Wang 2016

Embed Size (px)

Citation preview

  • 8/18/2019 Wang 2016

    1/12

  • 8/18/2019 Wang 2016

    2/12

    investigate the failure mode and shear buckling strength of the web-

    post. An empirical formula which predicted the ultimate vertical shear

    buckling strength of web-posts was formulated for the particular web

    opening shapes. Lawson, et al. [14] presented simplied equations for

    web-post buckling based on strut model, which was calibrated against

    results of  nite element analyses. Under vertical shear force, the web-

    post buckled inan “S ” shape. Hence, it was discordant to check its stabil-

    ity using the column buckling curves. And the benecial effect of thein-

    clined tension zone was not included in the design.

    As shown in Fig. 1(b), it was much reasonable to check the stability

    of the web-post based on the plate shear buckling theory. Redwood and

    Demirdjian [15] investigated buckling behavior of the web-post in the

    CSB with hexagonal openings through studying the upper part of the

    web-post under horizontal shear force, as shown in Fig. 2. The horizon-

    tal shear buckling strength, V h,cr, of the free body was calculated by

    V h;cr  ¼ k  Eetw

    h0=twð Þ2

      ð1Þ

    where k was the shear buckling coef cient of the upper part of theweb-

    post under horizontal shear force. E was the Young's modulus of steel. e

    was the width of web-post. t w was the web-post thickness.  h0 was the

    height of web opening. From the force equilibrium of the free bodyshown in Fig. 2, the vertical shear buckling strength of the web-post

    was calculated by

    V cr  ¼ h−2yi

    s  V h;cr    ð2Þ

    where h  was the section height of CSB.  yi was the distance from the

    ange to the centroid of Tee-section.  s  was the distance between two

    adjacent web openings. The buckling strength of the web-post could

    be easily determined if   k   was provided. However, Redwood and

    Demirdjian [15] only presented curves to calculate the shear buckling

    coef cient k  of the web-post with limited geometric parameters.

    Substitute Eq. (1) into Eq. (2), the vertical shear buckling strength of 

    the web-post can be obtained by

    V cr  ¼  k h−2yi

      Eetw

    h0=twð Þ2

      ð3Þ

    In this paper, after obtaining the vertical shear buckling strength of 

    the web-post through FEM simulation, the shear buckling coef cient k

    was calculated through reverse analysis. And then an equation was

    Fig. 1. Strut inthe web-post. (a) Inclined compressionstrut. (b) Compressionand tension

    eld.

    Fig. 2. Free body in the CSB with polygonal web openings.

    Fig. 3. Conguration of studied CSB.

    Fig. 4. FEM of the CSB with hexagonal web openings . (a) Mesh of the CSB with

    hexagonal web openings. (b) Load and boundary conditions of the CSB with hexagonal

    web openings.

    174   P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    3/12

    proposed to calculate k based on the parameter study results. Studies in

    this paper followed four steps:

    (1) A Finite Element Model (FEM) was proposed and veried by

    available test results [10,15,19,20] on CSBs failed in web-post

    buckling;

    (2) Shear buckling strengths calculated by hand calculated method

    proposed by Redwood and Demirdjian   [15]  were compared

    with the FEM simulation results to show its precision;

    (3) Parameters affected the shear buckling coef cient k  of the web-

    post were studied; and then an equation to calculate   k  was

    proposed;

    (4) The vertical shear buckling strength of the web-post obtained

    using the proposed buckling coef cient k  was veried by FEM

    and test results [15,19].

    2. Finite element model and verication

     2.1. Model description and constitutive model of FEM 

    The CSB was made of Q345 steel with yield strength of 345 MPa and

    Poisson's ratio of 0.3. The material behavior provided by ABAQUS [16]

    using the PLASTIC option allows a nonlinear stress–strain curve to be

    Fig. 5. Comparison of load-middle span deection curves and buckling deformations. (a) Dimension of test beams [10]. (b) Load-middle span deection curves. (c) Bucklingdeformations.

     Table 1

    Tested CSBs with hexagonal openings [15,19].

