Wallace-Slender Walls FINAL V5 Present Handout

Embed Size (px)

Citation preview

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    1/59

    Slender Wall Behavior & Modeling

    John Wallace

    University of California, Los Angeles

    with contributions fromDr. Kutay OrakcalUniversity of California, Los Angeles

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    2/59

    2

    Presentation Overview

    FEMA 356 Requirements! General requirements

    ! Modeling approaches

    " Beam-column, fiber, general! Stiffness, strength

    Experimental Results

    ! Model Assessment" Rectangular, T-shaped cross sections

    ! FEMA backbone relations

    " Flexure dominant walls

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    3/59

    3

    FEMA 356 Nonlinear Modeling for Buildings withSlender RC Walls

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    4/594

    FEMA 356 RC Walls

    General Considerations 6.8.2.1! Represent stiffness, strength, and

    deformation capacity

    ! Model all potential failure modes anywherealong the wall (member) height

    ! Interaction with other structural andnonstructural elements shall be considered

    ! So, we must consider any and everything

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    5/595

    Wall Modeling Approaches

    Equivalent beam-column model!hw/lw! 3

    Modified equivalent beam-column

    ! Rectangular walls (hw/lw" 2.5)

    ! Flanged walls (hw/lw" 3.5)

    Multiple-line-element and Fiber models

    ! Concrete and rebar material models

    General wall model

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    6/59

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    7/597

    Modified Beam - Column Model

    Rectangular walls (hw/lw" 2.5)& Flanged walls (hw/lw" 3.5):

    Use of modifiedbeam-column element

    with added shear spring

    Nonlinear flexure/shear

    are uncoupled using this

    approach

    Beams

    Wall

    Shear

    spring

    Column at

    wall

    centroid

    Hinges

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    8/598

    Modified Beam - Column Model

    Shear force deformation properties

    A

    B

    C

    D

    E

    /h

    V

    Vn

    1.0

    0.2

    CPLSIO

    Deformation-controlled component

    a b - a

    c

    , -

    0.4

    1and 0.2

    1 2

    y

    y

    c c

    c c

    Vh

    G E A

    G E .

    .

    / 0+ $1 21 2$3 4

    / 0$ 51 2

    63 4

    y/h

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    9/599

    Fiber Section Model

    ! Typically use a more refined mesh where yielding is anticipated;however,! Nonlinear strains tend to concentrate in a single element, thus, typically

    use an element length that is approximately equal to the plastic hingelength (e.g., 0.5lw). Might need to calibrate them first (this is essential).

    ! Calibration of fiber model with test results, or at least a plastic hingemodel, is needed to impose a reality check on the element size and

    integration points used.

    Actual cross section

    Concrete Fibers

    Steel Fibers

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    10/5910

    Materials

    Unconfined Concrete

    Maximum permissiblecompressive strain forunconfined concrete

    (FEMA 356 S6.4.3.1)

    7 = 0.002 or 0.005

    Limit state

    associatedwith crackwidth

    Stress

    (ksi)

    Strain

    , - , -

    2

    ' '

    0 0

    ' '

    0 85

    2

    Linear descending branch defined by:

    0.002; and 0.0038; 0.85

    c cc c c

    c c c

    f f f

    f f

    7 7

    7 7

    7 7

    % &/ 0' ($ 8 91 2' (3 4) *

    $ $

    In the absence of cylinder stress-strain tests, Saatcioglu & Razvi (ASCE, JSE,1992) recommend relation based on work by Hognestad.

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    11/5911

    Materials

    Confined Concrete (FEMA 356 6.4.3.1)! Use appropriate model, e.g.:

    " Saatcioglu & Razvi (ASCE JSE, 1992, 1995)

    "Mander (ASCE JSE, 1988)"Modified Kent & Park (ASCE JSE, 1982)

    ! For reference

    ! FEMA 356 Qualifications:

    "Maximum usable compression strain based onexperimental evidence and consider limitationsposed by hoop fracture and longitudinal barbuckling.

