (all Cylinders)3-Step (all Cylinders)

Cylinder DeactivationCylinder Deactivation

3-Step (Cylinder sel.)3-Step (Cylinder sel.)

100% -5,7% -6% -10,2% -11%

Universitatea Pitesti, 18.04.2013

NEDCNEDC

Consistent Enhancement of Variable Valve ActuationResults with customer-specific Drive Profiles

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 84/249

Page 31

Results with customer specific Drive Profiles

The Hyzem cycles

consist of an urban cycle,

an extra-urban cycle, and

a highway cycle.

Higher dynamics than

NEDC.

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation

Degree of improvement of Conventional Combustion Engines

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 85/249

Page 32

Basis2-Step (CDA)

3-Step(Cylinder

selective)

2-Step(CDA)

3-Step

(Cylinder

selective)

g p g

NEDCNEDC

HyzemHyzem

Cylinder DeactivationCylinder Deactivation

3-Step (Cylinder sel.)3-Step (Cylinder sel.)

100%

HyzemHyzemNEDCNEDC

-10,2% -11% -3,3% -7,4%

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationPotential for Consumption Improvements

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 86/249

p p

Friction ImprovementsFriction Improvements

2-3% Frict ion Reduction

2-3% Demand Controlled Accessories

Further ImprovementsFurther Improvements

1-2% Thermo-Management

5-8% Downsizing

3-5% Stop-Start Function

Thermodynamic ImprovementsThermodynamic Improvements

<3%

Diesel

<7%

Gasoline

Combustion System

Optimization

4-6%Pumping Losses

Gasoline

Page 33Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation Agenda

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 87/249

Page 34

1 Motivation to Use Variable Valve Trains

2 Process of Conventional Combustion Engines

3 Overview of Different Variable Valve Trains

4 Degree of Improvement of Conventional Combustion Engines

5 Conclusive Remarks

g

5 Variable Valve Train in Combination with Sequential Turbocharging

6 Conclusive Remarks

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationPrinciple of Sequential Turbocharging

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 88/249

Page 35

p q g g

Conventional 2-Stage T/CConventional 2-Stage T/C

Bypass

Valve

WG 2

WG 1

Control

Valve

Intercooler 

BypassValve

High Press. T/C

Low Press. T/C

With Split Exhaust PortsWith Split Exhaust Ports

Exhaust Port Group 1

Exhaust Port Group 2

WG 2

WG 1

Intercooler 

Bypass

Valve

Bypass

Valve

High Press. T/C

Low Press. T/C

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation Activation of Ports for Sequential Turbocharging

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 89/249

Page 36

q g g

EPG 1+2 ActivEPG 1+2 Activ

EPG 2

EPG 1

EPG 1 ActivEPG 1 Activ

EPG 1

EPG 2

EPG 2 ActivEPG 2 Activ

EPG 1

EPG 2

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationSequential Activation of Exhaust Ports

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 90/249

Page 37

   B

   M   E   P

Engine Speed

EPG 1

EPG 2

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationSequential Activation of Exhaust Ports

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 91/249

Page 38

   B

   M   E   P

Engine Speed

EPG 1

EPG 1+2

EPG 2

Universitatea Pitesti, 18.04.2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 92/249

Consistent Enhancement of Variable Valve ActuationExhaust Valve Opening

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 93/249

Page 40

   V  a   l  v  e   L

   i   f   t   [  m  m   ]

Crank Angle

Exhaust Valve Group 1+2Similar to basis engineExhaust gas removal from cylinder,

Loading of both T/C

Exhaust Valve Group 1+2Similar to basis engineExhaust gas removal from cylinder,

Loading of both T/C

Middle to High engine SpeedMiddle to High engine Speed

0

2

4

6

8

10

0 90 180 270 360 450 540 630 720

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationBenefits of Sequential Turbocharging

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 94/249

Page 41

   B   M   E   P

   [   b  a  r   ]

Engine Speed [rpm]

11

13

15

17

19

21

1000 2000 3000 4000 5000 6000

Basis engine with T/CConventional sequential T/C

Sequential T/C with splited ports

Significant increase of Low-End-Torque compared to turbocharged basis

engine (smaler turbine).

 Additional Low-End-Torque enhancement (compare green and blue), due to

better exhaust gas scavenging and lower enthalpy.

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve Actuation Agenda

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 95/249

Page 42

1 Motivation to Use Variable Valve Trains

2 Process of Conventional Combustion Engines

3 Overview of Different Variable Valve Trains

4 Degree of Improvement of Conventional Combustion Engines

6 Conclusive Remarks

5Variable Valve Train in Combination with Sequential Turbocharging

Universitatea Pitesti, 18.04.2013

Consistent Enhancement of Variable Valve ActuationConclusions

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 96/249

Page 43

Conclusive RemarksConclusive Remarks

Nobody knows exactly what the powertrain world will really look like in

2020 and beyond

Nobody knows exactly what the powertrain world will really look like in

2020 and beyond

But: The potential for further innovations, and the associated opportunities

for reducing CO2 emissions are highly promising and far from beeingexhausted

But: The potential for further innovations, and the associated opportunities

for reducing CO2 emissions are highly promising and far from beeingexhausted

Variable valve train technology is a key element in realizing further

improvements

Variable valve train technology is a key element in realizing further

improvements

Drive cycle and drive train layout need to be included to come to a final

evaluation

Drive cycle and drive train layout need to be included to come to a final

evaluation

The assessment of improvement potential also need to consider the

impact and aspects of the monitoring and control technology

The assessment of improvement potential also need to consider the

impact and aspects of the monitoring and control technology

Variable valve train leverages other ICE technologies like: turbocharging,

cylinder deactivation, aftertreatment, etc.

Variable valve train leverages other ICE technologies like: turbocharging,

cylinder deactivation, aftertreatment, etc.

Universitatea Pitesti, 18.04.2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 97/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 98/249

DIM

DCT – DESV (SGN) RENAULT PROPERTY April 18th 2013

VVA Workshop – 2013 April 18th

VVA and Turbochargers: possible synergies for Gazoline engines?

Stéphane GUILAIN

Technical Expert in PWT Aerodynamics and Engine Air Fill ing

1 Introduction

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 99/249

DIM

DCT – DESV (SGN) RENAULT PROPERTY

Plan

 April 18th 2013

5 Conclusions

2Looking for PMEP reduction through

VVA or Turbo ?

VVA & Turbo: improving the scavenging

at low engine speed with 4 cylinder engines3

4VVA & Turbo: improving the scavenging

at low engine speed with 3 cylinder engines

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 100/249

PLAN

1 IntroductionNeed of Fuel Consumption decrease

CAFE Targets require optimization of all components

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 101/249

4

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 

CAFE Targets require optimization of all components

 April 18th 2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 102/249

PLAN

1 IntroductionTurbocharged Gazoline Engine andFuel consumption improvement

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 103/249

6

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

   P   M

   E

   [   b  a  r   ]

0

N [rpm]

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

2

249250

280

 April 18th 2013

p p

Torque

Engine

speed

44

5533

22

11

Colors = BSFC Levels

PLAN

1 IntroductionVVA and turbocharger contributions on BSFC Map

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 104/249

7

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

PLAN

1 IntroductionIllustration of VVA and turbocharger contributions

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 105/249

8

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

TCE 115

4 cyl engine / 16 valves

1.2 L

Bore x Stroke : 72.2 /73.1

Compression Ratio : 9.5 :1

GDI

2 VVT

TCE 90

3 cyl engine / 12 valves

0.9 L

Bore x Stroke : 72.2 x 73.1

Compression Ratio : 9.5 :1

MPI

1 intake VVT

 April 18th 2013

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 106/249

DIM

DCT – DESV (SGN) RENAULT PROPERTY April 18th 2013

Looking for PMEP reduction through

VVA ou Turbo ?2

PLAN

1 IntroductionVVA + open wastegate in partial load InterestInterest to opento open thethe wastegatewastegate in NAin NA regionregion

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 107/249

10

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

BSFC reduction in partial load(VVA/turbo)

thanks pumping losses reduction

PLAN

1 IntroductionVVA + opened wastegate at partial load TheThe drawback : Turbo speeddrawback : Turbo speed

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 108/249

11

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

Every time, PMEP and BSFC are improved thanks

turbocharger or VVA.

The turbo speed is reduced

PLAN

1 IntroductionVVA + opened wastegate at partial load  A drawback: A drawback: thethe transienttransient behavior behavior 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 109/249

12

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 

 April 18th 2013

BSFC reduction in partial load

( for instance VVA/turbo)

and transient improvement

are opposite=> Need to promote counter-

measures to help the transients

at low end speed

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 110/249

DIM

DCT – DESV (SGN) RENAULT PROPERTY April 18th 2013

VVA & Turbo : improving the scavenging

at low end speed with 4 cylinder engines3

PLAN

1 IntroductionVVA/Turbo and 4 cylinder engines 44 cylinder cylinder issue:issue: scavengingscavenging periodperiod closedclosed toto exhaustexhaust

bl dbl d

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 111/249

14

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 blowdownblowdown

 April 18th 2013

Exhaust.

BDC

TDC

Intake.