    Specimens   h

    (mm)

    bf (mm)

    t w(mm)

    t f (mm)

    e

    (mm)

    h0(mm)

    b

    (mm)

    n L 

    (mm)

     f yw(MPa)

     f yf (MPa)

    10-5a [15]   380.5 66.9 3.56 4.59 77.8 266.2 76.2 4 1220 352.9 345.6

    10-5b [15]   380.5 66.9 3.56 4.59 77.8 266.2 76.2 4 1220 352.9 345.6

    10-6 [15]   380.5 66.9 3.56 4.59 77.8 266.2 76.2 6 1828 352.9 345.6

    10-7 [15]   380.5 66.9 3.56 4.59 77.8 266.2 76.2 8 2438 352.9 345.6

    10-1 [19]   370.59 69.09 3.58 4.39 58.17 245.87 69.85 12 3048 357.1 342

    10-3 [19]   376.43 70.61 3.61 4.45 57.91 260.53 127 8 3048 357.1 342

    12-1 [19]   476.25 78.49 4.69 5.33 73.41 352.81 101.6 8 3048 311.6 307

    12-3 [19]   449.58 78.23 4.62 5.35 71.37 302.51 149.35 6 3048 311.6 307

    175P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    4/12

    used. The rst part of the nonlinear curve represents the elastic part up

    to the proportional limit stress with Young's modulus of 205 GPa. Since

    the non-linear buckling analysis involved large inelastic strains, the

    nominal stress–strain curves were converted to true stress and

    logarithmic plastic true strain curves. The steel constitutive model in

    the proposed FEM used Von Mises yield surfaces with associated plastic

    ow, which allowed for isotropic yield. The Von Mises yield surface wasdened by giving the value of the uniaxial yield stress as a function of 

    uniaxial equivalent plastic strain [17,18].

    The studied CSB had four openings along the beam, as shown in

    Fig. 3. The vertical concentrated force was applied at the middle span

    of the beam. The width and thickness of the two   anges were

    180 mm and 20 mm, respectively.   α  was the incline angle of web

    Fig. 6. CSB with hexagonal openings [15,19].

     Table 2

    Shear buckling strengths of CSBs with hexagonal openings obtained from FEM and tests.

    Specimens   V cr,TEST(kN)

    V cr,FEM(kN)

    V cr,TEST/ V cr,FEM

    10-5a [15]   46.35 45.75 1.05

    10-5b [15]   50.45 45.75 1.10

    10-6 [15]   47.4 45.75 1.03

    10-7 [15]   42.2 41.75 1.01

    10-1 [19]   39.55 38.75 1.02

    10-3 [19]   36.92 40.64 0.91

    12-1 [19]   57.33 58.43 0.98

    12-3 [19]   58.22 61.21 0.95

    Fig. 7. Comparison of web-post buckling deformations. (a) Test results [19]. (b) FEM

    results.

    Fig. 8. CSB with cellular openings [20].

     Table 3

    Test specimen NPI_240 and NPI_280 [20].

    Specimens  h

    (mm)

    bf (mm)

    t w(mm)

    t f (mm)

    e

    (mm)

    h0(mm)

    (mm)

     f yw(MPa)

     f yf (MPa)

    NPI_240 355.6 106 8.7 13.1 94 251 2846 390 390

    NPI_280 406.9 119 10.1 15.2 163 271 2820 290 290

     Table 4

    Shear buckling strengths of CSBs with circular openings obtained from FEM and tests.

    Specimens  V cr,TEST [20]

    (kN)

    Mean value

    (kN)

    V cr,FEM(kN)

      V cr,TEST/ V cr,FEM

    NPI_240 Test3 142.05 142.58 152.62 0.93

    NPI_240 Test4 143.1

    NPI_280 Test1 188.8 187.89 176.81 1.06

    NPI_280 Test2 192.1

    NPI_280 Test3 186.2

    NPI_280 Test4 184.45

     Table 5

    Comparison of deection obtained from FEM and tests [20].

    Specimens   wTEST(mm)

    Mean value

    (kN)

    wFEM(mm)

    wTEST/ wFEM

    NPI_240 Test3 13.892 14.019 15.91 0.88

    NPI_240 Test4 14.146

    NPI_280 Test1 20.181 20.143 20.036 1.01

    NPI_280 Test2 20.694

    NPI_280 Test3 19.805

    NPI_280 Test4 19.891

    Fig. 9. Shearbuckling coef cient forweb-postproposedby Redwoodand Demirdjian [15].