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    12/59

    12

    Materials

    Steel Material:

    Stre

    ss

    (ksi)

    Strain

    Maximum usable strain limits per

    FEMA 356 S6.4.3.1

    7 = 0.02 7 = 0.05

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    13/59

    13

    General Wall Models/FE Models

    e.g., RAM-PERFORM:! Flexure - fiber model (2-directions)

    ! Shear - Trilinear backbone relation

    ! Flexibility to model complex wall

    geometry! Mesh refinement issues

    Flexure/Axial Shear

    Concentration of nonlinear

    Deformations in one element

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    14/59

    14

    Stiffness Modeling

    FEMA 356 Section 6.8.2.2 Use Table 6.5! Uncracked: EIeffective = 0.8EIg

    ! Cracked: EIeffective = 0.5EIg

    30 x 2 ft Wall Section16 - #14 Boundary#6@12" Web

    CURVATURE

    MOMENT

    P=0.30Agf'c

    P=0.20Agf'c

    P=0.10Agf'c1.0, 0.75, 0.5, 0.4EcIg

    0.75EcIg 0.5EcIg

    Wallace, et al., 4NCEE, Vol. 2, pp 359-368, 1990.

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    15/59

    15

    Response Correlation Studies

    ! Ten Story Building in San Jose, California! Instrumented: Base, 6th Floor, and Roof

    ! Moderate Intensity Ground Motions Loma Prieta

    4.53 m (14.88 ft)

    1.68 m(5.5 ft)

    PLAN VIEW: CSMIP BUILDING 57356

    8.84 m (29 ft)

    8.84 m (29 ft)

    5 @ 10.97 m (36 ft)

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    16/59

    16

    Response Correlation Studies

    ! Ten Story Building in San Jose, California! Instrumented: Base, 6th Floor, and Roof

    ! Moderate Intensity Ground Motions Loma Prieta

    0 10 20 30Time (sec)

    -1.5

    0

    1.5

    Displa

    cement(in.) Analysis - 0.5Ig

    Measured

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    17/59

    17

    Strength Requirements

    ACI 318 Provisions! Pn- Mn

    " For extreme fiber compression strain of 7c =0.003.

    !Vn"ACI 318-99,02,05 Equation 21-7

    '

    3.0 for / 1.5

    2.0 for / 2.0

    n cv c c t y

    c w w

    c w w

    V A f f

    h l

    h l

    # :

    #

    #

    % &$ 6) *

    $ "

    $ !

    Linear interpolationallowed for intermediatevalues

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    18/59

    18

    Definition of Wall Cross Section

    Flexural strength

    ! Consider all vertical reinforcement within weband within the effective flange width

    Consider the influence of openings onthe strength and detailing requirements

    ! ACI 318-02, 05 Appendix A Strut & Tie Approach

    Cross-Section Definition

    beff

    0.25hw

    ' ', ,

    '

    , ,

    s bound s flange s

    s bound s flange s

    A A

    A A

    6

    6

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    19/59

    19

    Behavior of Flanged Walls

    Flange Compression versus Tension

    7t7c

    s

    beff

    Flange Compression

    Low compressive strain

    Large curvature capacity

    Mn & Vu similar rectangle

    beff

    Flange Tension

    Large compressive strain

    Less curvature capacity

    Mn; Vu;

    7t7c

    , ,s bound s flangeA A6

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    20/59

    20

    Experimental Results

    RW2 & TW1: ~ !scale tests

    Thomsen & Wallace, ASCE JSE, April 2004.

    Uncoupled designDisplacement-based design

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    21/59

    21

    Experimental Results

    P = 0.09Agf'c

    vu,max= 4.85

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    22/59

    22

    Experimental Results

    RW2 & TW2: ~ !scale tests

    Thomsen & Wallace, ASCE JSE, April 2004.