Intake

Air

 

+

 

Burnt gas

With no VVT, due to the fixed

timing imposed by idle conditions,

savenging is impossibleExhaust valve duration is shorten

to reduce the backflow during

overlap period

5500 rpm

Pint < Pcyl< Pexh

1500 rpm

PLAN

1 IntroductionVVA/Turbo and 4 cylinder engines TheThe 44 cylinder cylinder issue:issue: InterestInterest to haveto have VVTsVVTs atat lowlow engineengine

dd

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 112/249

15

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 speedsspeeds

Exhaust.

BDC

TDC

Intake.

IntakeAir

 

+

 

Burnt gas

Pint > Pcyl> Pexh

1500 rpm

Late EVO

=> scavenging

is possible

PLAN

1 IntroductionVVA/Turbo and 4 cylinder engines SolvingSolving 44 cylinder cylinder issue:issue: usingusing VVTsVVTs atat lowlow engineengine speedsspeeds

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 113/249

16

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

Exhaust.

BDC

TDC

Intake.

Intake

Air

 

+

 

Burnt gas

Pint > Pcyl> Pexh

1500 rpm

even late EVO

=> scavenging

is reinforced

PLAN

1 IntroductionVVA/Turbo and 4 cylinder engines SolvingSolving 44 cylinder cylinder issue:issue: usingusing VVTsVVTs atat lowlow engineengine speedsspeeds

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 114/249

17

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

Thanks to the increase of The

plenum volumetric efficiency, boost

pressure is enhanced.

Torque at 1000 rpm can be

improved up to 20 %

PLAN

1 Introduction VVA/Turbo and 4 cylinder engines SolvingSolving 44 cylinder cylinder issue:issue: increasingincreasing thethe scavengingscavenging potentialpotential

th hthrough h texhaust if ldmanifold

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 115/249

18

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo

& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 throughthrough exhaustexhaust manifoldmanifold

Twinscroll

Separation wall

Twinscroll turbine housing allow to

separate consecutive cylinders.

 An issue: casting thin walls of

twinscroll housing for small engines

 An emerging alternative:

Having the separation only

within the manifold

PLAN

1 IntroductionVVA/Turbo and 4 cylinder engines SolvingSolving 44 cylinder cylinder issue:issue: EffectEffect ofof separationseparation wallwall in turbinein turbine

housinghousing

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 116/249

19

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 housinghousing

5500 rpm1500 rpm

    w      i     t      h    o    u     t

    w      i     t      h

 A synergy of 2-4 % of torque can be promoted

between 1000 to 1750 rpm and better transient

PLAN

1 IntroductionVVA/Turbo and 4 cylinder engines VVT + Turbo inVVT + Turbo in transienttransient..

1500 rpm

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 117/249

20

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 

 April 18th 2013

Huge synergy between

VVts and turbochargers

through the scavengingprocess.

Turbocharger behavior

is transformed.

 A difficulty :

Knowing accuratly the

trapped air mass to

adapt injection duration

1500 rpm

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 118/249

DIM

DCT – DESV (SGN) RENAULT PROPERTY April 18th 2013

VVA & Turbo : improving the scavenging

at low end speed with 3 cylinder engines4

PLAN

1 Introduction VVA/Turbo and 3 cylinder engines 3 cylinder engines: natural3 cylinder engines: natural favourablefavourable situationsituation

1500 rpm

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 119/249

22

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

Exhaust.

BDC

TDC

Intake.

Intake

Air

 

+

 

Burnt gas

Pint > Pcyl> Pexh

Scavenging isnatural with 3

cylinder engine

1500 rpm

PLAN

1 IntroductionVVA/Turbo and 3 cylinder engines 3 cylinder engines: natural3 cylinder engines: natural favourablefavourable situationsituation

5500 rpm

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 120/249

23

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

Exhaust.

BDC

TDC

Intake.

Intake

Air

 

+

 

Burnt gas

Pint > Pcyl> Pexh

Due to the

shape of the

pulsations,

we are close to

scavenge at

max power 

5500 rpm

PLAN

1 Introduction

2 VVA/T b

VVA/Turbo and 3 cylinder engines InIn transienttransient

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 121/249

24

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 

 April 18th 2013

Huge synergy between

VVts and turbochargers

through the scavenging

process.

Turbocharger behavior

is also transformed.

Same difficulty:

knowing the trapped

mass flow rate and thus

the trapped in-cylinder

 Air/fuel ratio

PLAN

1 Introduction

2 VVA/T b

VVA/Turbo and 3 cylinder engines ScavengingScavenging andand MPIMPI engineengine:: taketake care tocare to emissionsemissions andand BSFCBSFC

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 122/249

25

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

With MPI engine, fuel is

included within the scavenged

air and goes directly to theexhaust

VVT Actuation have to be

limited in time

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 123/249

DIM

DCT – DESV (SGN) RENAULT PROPERTY April 18th 2013

Conclusion5

PLAN

1 Introduction

2 VVA/Turbo

Conclusion HugeHuge synergiessynergies betweenbetween turboturbo andand VVTsVVTs

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 124/249

27

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

   P   M

   E

   [   b  a  r   ]

0

N [rpm]

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

2

249250

280

 April 18th 2013

 Torque

Engine

speed

44

22

Colors = BSFC Levels

The scavenging have to be

promoted

Natural with 3 cyl engines

Some limitations with MPIengines

Bigpotential

in steady

state

Limitationswith the

transient

behavior 

PLAN

1 Introduction

2 VVA/Turbo

Conclusion OptimalOptimal settingsetting for full VVAfor full VVA SystemSystem atat fullfull loadload

EngineE i

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 125/249

28

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 April 18th 2013

 

Exhaust IntakeExhaust Intake

4 cylinder  3 cylinder Engine

speed

Engine

speed

Crank

angleCrank

angle

PLAN

1 Introduction

2 VVA/Turbo

Conclusion

Potential improvement of steady state BSFC and transient

Perspectives of futurePerspectives of future researchesresearches

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 126/249

29

CONFIDENTIAL

RENAULT PROPERTY

DIM

DCT – DCFM (SGN)

2 VVA/Turbo

& PMEP

3 VVA/Turbo

& Scavenging

with 4 cyl.

4 VVA/Turbo& Scavenging

with 3 cyl.

5 Conclus ion

 Potential improvement of steady state BSFC and transient

behavior 

 Wall separation of turbine housing of 4 cylinder engines

 Trapped Air & fuel mass estimation under transient

conditions

 April 18th 2013

 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 127/249

TRENDS IN APPLICATION OF VVA SYSTEMSFOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 128/249

Dr. Hubert FRIEDL

Product Manager

Powertrain Engineering AVL List GmbH, Austria

Presentation forUniversity of PitestiVVA Workshop

Pitesti, 18th April 2013

INTRODUCING AVL

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 129/249

2Pitesti-VVT Workshop, H. Friedl, 2013

 AVL is the world’s largest

private and independent

engineering company

Development of powertrain

systems with internal

combustion engines

Instrumentation and test

systems for engine and

vehicle development

Software for engine and

vehicle simulation

Prof. Helmut List

Owner and CEO

Prof. Helmut ListProf. Helmut List

Owner and CEOOwner and CEO

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 130/249

 AVL – TECHNICAL CENTERS POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 131/249

5Pitesti-VVT Workshop, H. Friedl, 2013

India

 Ann Arbor,MI

Plymouth, MI

Headquarters GrazUK

China

France

Lake Forest, CA

Korea

Germany

Turkey

SwedenHaninge Södertalje

RemscheidMunich StuttgartRegensburg Ingolstadt

Nagoya

Tokio

Moscow

Sao Paulo

 Australia

TRENDS IN APPLICATION OF VVA SYSTEMSFOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 132/249

Dr. Hubert FRIEDL

Product Manager

Powertrain Engineering AVL List GmbH, Austria

Presentation forUniversity of PitestiVVA Workshop

Pitesti, 18th April 2013

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 133/249

8Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:

1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

Ca 20% drop in engine production by 2009ROW CHINA

GLOBAL ENGINE PRODUCTION BY REGION(PC and LCV, Status 10-2012)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 134/249

9Pitesti-VVT Workshop, H. Friedl, 2013

10

20

30

40

50

60

70

80

90

100

1995 2000 2005 2010 2015Source: IHS 10/2012

EuropeEurope

 America America

 Asia Asia

Ca. 20% drop in engine production by 2009

2011 significant impact due to Japan downtime 2013 moderate growth expectation EU, US and Asia

China maintain strongest growth regions

REST OF ASIA SOUTH AMERICA

SOUTH KOREA NORTH AMERICAJAPAN WEST EUROPEINDIA EAST EUROPE

   M   i  o .  u  n   i   t  s  p  r  o   d  u  c  e   d

DIESEL CHARGED

S

 ALCOHOL FUEL

GLOBAL ENGINE PRODUCTION BY PROPULSIONTECHNOLOGY (PC and LCV, Status 10-2012)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 135/249

10Pitesti-VVT Workshop, H. Friedl, 2013

10

20

30

40

50

60

70

80

90

100

1995 2000 2005 2010 2015Source: IHS 10/2012

GDI

charged

Gasoline

Diesel

Market penetration for new propulsion technologies

(e.g. Hybrid, Electro Vehicles) usually is slow (>10 years)

Significant Technology Evolution:

 Strong growth of GDI direct injection and

Turbocharging expected for gasoline engines

CNG, E100, Hybrid and EV forecasted to globally

grow stronger than PC-Diesel

DIESEL NA

CNG/LPG

GASOLINE GDI

Full HYBRIDGASOLINE PFIGASOLINE charged

ELECTRIC

   M   i  o .  u  n   i   t  s  p  r  o   d  u  c  e   d

GLOBAL VEHICLE PRODUCTION PER REGION AND BY PROPULSION TECHNOLOGY

100 Diesel

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 136/249

11Pitesti-VVT Workshop, H. Friedl, 2013

10

20

30

40

50

60

70

80

90

00

   E   U   R   O   P   E   2   0   0   7

   2   0   1   2

   2   0   1   9

   N

   A   F   T   A   2   0   0   7

   2   0   1   2

   2   0   1   9

   C

   H   I   N   A   2   0   0   7

   2   0   1   2

   2   0   1   9

   J   A   P   A   N   /   K   O   R   E   A   2   0   0   7

   2   0   1   2

   2   0   1   9

   S .