    176   P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    5/12

    Fig. 10. Values of  k  obtained from FEM and proposed by Redwood and Demirdjian  [15]. (a) Effects of  t w on k, (b) effects of  h0/ h on k, and (c) effects of  e/ t w on k.

     Table 6

    Dimensions of web-post to study effects of  t w on k.

    Group No.   e/ t w   h0/ e h0/ h t w (mm)   e (mm)   h0(mm)   h (mm)

    1

    20 3, 4, 5, 6, 7, 8 0.74

    6.0 120 360, 480, 600, 720, 840, 960, 480, 640, 800, 960, 1120, 1280

    2 8.0 160 480, 640, 800, 960, 1120, 1280 640, 853, 1066, 1280, 1493, 1706

    3 10.0 200 600, 800, 1000, 1200, 1400, 1600 800, 1066, 1333, 1600, 1866, 2133

     Table 7

    Dimensions of web-post to study effects of  h0/ h on k.

    Group no.   e/ t w   h0/ e h0/ h t w (mm)   e (mm)   h0 (mm)   h (mm)

    120 3, 4, 5, 6, 7, 8

      0.746.0

      1 20 3 60 , 48 0, 6 00, 7 20, 84 0, 9 60 48 0, 6 40 , 80 0, 96 0, 1 12 0, 12 80

    4 0.51 120 360, 480, 600, 720, 840, 960 720, 960, 1200, 1440, 1680, 1920

     Table 8

    Dimensions of web-post to study effects of  e/ t w on k.

    Group no.   e/ t w   h0/ e h0/ h t w (mm)   e (mm)   h0 (mm)   h (mm)

    1 203, 4, 5, 6, 7, 8 0.74 6.0

      12 0 3 60 , 48 0, 60 0, 7 20 , 84 0, 96 0, 4 80 , 64 0, 8 00 , 9 60 , 11 20 , 1 28 0

    5 15 90 270, 360, 450, 540, 630, 720 480, 600, 720, 840, 960

    177P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    6/12

    opening edge. hf  was the web height of the Tee-section above the web

    opening. l was the half spanof the CSB. t f was the thicknessof theange.

    h and bf  were the section height and  ange width of the CSB.

     2.2. Boundary conditions

    For the symmetry of the model, only half of the beam was modeled,

    asshown in Fig. 4(a). Displacements in y (Uy) and z (Uz)direction of the

    bottom ange at the left end of the beam were restrained to simulate

    the pin support. The Uz at the top  ange was restrained to simulate

    the lateral brace. At the right end of the beam, the displacement in  x

    (Ux) direction and the rotation around y-axis (URy) of theweb were re-

    strained. The Uz was also restrained to prevent the beam from failing at

    thelateral torsionalbuckling. Forthe top andbottomanges,the Ux and

    rotation around z-axis (URz) were restrained. The vertical shear force

    was applied at the bottom ange, as shown in Fig. 4(b).

    The beam was meshed using the shell element S4R in ABAQUS, a 4-

    node quadrilateral shell element with reduced integration and a large-strain formulation, with mesh size of 10 × 10 mm. Theeigenvalue buck-

    ling analysis was employed to obtain the elastic buckling strength and

    the buckling modes of the web-post.

     2.3. Model veri cation

    Test results on CSBs with cellular openings by Tsavdaridis and

    D'Mello   [10], on CSBs with hexagonal openings by Redwood and

    Demirdjian [15] and by Zaarour and Redwood [19], and on CSBs with

    cellular openings by Erdal and Saka [20] were used to validate the pro-

    posed FEM. The beams selected all failed in web-post buckling.