    Displacement-based design of T-shape

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    23/59

    23

    Experimental Results

    P = 0.075Agf'c

    vu,max= 5.5

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    24/59

    24

    Model Assessment Comparison of Analytical andExperimental results

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    25/59

    25

    MVLE (Fiber) Model

    h

    (1-c)h

    ch

    12

    3

    4

    5

    6Rigid Beam

    Rigid Beam

    k1 k2 knkH. . . . . . .

    m

    RC WALL WALL MODEL

    1

    2

    .

    .

    .

    .

    .

    Basic assumptions:

    Plane sections (rigid rotation of top/bottom beams Uniaxial material relations (vertical spring elements)

    MVLE Model versus Fiber Model:

    Similar to a fiber model except with constant curvature

    over the element height (vs linear for fiber model)

    Orakcal, Wallace, Conte; ACI SJ, Sept-Oct 2004.

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    26/59

    26

    Strain, 7

    O

    TensionNot to scale

    Compression

    ( 7c' , fc' )

    (70,0)

    (70+7t ,ft)

    Material (Uni-axial) Models

    Strain, 7

    7y

    E0

    E1=bE0>y

    OR

    Concrete:

    Chang and Mander (1994)# Generalized (can be updated)

    # Allows refined calibration

    # Gap and tension stiffening

    Reinforcing Steel:

    Menegotto and Pinto (1973) Filippou et al. (1984)

    # Simple but effective

    # Degradation ofcyclic curvature

    r

    Stress,

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    27/59

    27

    Model Assessment$

    Approximately 1/4 scale$ Aspect ratio = 3$ Displacement based

    evaluation for detailingprovided at the wall

    boundaries$ 12 ft tall, 4 ft long, 4inches thick

    $ #3 vertical steel, 3/16hoops/ties

    $ #2 deformed web steel$ Constant axial load$ Cyclic lateral

    displacements applied atthe top of the walls

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    28/59

    28

    Instrumentation

    Wire Potentiometers

    (horizontal displacement)

    Wire Potentiometers

    (X configuration)

    Steel Strain Gage Levels

    Wire Potentiometers

    (vertical displacement)

    LVDT's

    Concrete Strain Gages

    Linear Potentiometers

    (Pedestal Movement)

    Rigid

    Reference

    Frame

    RW2

    Extensive instrumentation provided to measurewall response at various locations

    Massone & Wallace; ACI SJ, Jan-Feb 2004.

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    29/59

    29

    Applied Lateral Displacement

    -80

    -40

    0

    40

    80

    -2

    -1

    0

    1

    2RW2

    0 100 200 300 400 500 600 700 800

    Data Point Number

    -80

    -40

    0

    40

    80

    TopDisplacem

    ent(mm)

    -2

    -1

    0

    1

    2

    DriftRatio

    (%)

    Applied displacementPedestal movement excluded

    Pedestal movement andshear deformations excluded

    TW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    30/59

    30

    Model Details RW2

    1219 mm

    19 mm 19 mm3 @ 51 mm 153 mm 3 @ 191 mm 153 mm 3 @ 51 mm

    64 mm

    19 mm

    19 mm

    102 mm

    #2 bars (db=6.35 mm) Hoops (db=4.76 mm)8 - #3 bars

    1 2 3 4 5 6 7 8uniaxial element # :

    (db=9.53 mm) @ 191 mm @ 76 mm

    m=16

    1

    2

    ..

    .

    .

    .h

    (1-c)h

    ch

    k1 k2 knkH. . . . . . .