   A   M   E

   R   I   C   A   2   0   0   7

   2   0   1   2

   2   0   1   9

   S .

   A   S   I   A   +

   R   O   W

    2   0   0   7

   2   0   1   2

   2   0   1   9

   G

   l  o   b  a

   l    2   0   0   7

   2   0   1   2

   2   0   1   9

   E  n  g   i  n  e  s   P  r  o   d  u  c  e   d

Region/Year 

Diesel

H2/Electric

Full Hybrid

CNG/LPG

E100

E85Gasoline

Source: IHS 10-2012

Europe: Future growth expected in SI and alternative technologies

NAFTA: Growth expected for Hybrids and Flex Fuel

China: Growth forecasted mainly with conventional technology

Japan/Korea: growth with Hybrids, shrinking (local) production

VALVETRAIN TECHNOLOGY SHARES FORGASOLINE PASSENGER CARS BUILT IN EUROPE

SI Engines without VVT/VVL

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 137/249

12Pitesti-VVT Workshop, H. Friedl, 2013

0

2

4

6

8

10

12

14

2011 2012 2013 2014 2015 2016 2017 2018 2019

     M     i     l     l     i    o    n

SI Engines without VVT/VVLValve Lifting onlyCam Changing onlyCam Phasing onlyCam Phasing/Valve LiftingCam Phasing/Cam Changing

Source: IHS 2013

VALVETRAIN TECHNOLOGY SHARES FORGASOLINE PASSENGER CARS BUILT IN JAPAN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 138/249

13Pitesti-VVT Workshop, H. Friedl, 2013

0

2

4

6

8

10

12

2011 2012 2013 2014 2015 2016 2017 2018 2019

     M     i     l     l     i    o    n

SI Engines

 without

 VVT/VVL

Valve Lifting only

Cam Changing only

Cam Phasing only

Cam 

Phasing/Valve 

LiftingCam Phasing/Cam Changing

Source: IHS 2013

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 139/249

15Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:

1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

240

DEPLOYMENT OF VEHICLE CO2-AVERAGE IN EUROPE

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 140/249

16Pitesti-VVT Workshop, H. Friedl, 2013

80

100

120

140

160

180

200

220

240

1990 1995 2000 2005 2010 2015 2020

Gasoline

Diesel

 All Fuels

     C     O

     2     i    n     N     E     D     C     (    g      /     k

    m     )

CO2 Target for 2015

CO2 Target for 2020

Source: EEA Report, Monitoring CO2 emissions from new passenger cars in the EU; summary of data for 2011, published 2012

CO2 Fleet Average in EuropeFleet average improvement strongly affected by

scrapping bonus 2009 (focus on smaller cars)

still far distance to 2020 targets

137 g/km

MARKET DISTRIBUTION OF VEHICLE SEGMENT GROUPS AND SHARE OF DIESEL - EUROPE

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 141/249

17Pitesti-VVT Workshop, H. Friedl, 2013

Source: IHS and AutomotiveWorld 2011

Diesel

CO2 EMISSION OF PASSENGER CARS VERSUSVEHICLE WEIGHT AND PROPOSED CO2 LIMITS

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 142/249

18Pitesti-VVT Workshop, H. Friedl, 2013

0

50

100

150

200

250

300

350

400

450

500 1000 1500 2000 2500

   C   O   2   E  m

   i  s  s

   i  o  n

   i  n   N   E   D   C

   [  g   /   k  m

   ]

Vehicle Curb Weight [kg]

Gasoline NA

Diesel

Gasoline Turbo

Gasoline Hybrid

CNG Turbo

China Stage 3

revised - CO2 [g/km]

EU-proposed CO2

Limit

Source: AR 2012

Light Duty Emission LegislationEU Limits

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 143/249

19Pitesti-VVT Workshop, H. Friedl, 2013

EmissionEU-1 EU-2 EU-3 EU-4 EU-5 EU-5+ EU-61992 1996 2000 2005 2009 2011 2014

Moderate Reduction (<30%) Large Reduction (>30%)

CO

Positive

Ignition

Engines

(Gasoline)

2720 2200 2300 1000 1000 1000 1000

HC 200 100 100 100 100

NMHC 68 68 68

HC + NOx 970 500

NOx 150 80 60 60 60

PM only GDI 5 4.5 4.5

PN 6E12

mg/km

mg/km

mg/km

mg/km

mg/km

mg/km

#/km

2720 1000 640 500 500 500 500

970 560 300 230 230 170700500 250 180 180 80

140 80 50 25 5 4.5 4.5

6E11 6E11

COCompression

Ignition

Engines

(Diesel)

HC + NOxNOx

PM

PN

mg/km

mg/kmmg/km

mg/km

#/km

• The main challenge for Gasoline Engine with EU6 is not the nominal limit of Gaseous Emissions,but the significantly more strict Diagnostic Requirements, PN limit 6E11 by 2018 for all PC

PC Emission Legislation - Expected Changes

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 144/249

20Pitesti-VVT Workshop, H. Friedl, 2013

NEDC (Emissions) WLTP (Emissions)

130 g/km (or adapted to WLTP) 95 g/km (or adapted to WLTP)

EU 6b EU 6cEU 6c EU 7

adoptedadopted proposal

discussed, no proposal availablerumors

RDE (monitoring) RDE (compl. factors open) RDE (stringent compl. factors)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

CI, DI: 6*1011 /km

NEDC (CO2) WLTP (CO2)

PFI: no limit

DI: 6*1011 /km (6*1012 on dem.)

CI: 6*1011

/km

tbd (WLTP); mod. procedure?

Source: 110. MVEG, ACEA: Summary of Euro 6 open issues, 25.10.2011,

http://ec.europa.eu/clima/policies/transport/vehicles/index_en.htm,Commission Regulation: No 459/2012 of 29.5.2012, 6th EU-WLTP Meeting ,

EUROPEAN COMMISSION: Possible scenarios of implementation WLTC

into European type approval legislation, 10.04.2012

PC Emission Legislation – Type Approval

or 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 145/249

22Pitesti-VVT Workshop, H. Friedl, 2013

WLTP(world light duty test

procedure)

WLTP NEDC

acceleration m/s2 1.8 1.0

mean velocity km/h 46 33

idle share % 13 23

PEMS(portable emission

measurement)

•driven by EC

•on board measurement•real on-road driving

•real temp. condition

•curr. no PN measurement

•possibly HC excluded

RTC(random test cycles)

•driven by OEMs on their

cost

•OEMs need to prove similarresults as PEMS

•tested at chassis dyno

•random based on EU

database (20.000 tr ips)

Load Collective NEDC vs. RDE

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 146/249

23Pitesti-VVT Workshop, H. Friedl, 2013

N - upm

   M

   d  -   N  m

Random Test

Prio 1

RandomTest

Prio 2

PEMS: all modes possible

Options for RDE:

•Random test cycle:

Chassis Dyno

Simulation

•PEMS:

Measurement in

customer driving with

PEMS

 Decision openNEDC

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 147/249

25Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

TECHNOLOGIES AND POTENTIALS FOR EFFICIENCYIMPROVEMENT OF PASSENGER CARS

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 148/249

26Pitesti-VVT Workshop, H. Friedl, 2013

Tires

Weight

Braking Energy

Recuperation

 Aerodynamics

Downsizing and

Turbocharging

Hybrid-Drives,Electrification

 Air Conditioning

Dual Clutch,

 Automatic Transm.

Low Friction

Lube Oil

Fuel

Navigation

Start/Stop

Electrified

 Auxiliary Drives

Frict ion Optimization

Direct Injection

and Lean Mixture Thermal-Management,

Heat Recovery

Intelligent Alter-

nator Control

Fully variable

Valvetrain

Photo Source: Esso Exxon

Cylinder Dectivation

M h i l

GASOLINE ENGINE TECHNOLOGY

Boosting

2 stage

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 149/249

27Pitesti-VVT Workshop, H. Friedl, 2013

-Mechanical

-Electronical

“Smart Hybridization”-electric auxiliaries

-48V systems

Combustion System

-high BMEP TGDI

-Low PN

-CNG-DI

Variable Valvetrain

-2-step / 3-step

-fully flexible

Variable Cr ank Train

-Var. Compression ratio-Var. Expansion ratio

-2-stage

-electric boosting-water cooled VGT

2-step

low lift

2-step

high lift

3-step

l/h lift

cont.