    CSBs with cellular web openings tested by Tsavdaridis and D'Mello

    [10] were made of UB457 × 152 × 52 and had steel grade of S355, asshown in   Fig. 5(a). The yield strength equaled to 375.3 MPa and

    359.7 MPa for the web and the  anges, respectively; and the ultimate

    stresses of the web and the anges were 492.7 MPa and 480.9 MPa, re-

    spectively. Thesimply supported beam was loadedat mid-span through

    a hydraulic jack. The load-middle span deection curves and failure

    modes obtained from FEM agreed well with those from tests, as

    shown in Fig. 5(b). The shear buckling strengths of tested specimen

    A1 and B1 obtained from test were 133.3 kN and 101.5 kN, respectively,

    which were half of the applied concentrated load. The  V cr,TEST/ V cr,FEMwere only 0.99 and 1.05 for the two tested beams, respectively.  V cr,TESTand V cr,FEM were the shear buckling strengths obtained from test and

    FEM, respectively. Failure modes and buckling deformations obtained

    from FEM and test all buckled in   “S ”   shape, as shown in   Fig. 5(c),

    which proved the validity of the FEM.Test results on CSBs with hexagonal openings carried out by Red-

    wood and Demirdjian [15] and Zaarour and Redwood [19] were com-

    pared with the FEM results. The tested CSBs were simply supported

    and were loaded by a concentrated force at middle span. Vertical stiff-

    eners were applied at the two supports and the loading point at the

    middle span. Dimensions of tested beams and yield strengths of the

    web ( f yw) and the anges ( f yf ) were listed in Table 1. h  was the section

    height of the CSB. h0 was the height of web opening.  bf  and t f  were the

    width and thickness of the ange, respectively. t w was the thickness of 

    the web. e  was the width of web-post.  b  was the horizontal length of 

     Table 9

    Parameters of CSBs for studying effects of  e/ t w.

    Group no. Incline angle

    α

    e/ t w   h0/ t w   hf / t w   t w (mm)   e (mm)   h0 (mm)   hf  (mm)

    Group I 60° 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 80 15 8.0 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480 640 120

    Group II 10.0 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600 800 150

    Group III 12.0 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, 720 960 180

     Table 10

    Parameters of CSBs for studying effects of  h0/ t w.

    Group no. Incline angel

    α

    e/ t w   h0/ t w   hf / t w   t w (mm)   e (mm)   h0 (mm)   hf  (mm)

    G ro up I V 60 ° 15 40 , 50 , 60 , 70 , 80 , 90 , 10 0, 1 10, 1 20,

    130, 140

    15 3.0 45 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420 45

    Group V 6.0 90 240, 300, 360, 420, 480, 540, 600, 660, 720, 780, 840 90

    Group VI 10.0 150 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400 150

     Table 11

    Parameters of CSBs for studying effects of  hf / t w.

    Group no. Incline angle

    α

    e/ t w   h0/ t w   hf / t w   t w (mm)   e (mm)   h0 (mm)   hf  (mm)

    Group VII 60° 15 80 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 8.0 120 640 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184

    Group VIII 10.0 150 800 30, 50, 70, 90, 110, 130, 150, 170, 190, 210, 230

    Group IX 12.0 180 960 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276

     Table 12

    Parameters of CSBs for studying effects of  t w.

    Group

    no.

    Degrees

    α

    e/ t w   h0/ t w   hf / t w   t w (mm)   e (mm)   h0 (mm)   hf  (mm)

    Group X 60° 15 80 15 3.0, 4.0, 5.0 ,6.0,

    7.0,8.0, 9.0, 10.0, 11.0

    45, 60, 75, 90, 105, 120, 135, 150, 165 240, 320, 400, 480, 560,

    640, 720, 800, 880

    45, 60, 75, 90, 105, 120,

    135, 150, 165Group XI 20 60, 80, 100, 120, 140, 160, 180, 200, 220

    Group XII 30 90, 120, 150, 180, 210, 240, 270, 300, 330

    178   P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    7/12

     Table 13

    Parameters of CSBs for studying effects of  α .

    Group no. Incline angel

    α

    Tangent value   e/ t w   h0/ t w   hf / t w   t w (mm)   e (mm)   h0 (mm)   hf  (mm)

    Group XIII 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50° 11.43, 5.67, 3.73, 2.14, 1.73, 1.43, 1.20 15 80 15 6.0 90 480 90

    Group XIV 8.0 120 640 120

    Group XV 10.0 150 800 150

    Fig.11. Effectsof web-post dimensionson vertical shearbucklingstrengthof the web-post. (a)Effectsof e/ t w onshearbucklingstrength, (b)effects of h0/ t w on shearbuckling strength,

    (c) effects of  hf / t w on shear buckling strength, (d) effects of  t w on shear buckling strength, and (e) effects of  α on shear buckling strength.