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    31/59

    31

    Model Details TW2

    19 mm 19 mm3 @ 51 mm153 mm 3 @ 191 mm 153 mm3 @ 51 mm

    64 mm

    19 mm

    19 mm

    1219 mm

    3 @ 140 mm

    102 mm

    4 @ 102 mm

    19 mm

    102 mm

    19 mm

    3 @ 51 mm

    102 mm

    1219 mm

    uniaxial element # : 1

    2

    345

    6

    7

    8

    9

    10

    12-19

    118 - #3 bars(db=9.53 mm)

    #2 bars (db=6.35 mm)@ 191 mm

    Hoops (db=4.76 mm)@ 76 mm

    #2 bars (db=6.35 mm)@ 140 mm

    2 - #2 bars (db=6.35 mm)

    Hoops and cross-ties (db=4.76 mm)@ 38 mm

    8 - #3 bars(db=9.53 mm)

    Hoops (db=4.76 mm)@ 32 mm

    +

    -

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    32/59

    32

    Concrete Model - Unconfined

    0 0.001 0.002 0.003 0.004

    Strain

    0

    10

    20

    30

    40

    50

    Stress(M

    Pa)

    Test Results

    1stStory

    2ndStory

    3rdStory

    4thStory

    Analytical (Unconfined)

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    33/59

    33

    Concrete Model - Confined

    0 0.005 0.01 0.015 0.02 0.025

    Strain

    0

    10

    20

    30

    40

    50

    60

    70

    Stress(M

    Pa)

    Unconfined Model

    Mander et al. (1988)

    Saatcioglu and Razvi (1992)

    RW2

    TW2 Flange

    TW2 Web

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    34/59

    34

    Concrete Model - Tension

    0 0.0005 0.001 0.0015 0.002 0.0025

    Strain

    0

    0.5

    1

    1.5

    2

    2.5

    Stress(M

    Pa)

    Chang and Mander (1994)Belarbi and Hsu (1994)

    0 0.005 0.01 0.015 0.02 0.025 0.03

    0

    0.5

    1

    1.5

    2

    2.5

    (7t,ft)

    r

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    35/59

    35

    Reinforcement Material Model

    -0.03 -0.02 -0.01 0 0.01 0.02 0.03

    Strain

    -600

    -500-400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    500

    600

    Stress(M

    Pa)

    #3 (RW2 & TW2 Flange)

    #3 (TW2 Web)

    #2 (TW2 Web)

    #2(RW2 & TW2 Flange)

    #3

    #2

    0 0.02 0.04 0.06 0.08 0.1

    0

    100

    200

    300

    400

    500

    600

    700

    #3 rebar

    #2 rebar

    4.76 mm wire

    Tension

    CompressionTest Results

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    36/59

    36

    Model Assessment RW2

    -80 -60 -40 -20 0 20 40 60 80

    Top Flexural Displacement, +top (mm)

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    LateralLoad,Plat(kN)

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    Lateral Flexural Drift (%)

    Test

    Analysis5Pax 0.07Agfc

    '

    Plat,+top

    0

    100

    200300

    400

    500

    Pax

    (k

    N)

    RW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    37/59

    37

    Model Assessment RW2

    -80 -60 -40 -20 0 20 40 60 80

    Lateral Flexural Displacement (mm)

    0

    1

    2

    3

    4

    5

    StoryNumber

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    Lateral Flexural Drift (%)

    Test

    Analysis

    1.5%

    2.0%

    2.5%

    0.75%

    1.0 %

    RW2

    Applied LateralDrift Levels:

    Top

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    38/59

    38

    Model Assessment RW2

    -0.01

    0

    0.01

    0.02

    Rotation

    (rad)

    0 100 200 300 400 500 600 700-15

    -10

    -5

    0

    5

    10

    15

    Dis

    placement

    (mm)

    TestAnalysis

    RW2 (First Story)

    Results based on recommended values for material parameters; however,results could vary, maybe significantly, for different element lengths and

    material parameters (particularly if no strain hardening)

    1.5%2.0%

    Data Point

    0.008 FEMA 356 CP limit

    d l 2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    39/59

    39

    Model Assessment RW2

    RW2Boundary Zone

    100 150 200 250 300 350 400 450 500 550 600

    Data Point

    -0.01

    -0.005

    0

    0.005

    0.010.015

    0.02

    0.025

    0.03

    0.035

    Concrete

    Strain

    Concrete Strain Gage

    LVDT

    Analysis

    0.25%0.5%

    0.75%

    1.0%

    1.5%

    1.0%

    2.0%

    1.5%

    Orakcal & Wallace; ACI SJ, in-press for publication in 2006 (see 13WCEE).