Exhaust Gas Cooling

- External cooled EGR

- Cooled / integrated

manifold

Future Gasoline Engine

GDI homogeneous

Cam phasing, CDA

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 150/249

28Pitesti-VVT Workshop, H. Friedl, 2013 Time

Turbocharging

Micro hybrid

Variable valvetrain (Miller, Atkinson)

GDI stratified lean

Var. compression ratio, var. expansion

 Alt. combustion (HCCI, qual . control)

Cooled EGR, cooled exhaust

High charge motion

Mild hybrid

Current

Main stream

Premium

Niche appl.

Means to increase EGR rate

Full hybrid

Plug-in hybrid (certif ication!?)

E-vehicle; range extender 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 151/249

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 152/249

30Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 153/249

VARIABLE CHARGE MOTION SYSTEMS- Examples of Series Applications

CBR

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 154/249

32Pitesti-VVT Workshop, H. Friedl, 2013

Source: FIAT

CBR2

Source : Opel

CBR 1

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 155/249

Shift of Intake and Exhaust Camshaft, Open Valve Injection

 APPLYING LATE ATKINSON CYCLE WITH AVL CBR II SYSTEM

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 156/249

34Pitesti-VVT Workshop, H. Friedl, 2013

0

1

2

3

4

5

6

7

8

9

10

120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640

Crank Positio n (de g. CrA )

   V  a

   l  v  e

   L   i   f   t   (  m  m

   )

Exh. Cam Int. Cam Int. Cam Exh. Cam

Exhaust

Exhaust

Intake

High Load

Intake

Low Load

Injection Timing at High Load

Injection Timing at Low Load (Stratification at BDC)

Part Load Operation

EGR  Aspirat ion Backflow

   V  a   l  v  e

   L   i   f   t   (  m  m   )

Crankshaft Position (deg.CrA)

The Principle of 2-Valve CBR –Impact of Valve Masking for Swirl Generation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 157/249

35Pitesti-VVT Workshop, H. Friedl, 2013

Intake

(Tangential Port)

Exhaust Port

(with Masking)

Spark Plug

Intake SwirlIntake Swirl

Exhaust SwirlExhaust Swirl

M                            a                     i                            n                    

F                            l                            o                    w                      D                           

i                            r                     e                    

c                    t                           i                            o                    n                    

M                            a                     

i                            n                    F                            l                            o                    w                      D                           

i                            r                     e                    

c                    t                           i                            o                    n                    

2-Valve CBR System

successfully in series

application since many years

  High charge motion isenabler for high EGR-rates

intake dethrottling for

low pumping losses

High charge motion isenabler for high EGR-rates

intake dethrottling for

low pumping losses

CCONTROLLEDONTROLLED BBURNURN RR ATE ATE IIIIII -- CBR 3CBR 3rdrd GenerationGeneration

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 158/249

36Pitesti-VVT Workshop, H. Friedl, 2013

Good example ofGood example of „„ Intelligent SimplicityIntelligent Simplicity““

Fuel economy improvement: approx. 3Fuel economy improvement: approx. 3 -- 5 %5 %

Features of CBR III for 2- and 4-Valve Engines:

• No port deactivation

• Internal EGR and Atkinson Cycle by cam phase shifter(s)

• Swirl/Tumble generation by tangential intake and exhaust ports

• Swirl/Tumble enhanced with masking and asymetric exhaust valvelift with 4-valve engines

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 159/249

 AVL´s ELECTRONIC CYLINDER DEACTIVATION

PRINCIPLE OF WORK FOR V6-ENGINE

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 160/249

38Pitesti-VVT Workshop, H. Friedl, 2013

ti = 2 x t i average

+ friction

ti = 0

Intake and Exhaust Valve Lift Curves

0

1

2

3

4

5

6

7

8

120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Crank Shaft Position [°CRA]

   V  a   l  v  e   L   i   f   t   [  m  m   ]

Intake and Exhaust Valve Lift Curves

0

1

2

3

4

5

6

7

8

120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Crank Shaft Position [°CRA]

   V  a   l  v  e   L   i   f   t   [  m  m   ]

Left Cylinder Bank:

Cam timing for minimum

fuel consumption

Right Cylinder Bank:

Cam timing for minimum

pumping losses

 AVL patent application

Gas exchange TDC Gas exchange TDC

Mind:purely electronic

no mech. valve

closing devices

Mind:purely electronic

no mech. valve

closing devices××

×

“4=2” – Cost Effective Electronic Cylinder Deactivationfor 4-Cylinder Engines

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 161/249

39Pitesti-VVT Workshop, H. Friedl, 2013

Cylinder group 2

ti = 2 x ti - be

Cylinder group 1

ti = 0

Cylinder deactivation just byfuel cut off 

Exhaust system with complete flowseperation up to catalyst

Separatingwall

Sealing matplaced in groove

Single brickcatalyst

 AVL patent application

Exhaust Air 

Electronic Cylinder Deactivation:4 Cylinder; Fuel Consumption Optimisation

9

10

10

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 162/249

40Pitesti-VVT Workshop, H. Friedl, 2013

Engine uses single cam phaser;intake and exhaust valves can be

retarded parallel.

In part load both valves are operated

in retarded position (low pumping

losses and internal EGR)

0

1

2

3

4

5

6

7

8

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Crank Position [°CrA]

   V  a

   l  v  e

   L   i   f   t   [  m  m

   ]

Crank Position - °CrA

   V

  a   l  v  e   L   i   f   t  -  m  m

40 120 200 280 360 440 520 600 680

8

6

4

2

0

500

520

540

560

580

600

620

640

660

350 360 370 380 390 400 410 420

Overlap Position - °aTDC

   B   S   F   C  -  g   /   k   W   h

0

5

10

15

20

25

30

35

40

   R

  e  s   i   d  u  a   l    G  a  s   C  o  n   t  e  n   t  -   %

4 cyl; 2000/1; BSFC

ECDA;2000/1; BSFC

4 cyl; 2000/1; RG

ECDA; 2000/1; RG

25% residual gas

tolerance limit for 4 cyl.

Electronic Cylinder Deactivation:4 Cylinder; Fuel Consumption Optimisation

9

10

10

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 163/249

41Pitesti-VVT Workshop, H. Friedl, 2013

Engine uses single cam phaser;intake and exhaust valves can be

retarded parallel.

In part load both valves are operated

in retarded position (low pumping

losses and internal EGR)

0

1

2

3

4

5

6

7

8

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Crank Position [°CrA]

   V  a

   l  v  e

   L   i   f   t   [  m  m

   ]

Crank Position - °CrA

   V

  a   l  v  e   L   i   f   t  -  m  m

40 120 200 280 360 440 520 600 680

8

6

4

2

0

500

520

540

560

580

600

620

640

660

350 360 370 380 390 400 410 420

Overlap Position - °aTDC

   B   S   F   C  -  g   /   k   W   h

0

5

10

15

20

25

30

35

40

   R

  e  s   i   d  u  a   l    G  a  s   C  o  n   t  e  n   t  -   %

4 cyl; 2000/1; BSFC

ECDA;2000/1; BSFC

4 cyl; 2000/1; RG

ECDA; 2000/1; RG

   1   0   %   b  e  n  e   f   i   t

Residual gas tolerance

limit outside operating

area for 2 cyl.

   k  m   /   h

Electronic Cylinder Deactivation: Toggling = Switchingbetween the 2 Cylinder Banks to maintain Catalyst active

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 164/249

Time - s

   T   b  e   f  o  r  e   C  a   t

  -   °   C

   T   i  n   P  r  e   C  a   t  -   °   C

   V  e

   h   i  c   l  e   S  p  e  e   d  –

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

900

800

700

600

500

400

300

200

100

0

900

800

700

600

500

400

300

200

100

0

120

80

40

0

Bank 2Bank 1

Temperature in Cat

controlled above 400°C

Exhaust (Masking)Intake SwirlFiat Punto EVO

FIRE 2V CBR III Engine

Electronic Cylinder

POWERFUL – Low Consumption Demo Vehicle

1,4l 4 cyl . 2 valve 0,9l 2 cyl . 4 valve

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 165/249

43Pitesti-VVT Workshop, H. Friedl, 2013

0

1

2

3

4

5

6

7

8

9

10

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Crank Position [°CrA]

   V  a

   l  v  e

   L   i   f   t   [  m  m

   ]

Crank Position - °CrA

   V  a

   l  v  e

   L   i   f   t  -  m

  m

40 120 200 280 360 440 520 600 680

10

8

6

4

2

0

Intake

(Tangential

Port)

Spark Plug

Exhaust SwirlDeactivationFriction Reduction

Electric Supercharging

Robotised Gearbox with

long gear ratios

Drag Reduction< 100 g/km CO2

Project N° SCP8-GA-2009-234032

Var. Oil Pump

DLC Shimless Tappets

E- Supercharger 

Gear  Actuator 

Gearshift

Lever Clutch

Clutch Actuator and Control Unit

Marelli Production AMT

y = 0.025x2 + 0.6923x + 93.949

0

100

200

300

400

500

600

700

0 50 100 150

   F  o  r  c  e  -   N

Vehicle Speed - km/h

Measured Coast Down

Target Coast Down

Original Coast Down

Poly. (Measured Coast Down)

Underbody Cover 

Equal FC with AMT!