    179P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    8/12

    the opening edge. L wasthelength of the beam, as shown in Fig. 6. n was

    the number of openings of the CSB.

    Shear buckling strengths obtained from FEM and tests  [15,19] were

    listed in Table 2. It could be seen that the shear buckling strengths pre-

    dicted by FEM agreed well with those measured from tests [15,19]. The

    V cr,TEST/ V cr,FEM variedfrom0.91and 1.05 of theeight beams with a mean

    value of 0.99 and a standard deviation of 0.0572.

    For beam 10-5a and 10-5b [15], shear buckling deformations of the

    web-post obtained from FEM and test were shown in  Fig. 7. The FEMand test results both demonstrated that the web-post buckled in   “S ”

    shape.

    Erdal and Saka [20] carried out experiment on cellular steel beams.

    Test results of specimen NPI_240 and NPI_280 which failed in web-post

    buckling were used to verify the FEM. The cellular steel beams were sup-

    portedby round rollers and loaded by a concentrate force at middle span.

    Lateral supports were installed at beam ends to prevent the lateral tor-

    sional buckling, as shown in Fig. 8. Dimensions of NPI_240 and NPI_280

    were listed in Table 3. Shear buckling strengths and vertical deections

    obtained from FEM and tests were listed in Tables 4 and 5, respectively.

    Results obtained from the FEM with mesh size of 10 mm agreed well

    with those measured from tests. The  V cr,TEST/ V cr,FEM  varied from 0.93

    and 1.06 of the six beams with a mean value of 0.99 and a standard devi-

    ation of 0.0667. The  wTEST/ wFEM varied from 0.88 and 1.01 of the six

    beams.  wTEST was the deection of the cellular steel beam obtained

    from the tests, and wFEM was the deection obtained from FEM.

    3. Precision of  k  proposed by Redwood and Demirdjian [15]

    If  V cr had been obtained through FEM simulation, the buckling coef-

    cient k could be obtained through reverse analysis by

    k ¼  V cr    h0=twð Þ

    2

    Eetw

      s

    h−2yið4Þ

    where V cr was the vertical shear buckling strength of the web-post,which could be obtained through FEM eigenvalue analysis.

    Thehorizontal shear buckling strength of theweb-post could not ex-

    ceed its shear yield strength

    V h; p ¼  0:58etw f  y   ð5Þ

    Substitute Eqs. (2) and (5) into Eq. (4). The corresponding shear

    yielding coef cient kp

    k p  ¼  0:58 f  yE

    h0tw

    2ð6Þ

    Redwood and Demirdjian [15] proposed the shear buckling coef -

    cient k  as a function of the ratio of web opening height to web-post

    width h0/ e, the ratio of web opening height to section height h0/ h, and

    the ratio of web-post width to web thickness  e/ t w. For h0/ h equaled to

    0.51 or 0.74, k could be obtained through Fig. 9 [15]. dg in Fig. 9 [15] rep-

    resented section heightof theCSB, which wasdenoted as h in this paper.

    Comparison of shear buckling coef cients of web-posts obtained

    using the  nite element method and method proposed by Redwood

    and Demirdjian [15] was shown in Fig. 10(a), (b) and (c). The yield

    strength of steel, f y, was 345 MPa. The incline angle of opening edge

    was 60°.Effects of web thickness on the shear buckling coef cients of the

    web-post were shown in Fig. 10(a). Dimensions of the web-post were

    listed in Table 6. Three t w were studied, which were 6.0 mm, 8.0 mm

    and 10.0 mm. For theweb-post with thesame e/ t w, h0/ e and h0/ h, k pro-

    posed by Redwood and Demirdjian [15] were the same. However, FEM

    results showed that  k  changed with the changes of  t w. So it was not

    enough to formulate the buckling coef cient by only using thethree di-

    mensionless parameters e/ t w, h0/ e and  h0/ h. And the k  calculated by

    Fig. 12. Effects of  e/ t w on k.