    M d l A RW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    40/59

    40

    Model Assessment RW2

    RW2Boundary Zone

    100 150 200 250 300 350 400 450 500 550 600

    Data Point

    -0.01

    -0.005

    0

    0.005

    0.010.015

    0.02

    0.025

    0.03

    0.035

    Concrete

    Strain

    Concrete Strain Gage

    LVDT

    Analysis

    0.25%0.5%

    0.75%

    1.0%

    1.5%

    1.0%

    2.0%

    1.5%

    Orakcal & Wallace; ACI SJ, in-press for publication in 2006 (see 13WCEE).

    M d l A t TW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    41/59

    41

    Model Assessment TW2

    -80 -60 -40 -20 0 20 40 60 80

    Top Flexural Displacement, +top (mm)

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    La

    teralLoad,Plat(kN)

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    Lateral Flexural Drift (%)

    Test

    Analysis

    5Pax 0.075Agfc'

    Plat,+top

    0

    250500

    750

    Pax

    (kN)

    TW2

    C

    T

    T

    C

    M d l A t TW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    42/59

    42

    Model Assessment TW2

    -80 -60 -40 -20 0 20 40 60 80

    Lateral Flexural Displacement (mm)

    0

    1

    2

    3

    4

    5

    StoryNumber

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    Lateral Flexural Drift (%)

    Test

    Analysis

    1.5%

    2.0%

    2.5%

    0.75%

    1.0 %

    TW2

    Applied LateralDrift Levels:

    Top

    C

    T

    T

    C

    M d l A t TW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    43/59

    43

    Model Assessment TW2

    -600 -400 -200 0 200 400 600

    Distance along Flange from Web (mm)

    -0.005

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    FlangeConcreteS

    train

    (LVDT

    s)

    Test

    Analysis

    0.5%1.0%

    2.0%

    2.5%

    TW2

    C

    T

    T

    C

    y7

    2.0%

    2.5%

    2.5%

    2.0%

    M d l A t St bilit

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    44/59

    44

    Model Assessment Stability

    P = 0.09Agf'c

    vu,max= 4.85

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    45/59

    45

    Model Assessment - Stability

    Rebar Buckling at Wall Boundary Rebar Fracture FollowingBuckling at Wall Boundary

    Instabilities, such as rebar buckling and lateral web buckling, and rebar fractureare typically not considered in models; therefore, engineering judgment is required.

    Loss of lateral-load capacity does not necessarily mean loss of axial load capacity

    FEMA 356 T bl 6 18

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    46/59

    46

    FEMA 356 Table 6-18

    FEMA 356 Table 6 18

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    47/59

    47

    FEMA 356 Table 6-18

    FEMA 356 M d li P t

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    48/59

    48

    FEMA 356 Modeling Parameters

    ' '

    2

    '

    s

    & 0.07 & Hoops @ 2" o.c.

    2(0.027 in ) 0.09( )( 6" 3 /8" 3 /16")(5 ksi / 63 ksi)

    1.2" Non-confo

    WALL RW2:

    WALL TW2: Flange Compre

    rming

    8 - #3

    ssio

    A 10 - #

    n

    s s g c

    c

    s

    A A P A f

    s h

    s

    A

    $ $

    $ $ 6 6

    9

    $ $

    , - , -' 2

    '

    '

    3 and 4 - #2 63 ksi & Hoops/Ties @ s=4"

    No special detailing required: Conforming

    0.42 in 63 ksi 0.075(2) 0.1274"(48")( 6 ksi)

    40 kips2.7

    4"(48") 6000 /1000

    y

    s s y

    w w c

    u

    w w c

    f

    A A f Pt l f

    V

    t l f

    5

    % &8 6 8) *$ 6 $

    $ $

    !