2 cyl is better with MT

0

20

40

60

80

100

120

140

160

180

   C   O   2   E  m

   i  s  s

   i  o  n  -  g

   /   k  m

   M   T

   M   T

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 166/249

44Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

Switchable Valve Lift systems in production

Switchable valve lift systems including Cylinder deactivation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 167/249

45Pitesti-VVT Workshop, H. Friedl, 2013

Porsche

Volvo

Honda

 AUDI AVS

VW CDAMercedes

 AMG

Mitsubishi

Honda

Mazda

Source: enTec CONSULTING, Haus der Technik, 2009

GLOBAL SHARE OF BOOSTED GASOLINE ENGINESPER LEADING BRANDS IN THIS CATEGORY

Share of charged Engines of each

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 168/249

46Pitesti-VVT Workshop, H. Friedl, 2013

0%

20%

40%

60%

80%

100%

2009 2010 2011 2012 2013 2014 2015 2016 2017

Daimler 

Ford

VW

PSAPSA

FIAT GMGM

BMW+MINI

OEM´s Global Production - Gasoline

• Share of boosted Gasoline

engines also dependent onproduct portfolio (entry level

vehicles NA)

• Daimler following NA-GDI

stratified charge

• BMW most aggressive in

downsizing even with lower

cylinder number 

Source: IHS 09/2011

 AUDI

BMEP BENCHMARK WITHPASSENGER CAR GDI-TC

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 169/249

47Pitesti-VVT Workshop, H. Friedl, 2013

8

10

12

14

16

18

20

22

24

26

28

30

6

1000 2000 3000 4000 5000 6000

Engine Speed [rpm]

   B  r  a   k

  e   M  e  a  n   E   f   f  e   k   t   i  v  e   P  r  e  s  s  u  r  e   [   b  a  r   ]

Engine

Char-

ging

Cam-

phaser 

Var.

Valve

Lift /

Charge

Motion

Exh.

mani-

fold

BMW

2.0N20

1 TC

Twin -scroll IN+EX

IN

conti-nuos

Sheet

metalwelded

TC

 AUDI 1.8

T

EA888-

Gen 3 1

1 TC

Single

scoll

IN+EX

EX 2-

step +

Tumble

flap-

Inte-

grated

 Al fa 1.8Fam.B

1.75 TBI

1 TCSingle

scroll

IN-EX -CI

welded

Technical Features

BMW 2.0N20

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 170/249

BMEP BENCHMARK WITHPASSENGER CAR GDI-TC

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 171/249

49Pitesti-VVT Workshop, H. Friedl, 2013

8

10

12

14

16

18

20

22

24

26

28

30

6

1000 2000 3000 4000 5000 6000

Engine Speed [rpm]

   B  r  a   k

  e   M  e  a  n   E   f   f  e   k   t   i  v  e   P  r  e  s  s  u  r  e   [   b  a  r   ]

Engine

Char-

ging

Cam-

phaser 

Var.

Valve

Lift /

Charge

Motion

Exh.

mani-

fold

BMW

2.0

N20

1 TC

Twin -

scroll

IN+EX

IN

conti-

nuos

Sheet

metal

welded

TC

 AUDI 1.8

T

EA888-

Gen 3 1

1 TC

Single

scoll

IN+EX

EX 2-

step +

Tumble

flap-

Inte-

grated

 Al fa 1.8

Fam.B

1.75 TBI

1 TC

Single

scroll

IN-EX -

CI

welded

Technical Features

 Audi 1,8 TEA 888 Gen 3

 Alfa 1.8Fam.B 1.75 TBI

80 kW/l >90 kW/l

BMW 2.0N20

 Alfa 1.8: Sophisticated software asenabler for aggressive scavenging

competitive performance w/o

expensive components (variable valve

lift, Twinscroll-TC, etc.)

EVOLUTION OF TURBOCHARGED GDI

2222

2424

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 172/249

50Pitesti-VVT Workshop, H. Friedl, 2013

1212

1414

1616

1818

2020

2222

10001000 20002000 30003000 40004000 50005000 60006000

EngineEngine Speed [rpm]Speed [rpm]

   B   M   E   P   [   b  a  r   ]

   B   M   E   P   [   b  a  r   ]

220220

240240

260260

280280

300300

320320

340340

   B   S   F   C

   [  g   /   k   W   h   ]

   B   S   F   C

   [  g   /   k   W   h   ]

RON 95

2     0     0     5     

2     0     1     3    

MY 2005MY 2005

MY 2010MY 2010

MY 2009MY 2009

MY 2007MY 2007

MY 2013MY 2013

Significant improvements by:

•refined combustion systems

•increased functionality of thevalve train

•improved exhaust gas cooling(water cooled / integratedexhaust manifold, watercooled turbine housing)

IN‐Lo

IN‐Hi

Cam Timing for TGDI: Exhaust VVL; Intake VVL for Miller 

Short exhaust camshaft

f i t l

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 173/249

53Pitesti-VVT Workshop, H. Friedl, 2013

EX‐Lo

EX‐Hi

Early intake

closing for

Miller

for scavenging at lowengine speed

Long exhaust camshaft

for part load and high

speed

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 174/249

7 S d T i i 7 S d T i i

7-Speed Transmission with Current and Future Engines

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 175/249

55Pitesti-VVT Workshop, H. Friedl, 2013

0 20 40 60 80 100 120 140 160 180 200

Vehicle Speed – km/h

   T  r  a  c   t   i  o  n

   F  o  r  c  e  –   k   N

6

4

0

2

8

10 7-Speed Transmission

Best Efficiency

0 20 40 60 80 100 120 140 160 180 200

Vehicle Speed – km/h

   T  r  a  c   t   i  o  n

   F  o  r  c  e  –   k   N

6

4

0

2

8

10 7-Speed Transmission

Road Load Road Load

4-Speed Transmission enhanced with e-Motor 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 176/249

56Pitesti-VVT Workshop, H. Friedl, 2013

0 20 40 60 80 100 120 140 160 180 200

Vehicle Speed – km/h

Hybridization allowsHybridization allows

electric driving at lowelectric driving at lowpower requirementspower requirements

where the ICE wouldwhere the ICE would

otherwise operateotherwise operateinefficientlyinefficiently

recharging

operation

+

Road Load

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

C t t f P t ti

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 177/249

58Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

Di t A ti VVL

Principles and Functional Categories of CVVL Systems(Continuously Variable Valve Lift)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 178/249

59Pitesti-VVT Workshop, H. Friedl, 2013

Electromagnetic

EMVT (camless)

Electrohydraulic

EHVS (camless)

Direct Acting VVLMechanic or

Electrohydraulic

CVVL (Continuously Variable

Valve Lift) Systems shall offer

unlimited flexibility for:

•de-throttling in part load

•controlling timing/duration

within complete map.

Besides of system oncost the

energy demand as well as

operational safety has to be

considered very carefully.

Spark Plug for

conventional spark

CSI Engine (Compression and Spark Ignition)

Electro hydraulic

solenoid valve for

i t l EGR t l

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 179/249

63Pitesti-VVT Workshop, H. Friedl, 2013

Cam phaser 

intake

Piston shape forstrat. idle operation

conventional sparkignited mode

Switchable

tappet intake

Gasoline direct

injection

 AVL - EHVA

tappet

internal EGR control

EHVA tappet

Exhaust Valves

CSI ENGINE LAYOUT – OPERATION STRATEGYOperation range and different combustion modes

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 180/249

64Pitesti-VVT Workshop, H. Friedl, 2013

HCSI - = 1,0 + int. EGR   B   M   E   P

Engine Speed

SCSI - > 1,0

HCCI - > 1,0

HCSI - = 1,0

1x Exhaust Valve hydraulically

Direct Injection

Exhaust Valves

Intake Valves

SISI HCCIHCCI

COMBUSTION MODE TRANSITIONSmooth transient by applying transition algorithm

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 181/249

66Pitesti-VVT Workshop, H. Friedl, 2013

0

2

4

6

8

10

40 45 50 55 60 65 70 75 80

-20

-15

-10

-5

0

5

10

15

20

Cycle

   C  y   l .  p  r  e  s  s .  r   i  s  e   [   b  a  r   /   °   C   A   ]

   M   F   B   5   0   %   [   d  e  g   C   A   ]

Switching algorithm activ (0.7s)Switching algorithm activ (0.7s)

SISI HCCIHCCI

TRENDS IN APPLICATION OF VVA SYSTEMS

FOR FUEL EFFICIENT POWERTRAIN

Content of Presentation:

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 182/249

67Pitesti-VVT Workshop, H. Friedl, 2013

Content of Presentation:1. Market Trends

•Global PC Production Survey

•VVA Market Penetration

2. Challenges due to Forthcoming Regulations

•CO2 Reduction

•Legislation and Test Procedures (WLTP, RDE)

3. Technology - Examples of VVA Applications

•Cam Phaser: CBR, Cylinder Deactivation

•Profile switching: TGDI - Turbocharged GDI

•Variable Valve Lift: CSI - Compression and Spark Ignition

4. Summary and Outlook

T h l

MARKET & TECHNOLOGY TRENDSGASOLINE ENGINES

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 183/249

68Pitesti-VVT Workshop, H. Friedl, 2013

Technology

Cam Phaser 

Variable Valve Lift2 / 3 Step

Variable Valve LiftContinuous

Cylinder Deactivation

NA HomogeneousGDI

TC Homogeneous

MPI / GDI

GDI Stratif ied

Controlled AutoIgnition

Huge diversivication

of base technologies

ReducedReduced

parasiticparasitic

losseslosses

ImprovedImproved

thermalthermal

managementmanagement

EnergyEnergy

recoveryrecovery

Start / StopStart / Stop

HybridizationHybridization

…………

Friction reduction +

energy managementas add-on for all

technologies

Highly sensitive

balancing of cost-

to benefit-ratio

Micro PC Small PC Medium PC Large PC LDT / MDTT h l General Market

MARKET & TECHNOLOGY TRENDSGASOLINE ENGINES (April 2013)

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 184/249

69Pitesti-VVT Workshop, H. Friedl, 2013

Micro PCEngines

< 1,0 l

Small PCEngines

1,0 - 1,5 l

Medium PCEngines

1,5 - 2,4 l

Large PC LDT / MDT

Truck

Cam Phaser 

Variable Valve Lift2 / 3 Step

Variable Valve LiftContinuous

NA HomogeneousGDI

TC Homogeneous

MPI / GDI

GDI Strati fied

Controlled AutoIgnition

Cylinder Deactivation

Engines

> 4 cyl

???? ??