    Fig. 13. Effects of  h0/ t w on k.

    Fig. 14. Effects of  hf / t w on k.

    180   P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    9/12

    method proposed by Redwood and Demirdjian [15] was much lower

    than that obtained through FEM.

    Effects of  h0

    / h on the shear buckling coef cients of the web-post

    were shown in Fig. 10(b). Dimensions of the web-post studied were

    listed in Table 7. Two h0/ h were studied, which were 0.74 and 0.51. Ac-

    cording to the curves obtained by Redwood and Demirdjian [15], with

    theincrease of h0/ e, the slope ofthe k line with different h0/ h was almost

    the same, as shown in Fig. 10(b).However, FEMresults showedthat the

    slope of the k  line decreased with the increase in  h0/ h. k  obtained by

    Redwood and Demirdjian [15] was still smaller than FEM results.

    Effects of e/ t w on k were shown in Fig. 10(c). Dimensions of the web-

    post studied were listed in Table 8. Three e/ t w were studied, while  t wwas kept constant. k decreased with increase in e/ t w, if it wascalculated

    by method presented by Redwood and Demirdjian [15]. FEM results

    showed that  k  nearly kept constant with the increase in  e/ t w, if the

    web-post had the same  t w.  k  obtained by Redwood and Demirdjian

    [15] was smaller than FEM results.

    4. Shear buckling strength of web-post

    Parameters that affected the buckling behaviors of the web-post

    were studied rst to nd out how and to what degrees each parameter

    inuenced the V cr. If the vertical shear buckling strength V cr had been

    obtained through FEM simulation, then the shear buckling coef cient

    k can be calculated by Eq.  (4). Then a practical method to calculate k

    was proposed based on curve  tting of FEM simulation results. And

    the vertical shear buckling strength of the web-post was calculated by

    Eq. (3) at last.

    4.1. Parameters affected vertical shear buckling strength of web-post 

    CSBs listed in Tables 9–13 were studied to show effects of web-post

    dimensions on vertical shear buckling strength of a CSB with hexagonal

    webopenings. Analysis results were shown in Fig. 11. Dimensions of the

    web-post were represented by dimensionless factors, which were the

    ratio of web-post width to web thickness e/ t w, the ratio of web opening

    height to web thickness h0/ t w, the ratio of web height of Tee-section

    above web opening to web thickness  hf / t w, the web thickness t w (in

    mm), and the incline angle of web opening edge α .

    As shown in Fig. 11(a), (b) and (c), with the increase in  e/ t w, h0/ t w

    and hf / t w, the shear buckling strength decreased. h0/ t w had great effecton the shear buckling capacity. And with the increase in t w and  α , the

    shear buckling strength increased, as shown in Fig. 11(d) and (e).

    4.2. Effects of geometry parameters on the shear buckling coef  cient k

    After V cr was obtained through FEM simulation, the buckling coef -

    cient  k  can be obtained by Eq.  (4). Parameters that affected k  were

    investigated through FEM.

    4.2.1. Effects of e/t w on k

    Three groups of CSBs were studied to show effects of  e/ t w on k. Pa-

    rameters of the studied CSBs were listed in   Table 9. As shown in

    Fig. 12, k  decreased non-linearly with the increase in  e/ t w and it could

    be expressed by an exponent function with negative index.

    Fig. 16. Effects of α on k.

    Fig. 17. Distribution of  k obtained from proposed method and FEM.

     Table 14

    Statistics of (kCAL  −  kFEM)/ kFEM.

    Statistics project Value

    Mean 0.004653

    Standard error 0.002179

    Median 0.000391

    Standard deviation 0.027217

    Sample variance 0.000741

    Minimum   −0.043890

    Maximum 0.1183996

    Sum 0.6978705

    Count 150

    Fig. 15. Effects of  t w on k.

    181P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    10/12

    4.2.2. Effects of h0 /t w on k

    Totally 33 CSBs listed in   Table 10   were studied to show ef-

    fects of   h0/ t w   on   k. As shown in   Fig. 13,   k   increased linearly

    with the increase in  h0/ t w  and it could be formulated by a linear

    function.