    FEMA 356 M d li P t

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    49/59

    49

    FEMA 356 Modeling Parameters

    '

    s

    2

    8 - #3 & 2 - #2 A 24 - #3 and 8 - #2 & 63 ksi

    Hoops/Ties @ s=1.25" (5 legs and 2 legs)

    5(0.027 in ) 0.09( )( 16" 3/

    WALL TW2: Flange

    8" 3/16")(6 ksi / 63 ksi) 1.

    Tension

    "

    (

    0

    2 0

    s y

    c

    A f

    s h s

    $ $ 5

    $ $ 6 6 9

    , - ? @, -

    2

    '

    '

    '

    .027 in ) 0.09( )( 2.5" 3 /8" 3 /16")(6 ksi / 63 ksi) 2.1"

    Conforming

    16(0.11) 6(0.049) 63 ksi

    0.075(2) 0.264"(48")( 6 ksi)

    80 kips5.4

    4"(48") 6000 /1000

    c

    s s y

    w w c

    u

    w w c

    s h s

    A A f P

    t l f

    V

    t l f

    $ $ 6 6 9

    8 6 6

    $ 6 $

    $ $

    !

    !

    FEMA 356 Modeling Parameters

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    50/59

    50

    FEMA 356 Modeling Parameters

    Tables 6-18 (partial):

    Model Parameters, RadiansWalls Controlled by Flexure

    '

    ')(

    cww

    yss

    flt

    PfAA Conf.Bound.

    '

    cww flt

    V PlasticHinge

    a

    PlasticHinge

    b

    ResidualStrength

    c

    0.1 Yes 3 0.015 0.02 0.75

    0.1 No 3 0.008 0.015 0.60

    0.25 Yes 6 0.005 0.010 0.30

    0.25 No 6 0.002 0.004 0.20

    RW2

    TW2Flange Tension

    TW2Flange Comp

    FEMA Backbone Relation RW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    51/59

    51

    FEMA Backbone Relation RW2

    , -

    , -

    4

    3

    y

    3

    29.4 kips

    3 0.5

    29.4 (150")0.41"

    3(4000 )(18,432 )

    0.008(144") 1.15"

    0.015(144") 2.16"

    0.6(29.4 ) 17.6 kips

    nlateral

    w

    lateral load

    c g

    k

    ksi in

    a

    b

    k

    residual

    MPh

    P h

    E I

    P

    A

    A

    A

    $ $

    % &' ($

    ' () *

    $ $

    $ $$ $

    $ $

    FEMA Backbone Relations TW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    52/59

    52

    FEMA Backbone Relations TW2

    , -

    , -

    , -

    4

    3

    y

    3

    4 48

    40.2 kips

    3 0.5

    40.2 (150")

    3(4400 )(40, 700 )

    0.25"

    2.2 =34.5"

    0.015(144") 2.16"

    0.020(144") 2.88"

    0.75(40.2 ) 30.2 kips

    nlateral

    w

    lateral load

    c g

    k

    ksi in

    g g x

    a

    b

    k

    residual

    MP

    h

    P h

    E I

    I I y

    P

    A

    A

    A

    $ $

    % &' ($

    ' () *

    $

    $

    $$ $

    $ $

    $ $

    , -

    , -

    , -

    4

    3

    y

    3

    4 48

    77.0 kips

    3 0.577.0 (150")

    3(4400 )(40,700 )

    0.48"

    2.2 =34.5"

    0.005(144") 0.72"

    0.010(144") 1.44"

    0.30(77.0 ) 23.1 kips

    nlateral

    w

    lateral load

    c g

    k

    ksi in

    g g x

    a

    b

    k

    residual

    MP

    h

    P h

    E I

    I I y

    P

    A

    A

    A

    $ $

    % &' ($' () *

    $

    $

    $$ $

    $ $

    $ $

    Flange Compression Flange Tension

    Backbone Curve RW2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    53/59

    53

    Backbone Curve RW2

    , -, -3

    /

    3

    n w w

    y

    c cr

    h h

    E IA $

    P = 0.07Agf'c

    vu,max= 2.2

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    54/59

    54

    Backbone Curve TW2

    , -, -3

    /

    3

    n w w

    y

    c cr

    h h

    E IA $

    P = 0.075Agf'c

    -4.0 -2.0 0.0 2.0 4.0

    Top Displacement (in.)