Technology

New /current

Mainstream:

General MarketTrends:

? ?? ??

note: general worldwide trends, local trends might differ

NEDC FUEL ECONOMY POTENTIAL RELATED TOFORMER AND NEW BASELINE TECHNOLOGY LEVEL

Technology Former Baseline: New Baseline:New Baseline:

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 185/249

70Pitesti-VVT Workshop, H. Friedl, 2013

New Gasoline Base Technology Options for Further Improvement

Cam Phaser 

Variable Valve Lift2 / 3 Step

Variable Valve LiftContinuous

NA HomogeneousGDI

TC HomogeneousMPI / GDI

GDI Strati fied

Controlled AutoIgnition

Cylinder 

Deactivation

Technology

2 – 4 %

Former Baseline:4V – NA MPFI

New Baseline:4V –GDI –TCI

New Baseline:4V –GDI –TCI

--

5 – 8 % 2 – 3 %2 – 3 %

6 – 10% 3 – 5 %3 – 5 %

4 – 8% 3 – 6 %3 – 6 %

1 – 3%

5 – 14% --

10 – 15% 4 – 8 %4 – 8 %

8 – 13% 3 – 7 %3 – 7 %

-- Miller/high

EGR as

alternative

for stratifiedlean

5-10%

Conclusion, Outlook for Future VVA Systems

• Technology will continue to extend the efficiency of internal

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 186/249

71Pitesti-VVT Workshop, H. Friedl, 2013

• Technology will continue to extend the efficiency of internalcombustion engines.

• It is assumed that most of future engines will have VVA system in

very different degree of sophistication and complexity.

• Switchable valve lift quickly will rise in numbers, cam phaser will

become standard with gasoline engines (Diesel will follow with

smaller extent)

• Competition of VVA systems will continue, but not as stand alonefeature, but even more to provide benefits complementary to other

technologies.

• System oncost for mechanics and controls, as well as energy

consumption of VVA system have to be assessed very carefully.

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 187/249

72Pitesti-VVT Workshop, H. Friedl, 2013

Thank you very muchThank you very much

for your kind attention !for your kind attention !

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 188/249

 Abbreviations (1/3)

 ADD Aggressive Downsized Diesel

AER All Electrical range

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 189/249

74Pitesti-VVT Workshop, H. Friedl, 2013

 AER All Electrical rangeBMEP Brake Mean Effective Pressure (spec. value for engine torque)

BSFC Brake Specific Fuel Consumption

CAI Controlled Auto Ignition (general expression for HCCI)

CBR Controlled Burn Rate (AVL patented combustion system for var. charge motion)

CNG Compressed natural Gas

CSI Compression and Spark Ignition (AVL patented comb. system featuring HCCI)

DDE Derated Diesel EngineDeNOx Nitrogen oxide reducing catalyst

DVCP Double Variable Cam Phaser 

DPF Diesel Particulate Filter 

EGR Exhaust Gas Recirculation

EURO6 European Emission Limit Stage 6

EV Electric Vehicle

FE Fuel Economy

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 190/249

 Abbreviations (3/3)

PEMS Portable Emission Measurement System

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 191/249

76Pitesti-VVT Workshop, H. Friedl, 2013

PEMS Portable Emission Measurement SystemRDE Real Driving Emission

RPM Revolutions per Minute (engine speed)

SCR Selective Catalytic Reduction (for NOx)

SI Spark Ignited

SULEV Super Ultra Low Emission Vehicle (US, California Emission Standard)

SUV Sport Utility Vehicle

TCI Turbo Charged IntercooledTWC 3-Way Catalyst

VVL Variable Valve Lift

VVT Variable Valve Timing

WLTP World Harmonised Light Duty Vehicle Test Procedure

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 192/249

Advanced combustion and engine

integration of a Hydraulic Valve

Actuation system

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 193/249

Volvo Group Trucks Technology

Romain LE FORESTIER

VVA conference - University of Pitesti - Romania

1 April 18th 2013

Actuation system

Introduction

Content

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 194/249

Volvo Group Trucks Technology

 Introduction

 Engine concept

 Results

 – Miller cycle on A25 (1200 rpm – 25% load)

 – Miller cycle results B25 and C25 (1500 rpm & 1800 rpm – 25%

load) – Optimization on B25 and B50 (1500 rpm - 25% and 50% load)

 Conclusion on pHCCI combustion

 Hydraulic Valve Actuation features

 Next tests

Introduction

Content

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 195/249

Volvo Group Trucks Technology

 Introduction

 Engine concept

 Results

 – Miller cycle on A25 (1200 rpm – 25% load)

 – Miller cycle results B25 and C25 (1500 rpm & 1800 rpm – 25%

load) – Optimization on B25 and B50 (1500 rpm - 25% and 50% load)

 Conclusion on pHCCI combustion

 Hydraulic Valve Actuation features

 Next tests

BackgroundCombustion concepts

+ Clean with 3-wayCatalyst

- Poor low & part load

efficiency

+ High efficiency

- Emissions off NOx

and soot

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 196/249

Volvo Group Trucks Technology

Spark Ignition (SI)

engine (Gasoline, Otto)Compression Ignition

(CI) engine (Diesel)

Homogeneous Charge

Compression Ignition

(HCCI)

Partly

Homogeneous

CompressedCombustion

Ignition (pHCCI)

Spark Assisted

Compression Ignition(SACI)

Gasoline HCCI

+ High efficiency

+ Ultra low NOx

- Combustion control

- Power density

+ Injection controlled

- Less emissionsadvantage

Source: Bengt Johansson, Lund Univ.Source: Bengt Johansson, Lund Univ.

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 197/249

Introduction

Content

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 198/249

Volvo Group Trucks Technology

 

 Engine concept

 Results

 – Miller cycle on A25 (1200 rpm – 25% load)

 – Miller cycle results B25 and C25 (1500 rpm & 1800 rpm – 25%

load) – Optimization on B25 and B50 (1500 rpm - 25% and 50% load)

 Conclusion on pHCCI combustion

 Hydraulic Valve Actuation features

 Next tests

E i V l Di l 10 8L di l t

Engine Concept – HVA VGT-EGR SST

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 199/249

Volvo Group Trucks Technology

• Engine: Volvo Diesel 10,8L displacement.US04 base

• 360hp at 1800 rpm; 1750 Nm at 1200

rpm

• FIE: Bosch APCRS B-sample-6x745cc/30sx140°

• Cylinder unit: piston ratio 16:1

•  Air management: VGT – short route EGR

• Valvetrain: hydraulic valve actuation

Introduction

Content

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 200/249

Volvo Group Trucks Technology

 

 Engine concept

 Results

 – Miller cycle on A25 (1200 rpm – 25% load)

 – Miller cycle results B25 and C25 (1500 rpm & 1800 rpm – 25%

load) – Optimization on B25 and B50 (1500 rpm - 25% and 50% load)

 Conclusion on pHCCI combustion

 Hydraulic Valve Actuation features

 Next tests

• Use of Miller effect by modifying the IVC (Intake Valve Closing), equivalent in this caseto modify the Intake Valve Opening duration

1.2

Intake and Exhaust Valve lifts

Mechanical classic l ifts vs. Camless li fts

14

Classic mechanical intake valve

Classic mechanical exhaust valve

Close angle 340°, duration 200°Open angle 380° duration 75°

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 201/249

Volvo Group Trucks Technology

0

0.2

0.4

0.6

0.8

1

1

0

2

4

6

8

10

12

0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720Crank Angle

   l   i   f   t   [  m  m   ]

Open angle 380 , duration 75

Open angle 380°, duration 160°

Open angle 380°, duration 245°

Earl Miller Late Miller 

Exhaust valve Intake valve

13

14

15

16

17

m  p  r

  e  s  s   i  o  n   R  a   t   i  o

• Effective compression ratio rangefrom 10 to 16 with both Early and

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 202/249

Volvo Group Trucks Technology

9

10

11

12

70 90 110 130 150 170 190 210 230 250

Intake valve opening duration [°CA]

   E   f   f  e  c   t   i  v  e   C  o  from 10 to 16 with both Early and

Late Miller effect

•  A25. Impact on cylinder pressure attop dead center with an early Millersetting: 90° intake valve openingduration instead of 160°

0

10

20

30

40

50

60

70

80

-60 -40 -20 0 20 40 60

Crank angle degree

   C  y   l   i  n   d  e  r   P  r  e  s  s  u  r  e   [   b  a  r

   ]

ReferenceEarly Miller Injector pulse

Soot

50

100

S  o  o   t

   [   %   ]

• Intake Valve Opening duration sweep on A25 1200 rpm – 25% Load

•  All other parameters kept constant

BSFC

10

15

F   C   [   %   ]

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 203/249

Volvo Group Trucks Technology

-100

-50

0

70 90 110 130 150 170 190 210 230 250

Intake valve opening duration [°CA]

   R  e   l  a   t   i  v  e   S

EGR

20

25

30

35

40

70 90 110 130 150 170 190 210 230 250

Intake valve opening duration [°CA]

   E   G

   R   [   %   ]

SNOx AVL439 soot BSFC Temp af.turb.% % % °C

reference 160°CA inlet valve opening duration reference reference reference 315

Early Miller 90°CA inlet valve opening duration -5 -54 +6 419Late Miller 240°CA inlet valve opening duration -28 -59 +4 395

 A25 - 1200 rpm 438 Nm - 5 bar BMEP

-5

0

5

70 90 110 130 150 170 190 210 230 250

Intake valve opening duration [°CA]

  r  e   l  a   t   i  v   B   S   

NOx

-40

-30

-20-10

0

10

20

70 90 110 130 150 170 190 210 230 250

Intake valve opening duration [°CA]

   R  e   l  a   t   i  v  e

   N  o  x   [   %   ]

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 204/249

Rate of Heat Release comparison between Early Miller 90°CA intake

duration and no Miller (160°CA intake duration)

1000 50

ROHR filt.reference 160° intake duration J/°CA

ROHR filt.90° intake duration J/°CA

injection rateEGR = 34% for reference= 16

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 205/249

Volvo Group Trucks Technology

0

100

200

300400

500

600

700

800

900

-5 0 5 10 15 20

Crank Angle Degree

   R  o   H  r   [   J   /   C

   A   D   ]  a  n   d   I  n   j  e  c   t   i  o  n

  r  a   t  e

   [  m  m   3   /  m  s   ]

0

5

10

1520

25

30

35

40

45

   I  n   j  e  c   t  o

  r  c  u  r  r  e  n   t   [   A   U

   ]

  16

  = 1.7

CombEff = 99.80%

EGR = 25% for 90° intake duration

  = 12

  = 1.2

CombEff = 98.84%

• Intake Valve Opening duration sweep on B25 and C25

• Exhaust Valve lift, injection timing, VGT position, injection pressure are kept constant

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 206/249

Volvo Group Trucks Technology

SNOx AVL439 soot BSFC Temp af.turb.

% % % °C

reference 160°CA inlet valve opening duration reference reference reference 301Late Miller 240°CA inlet valve opening duration -33 -45 +4 390

B25 - 1500 rpm 418 Nm - 4.8 bar BMEP

SNOx AVL439 soot BSFC Temp af.turb.

% % % °C

reference 160°CA inlet valve opening duration reference reference reference 289

Early Miller 110°CA inlet valve opening duration -8 -98 +3 365Late Miller 230°CA inlet valve opening duration -3 -88 +2 356

C25 - 1800 rpm 358 Nm - 4.1 bar BMEP

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 207/249

B25 1500 rpm - 418 Nm; Optimization around initial Miller optimum

setting: 230°CA intake valve opening duration instead of 160°CA

2040

60

Main Timing Swingreference w/o Miller before optimizationreference w/o Miller after optimization

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 208/249

Volvo Group Trucks Technology

3

20

-1-2

4

-3°CA

6°CA 8°CA10°CA

-100

-80

-60

-40

-20

0

20

-100 -50 0 50

SNOx [%]   R

  e   l  a   t   i  v  e   S  o  o

   t   [   %   ]

EGR swing with Main Timing -3°CA BTDC

EGR = 33% = 1.54

CombEff = 98.67 %

SNOx AVL415S Soot BSFC Temp af.turb.

% % % °C

reference 160°CA inlet valve opening

duration, Main Timing 2°BTDC reference reference reference 282

Late Miller 230°CA inlet valve opening

dur. after opt., Main Timing -3°BTDC -64 -82 +14 393

B25 - 1500 rpm 418 Nm - 4.8 bar BMEP

• 1st: Injection pressure increase on B50 with late Miller setting

• 2nd: Injection timing sweep

• 3rd: EGR increase

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 209/249

Volvo Group Trucks Technology

B50 1500 rpm - 50% load; Optimization around initial B25 Miller

optimum setting: 230°CA intake valve opening duration

1650 bar

2000 bar 

4°CA BTDC2°CA0°CA-5°CA

-100-80

-60

-40

-20

0

20

-100 -80 -60 -40 -20 0 20 40 60

Relative SNOx [%]

   R  e   l  a   t   i  v  e   S  o  o   t   [   %   ]

reference B50 w/o Miller 

Prail increase starting from B25 Miller settings

Main Timing Swing

EGR swing at -5°CA Main Timingreference B50 w/o Miller 

B50. Late Miller setting, late Main Injection, high EGR

80

90 600

Cylinder pressure; 2000 bar injection pressure; Timing -5°BTDCInjector pulseRoHR

Injection rate

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 210/249

Volvo Group Trucks Technology

0

10

20

30

40

50

60

70

80

-30 -20 -10 0 10 20 30 40 50 60

Crank angle degree

   C  y   l   i  n   d

  e  r  p  r  e  s  s  u  r  e   [   b  a  r   ]

0

100

200

300

400

500

   R  a   t  e   O   f   H

  e  a   t   R  e   l  e  a  s  e

   [   J   /   °   C   A   ]

  a  n   d   I  n   j  e  c   t   i  o  n  r  a   t  e   [  m  m

   3   /  m  s   ]

Introduction

Content

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 211/249

Volvo Group Trucks Technology

 

 Engine concept

 Results

 – Miller cycle on A25 (1200 rpm – 25% load)

 – Miller cycle results B25 and C25 (1500 rpm & 1800 rpm – 25%load)

 – Optimization on B25 and B50 (1500 rpm - 25% and 50% load)

 Conclusion on pHCCI combustion

 Hydraulic Valve Actuation features

 Next tests

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 212/249

Introduction

Content

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 213/249

Volvo Group Trucks Technology

 

 Engine concept

 Results

 – Miller cycle on A25 (1200 rpm – 25% load)

 – Miller cycle results B25 and C25 (1500 rpm & 1800 rpm – 25%load)

 – Optimization on B25 and B50 (1500 rpm - 25% and 50% load)

 Conclusion on pHCCI combustion

 Hydraulic Valve Actuation features

 Next tests

Low pressure tank

Low pressure tank

HVA system architecture

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 214/249

Volvo Group Trucks Technology

High pressure rail

Medium pressure rail

Low pressure tankHigh pressure rail

Medium pressure rail

Low pressure tank

• One electro-hydraulic actuator per valve• Independent oil circuit with low viscosity oil

• Engine separated oil pump

• Dedicated control unit (VDM+)

• High pressure circuit for power (100 / 210 bar)

• Medium pressure circuit for control (30 / 35 bar)

• Low pressure circuit for pump loop (1 bar)

 ANALOG FILTERING BOXSENSOR BOX

HVA system control

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 215/249

Volvo Group Trucks Technology

SENSOR 3kHz filtering frequency

1 pole (-20dB/dec)

 ANALOG/DIGITAL CONVERTER

10kHz sampling

LIFT CONVERTER

2nd order polynomial fit

VALVE LIFT CALIBRATION Seat (0mm)

Boost stop (3,5mm)

Hardstop (12mm)

Vent and supply

valves command

Offset (0V)

 Amplification (0-2V)

FEEDBACK/FEEDFORWARD CONTROLLERS

Valve open timing

Valve lift command

Debounce depth

Debounce duration Valve close timing

Landing knee command

Landing rate command

OPEN LOOP MAPS

10 Valve lift (mm)

• Valve lift timing and duration

HVA system flexibility

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 216/249

Volvo Group Trucks Technology

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

-360 -340 -320 -300 -280 -260 -240 -220 -200 -180 -160 -140 -120 -100 -80 -60

Crankshaft angle (deg)

• Valve lift timing and duration

• Valve lift height• Valve landing velocity

HVA system flexibility

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 217/249

Volvo Group Trucks Technology

-0,5

0

0,5

1

1,52

2,5

3

3,5

4

4,55

5,5

6

6,5

7

7,5

88,5

9

9,5

10

-360 -340 -320 -300 -280 -260 -240 -220 -200 -180 -160 -140

Crankshaft angle (deg)

Valve lift (mm) 

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 218/249

• Valve lift timing and duration

• Valve lift height• Valve landing velocity

HVA system flexibility

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 219/249

Volvo Group Trucks Technology

• Valve events per cycle

• Valve opening velocity

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,56

6,5

7

7,5

8

8,5

99,5

10

-360 -340 -320 -300 -280 -260 -240 -220 -200 -180 -160

Crankshaft angle (deg)

Valve lift (mm)

172bar 138bar

• Valve lift timing and duration

• Valve lift height• Valve landing velocity

HVA system flexibility

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 220/249

Volvo Group Trucks Technology

• Valve events per cycle

• Valve opening velocity

• Intake valve opening

-0,5

0

0,5

1

1,5

22,5

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

9

9,510

-420 -400 -380 -360 -340 -320 -300 -280 -260 -240 -220 -200 -180 -160

Crankshaft angle (deg)

Valve lift (mm)

• Comparison with cam-driven valve lifts

Mechanical actuation versus hydraulic actuation at low engine speed

HVA system performances

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 221/249

Volvo Group Trucks Technology

Mechanical actuation versus hydraulic actuation at high engine speed

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 222/249

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 223/249

• Cylinder de-activation• What is the impact on fuel?