    -120

    -80

    -40

    0

    40

    80

    La

    teralLoad

    (

    ips)

    -2.8 -1.4 0.0 1.4 2.8

    Lateral Drift (%)

    Plat@Mn(7c=0.003)=77.0k

    Plat@Mn(7c=0.003)=40.2k

    -400

    -200

    0

    200

    LateralLoad

    (

    N)

    FEMA 356 Conforming

    vu,max= 5.4

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    55/59

    55

    Paulay, EERI, 2(4), 1986 [Goodsir, PhD 1985 NZ]

    h = 3.3 m= 10.83 ft

    (3.94)

    ' '

    g

    3 3

    y 3 '

    & 0.163 A & Assume conforming

    (70 )(130") 700.4" (10.0 ) 4.6

    3 0.5 3(~

    WALL Goodsir

    3750 )(0.5)(4")(59") /12 (4")(59") 3750

    0.01(33

    , 1985:

    00 ) 33

    s s c

    u

    c g w w c

    a

    A A P f

    VPL k kmm

    E I ksi psit l f

    mm m

    A

    A

    $ $

    $ $ $ $ $

    5 $ 0.015(3300 ) 50bm mm mmA 5 $

    (59)

    ConformingP=10%, V=3

    Conforming

    P=10%, V=6

    Cantilever Wall TestsP l EERI 2(4) 1986 [G d i PhD 1985 NZ]

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    56/59

    56

    Paulay, EERI, 2(4), 1986 [Goodsir, PhD 1985 NZ]

    h = 3.3 m= 10.83 ft

    ' '

    g

    3 3

    y 3 '

    & 0.12 A & Assume conforming

    (70 )(130") 700.4" (10.0 ) 4.6

    3 0.5 3(~ 3

    WALL Goodsir,

    750 )(0.5)(4")(59") /12 (4")(59") 3750

    0.01(330

    1

    0

    8

    )

    5

    3

    :

    3

    9

    s s c

    u

    c g w w c

    a

    A A P f

    VPL k kmm

    E I ksi psit l f

    mm mm

    A

    A

    $ $

    $ $ $ $ $

    5 $ 0.015(3300 ) 50b mm mmA 5 $

    ConformingP=10%, V=3

    Conforming

    P=10%, V=6

    Summary

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    57/59

    57

    Summary

    FEMA 356 Backbone Curves! In general, quite conservative

    ! This appears to be especially true for cases wheremoderate detailing is provided around boundary bars

    ! Possible reformat" Compute neutral axis depth

    " If s 3/4 of ACI 318-05,then high ductility

    " Do not reduce deformation capacity for shear stress below 5roots fc

    Shear Design

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    58/59

    58

    Shear Design

    Wall shear studies!Aktan & Bertero, ASCE, JSE, Aug. 1985

    ! Paulay, EERI 1996; Wallace, ASCE, JSE, 1994.

    !

    Eberhard & Sozen, ASCE JSE, Feb. 1993Design Recommendations

    ! Based on Mpr at hinge region

    !

    Uniform lateral force distribution

    , -, -, -lim

    0.9 /10

    0.3

    pr

    wall v u v

    u

    wall it m e

    MV V n

    M

    V V D W weight A EPA

    B B/ 0

    $ $ 61 23 4

    $ 6 $ $ $

    Paulay, 1986

    Eberhard, 1993

    Sl d W ll B h i & M d li

  • 8/13/2019 Wallace-Slender Walls FINAL V5 Present Handout

    59/59

    Slender Wall Behavior & Modeling

    John WallaceUniversity of California, Los Angeles

    With contributions fromDr. Kutay OrakcalUniversity of California, Los Angeles