H h d it i h t

Since 2007, confidential tests performed

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 224/249

Volvo Group Trucks Technology

• How much does it improve heat-up

• How many cylinders shall be de-activated?

•  At which load is cylinder de-activation beneficial?

• Exhaust valve re-opening during intake stroke

• Is it beneficial with VGT or FGT?

• What is the impact in transient?

•  At which load is exhaust valve re-opening beneficial?• How much can it limit exhaust temperature?

• Miller effect using exhaust valve instead of intake valve

• Is it beneficial for Early and/or for late Miller?

• What is the impact on NOx?

• What is the impact on fuel?

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 225/249

Thank you!

VVA technique as a way to improve  SIE efficiency.

Results obtained at the University of Pitesti

 in

close cooperation with le Cnam Paris

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 226/249

Adrian CLENCI 18/04/2013

1,2

Adrian CLENCI,2

Pierre PODEVIN

1University of Pitesti, Automotive

 and 

 Transports Department 

2 Le Cnam

 de Paris, LGP2ES, EA21

VVA technique as a way to improve

 SIE

 efficiency.

Results obtained at the University of Pitesti in cooperation with Cnam Paris

I d i

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 227/249

2/24Adrian CLENCI 18/04/2013

Introduction

Experimental results

Conclusions

CFD Simulation

INTRODUCTION

Internal Combustion Engine=

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 228/249

3/24Adrian CLENCI 18/04/2013

(still) the main energy source for ensuring road mobility

Problem:Negative impact on the environment

(fuel consumption and pollution)

EU Regulation no 443/2009

130 g CO2/km in 2015

 & 95 g CO2/km in 2020

INTRODUCTION

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 229/249

4/24Adrian CLENCI 18/04/2013

Engine operation area during NEDC – sfc[g/KWh] @ NA engine

Overall engine efficiency needs to be improvedrather 

 under 

 low 

 loads

 and 

 speeds where

 the

 overall 

 efficiency 

 decreases

from the not very high peak values (35%) to dramatically lower values (< 10%)

INTRODUCTION

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 230/249

5/24Adrian CLENCI 18/04/2013

g

 p

 g

   [g ] @ g               

VARIABLE VALVE ACTUATION

INTRODUCTION

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 231/249

6/24Adrian CLENCI 18/04/2013

 S i    n e

r    g  y

HARA ViVLV ariable i ntake

 V alve Lift 

INTRODUCTION

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 232/249

7/24Adrian CLENCI 18/04/2013

OHV OHC

I t d ti

VVA technique as a way to improve

 SIE

 efficiency.

Results obtained at the University of Pitesti in cooperation with Cnam Paris

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 233/249

8/24Adrian CLENCI 18/04/2013

Introduction

Experimental results

Conclusions

CFD Simulation

EXPERIMENTAL RESULTSMain parameters of the HARA ViVL

 PFI SI engine prototype

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 234/249

9/24Adrian CLENCI 18/04/2013

Number of cylinders 4

Stroke [mm]/Bore[mm] 77/76

Volumetric Compression Ratio 9.0

Combustion chamber Wedge type; 2 valves

Exhaust Valve Law

Maximum Valve Lift, MVL [mm] 7.5

Exhaust Valve Opening, EVO [°CA BBDC] 73

Exhaust Valve Closing, EVC [°CA ATDC] 42

Minimum Intake Valve Law

(Hmin)

Maximum Valve Lift, MVL [mm] 1.165

Intake Valve Opening, IVO[°CA ATDC] 19

Intake Valve Closing, IVC [°CA ABDC] 29

Maximum Intake Valve Law

(Hmax)

Maximum Valve Lift, MVL [mm] 8.275

Intake Valve Opening, IVO [°CA BTDC] 15

Intake Valve Closing, IVC [°CA ABDC] 73

EXPERIMENTAL RESULTSLifting laws

8

9

TDCBDC BDC

Hmax

Idle operation @ 800 rpm. Stoechiometric operation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 235/249

10/24Adrian CLENCI 18/04/2013

0

1

2

3

4

5

6

7

0 60 120 180 240 300 360 420 480 540 600 660 720

 [ºCA]

   V  a   l  v  e   L   i   f   t   [  m  m   ]

E x h a u s t I n t a k e

Hmin

Variable

EXPERIMENTAL RESULTSInstrumentation of the engine

Idle operation @ 800 rpm. Stoechiometric operation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 236/249

11/24Adrian CLENCI 18/04/2013

EXPERIMENTAL RESULTSFuel consumption. Cyclic dispersion

Idle operation

800 rpmStoechiometric operation

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 237/249

12/24Adrian CLENCI 18/04/2013

18.2%

15.6%

18.2%

14.4%

19.9%

22.9%

20.2%   20.4%  20.9%

18.1%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

30 25 20 15 10 5 0 -5 -10 -15

IA ºCA

Ch[Kg/h]

0%

5%

10%

15%

20%

25%

   I  m  p  r  o  v  e  m  e  n   t   [   %   ]

Hmax

Hmin

Improvement[%]

0

4

8

12

16

20

24

28

30 25 20 15 10 5 0 -5 -10 -15

IA[ºCA]

   C  o   V   I   M

   E   P   [   %   ]

Hmax

Hmin

EXPERIMENTAL RESULTSIndicated diagrams. Heat release

Throttle plate opening:

20,8° 

 Hmin21,6° Hmax 

IA = 30° CA

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 238/249

13/24Adrian CLENCI 18/04/2013

 

- Higher peak pressure

ECR =

 8.1 for Hmin

 and 5.8 for Hmax 

- Higher RoHR 

-

 Earlier EoC 

IA = 30° CA

 An improved engine operation at idle for the minimum intake valve law 

Causes:

i d i t k fl l it i d t b l

EXPERIMENTAL RESULTSConclusions

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 239/249

14/24Adrian CLENCI 18/04/2013

-

 increased intake flow velocity   increased turbulence  

  improving of the fuel-air mixing process

-  a lower amount of residual burned gas as a consequence of a lower IEGR intensity 

In order to see the detailed phenomena about the intake flow velocity,a CFD study

 was launched.

These two factors led to a better and more repeatable combustion

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 240/249

CFD SIMULATIONGeometry. Meshing. Calculation.

Dynamic Simulation

with

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 241/249

16/24Adrian CLENCI 18/04/2013

 CA/TDC 

 :

1 231 195 elements

180°

 CA/BDC 

 :

1 589 954 elements

Turbulence model:k-ε 

 Realizable

with

 ANSYS-FLUENT:i.e. the airflow is driven entirely by

the motion of the piston and valves

CFD SIMULATIONResults. Pressure curves. CFD model 

 validation

The motored engine @ 800 rpm was simulated…

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 242/249

17/24Adrian CLENCI 18/04/2013

         

…for a 20.8º 

 throttle opening 

for the 2 situations: Hmin

 and Hmax 

CFD SIMULATIONResults. Flow velocity fields

Hmin:

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 243/249

18/24Adrian CLENCI 18/04/2013

α WSA_max 

 

= –272°CA

W SA_max 

 = 160 m/s

Hmax:

α WSA_max 

 

= –315°CA

W SA_max 

 

= 32 m/s

CFD SIMULATIONResults. In-cylinder air mass

  9

10CFD_Hmin

CFD_Hmax

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 244/249

19/24Adrian CLENCI 18/04/2013

0

1

2

3

4

5

6

7

8

-375 -350 -325 -300 -275 -250 -225 -200 -175 -150 -125 -100 -75 -50 -25 0

 [ºCA]

      c

        l

        b

      a      r

 A compromise should be done between internal aerodynamics, pumping and filling efficiency

CFD SIMULATIONResults. Large scale movements - 

 Swirl 

2SN 

I n

Fluid particles trajectories

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 245/249

20/24Adrian CLENCI 18/04/2013

2 I n  

Hmax  Hminthe trajectories described by the particles are longer 

 at Hmin,

as a result of the intensification of swirl motion

CFD SIMULATIONResults. Turbulent Kinetic Energy & Turbulent Intensity 

75.8780 7

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 246/249

21/24Adrian CLENCI 18/04/2013

59.46

10.09

1.05

10.35

6.94

2.440.92

0

10

20

30

40

50

60

70

α _Wmax_air    α _intake MVL End of intake stroke End of compression

stroke

   T   K   E   [  m   2   /  s   2   ]   Hmin

Hmax

 6.21

5.92

2.47

0.81

2.161.97

1.21

0.75

0

1

2

3

4

5

6

α _Wmax_air    α _intake MVL End of intake stroke End of compression

stroke

   I   T   [   %   ]

Hmin

Hmax

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 247/249

CONCLUSIONS

Gasoline engine evolution

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 248/249

23/24Adrian CLENCI 18/04/2013

Ignition

 Air-fuel ratio

Variable Valve Actuation

Fuel economy Pollution reduction+

Thank you!

Merci !

Grazie!

8/12/2019 VVAWorkshop Pitesti

http://slidepdf.com/reader/full/vvaworkshop-pitesti 249/249

Grazie!

Danke  Schon!Multumesc

 !

Adrian CLENCI