    4.2.3. Effects of h f  /t w on k

    33 CSBs were studied to illustrate effects of  h f / t w on  k . Dimen-

    sions of CSBs studied were listed in Table 11. As shown in Fig. 14,

    k   decreased non-linearly with the increase in  hf / t w  and it could

    be formulated by an exponential function.

    Fig. 18.Comparisonsof V cr obtained by proposed methodand FEM. (a)Vertical shear buckling strengthof web-post with different e/ t w, (b)vertical shear buckling strength ofweb-post

    with different h0/ t w, (c)vertical shear bucklingstrengthof web-post with different hf / t w, (d)vertical shear buckling strength of web-post with different t w, and(e) vertical shear buckling

    strength of web-post with different.

    182   P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    11/12

    4.2.4. Effects of t w on k

    As listed in Table 12, 27 CSBs were studied to show effects of t w on k.

    As shown in Fig. 15, k decreased linearly with the increase in t w. It could

    also be expressed by a linear function.

    4.2.5. Effects of α on k

    As listed in Table 13, 24 CSBs were studied to show effects of α on k.

    α was represented by its tangent value tan(α ).As shown in Fig. 16, k in-

    creased linearly with the increase in tan α . It could also be expressed by

    a linear function.

    4.3. Practical equations for calculating shear buckling coef  cient 

    Parameter studies showed that k decreased non-linearly with the in-

    crease in e/ t w and hf / t w, asshownin Figs. 12 and 14. It increased linearly

    with the increase in  α  and  h0/ t w, as shown in Figs. 16 and  13. It de-

    creased linearly with t w (in mm), as shown in Fig. 15. As results of nu-

    merical regression analysis, k could be calculated by

    k ¼  k1  k2  k3  k4  k5≤k p   ð7Þ

    where

    k1 ¼  0:782 þ 19:712  e

    tw

    −1:011

    ð8Þ

    k2 ¼  0:0325 þ 0:00292h0tw

    ð9Þ

    k3 ¼  0:275 þ 0:239exp  −0:093h f =twð Þ ð10Þ

    k4 ¼  16:998−0:312tw   ð11Þ

    k5 ¼  2:037 þ 0:0360tanα    ð12Þ

    Comparisons of  k  obtained from FEM and Eq.  (7)  were shown in

    Figs. 12–16. k obtained by Eq. (7) agreed well with FEM results. Fig. 17

    showed differences between k obtained by Eq. (7) and FEM. The differ-

    ences were mainly within ±5%, which showed that Eq. (7) could give

    accurate predictions on shear buckling coef cient. Here, kCAL  was ob-tained by Eq. (7) and kFEM was obtained from FEM analyses. Statistics

    of (kCAL  − kFEM)/ kFEM  were listed in Table 14. The mean value was

    only 0.004653 and the standard error was only 0.002179.

    4.4. Veri cation

    The vertical shear buckling strength of the web-post in a CSB was

    predicted by Eq. (3), where k  was calculated by Eq. (7). Comparisons

    of  V cr obtained by Eq. (3) and FEM analysis were shown in  Fig. 18. It

    could be seen that, for CSBs listed in  Tables 9–13,  V cr  obtained byEq. (3) agreed well with FEM analyses.

    Test results on CSBs with hexagonal openings [15,19] were used to

    validate the proposed method. Calculated parameters of CSBs were

    listed in Table 15. Buckling coef cients  k1  ~  k5  and shear buckling

    strengths of CSBs obtained from the proposed method and test were

    listed in Table 16. The average of (V cr,CAL  −  V cr,TEST)/ V cr,TEST was 19.7%.

    Web-posts in specimen 10-5a, 10-5b,10-6 and 10-7 buckled in theelas-

    tic state;and those in specimen 10-1, 10-3, 12-1 and12-3 failed in shear

    yielding. For the proposed method was based on the elastic buckling of 

    the web-post, it overestimated the shear buckling strength when the

    web-post buckled in the elastic–plastic state, such as those with thick

    web thickness. Through introducing a safety factor of 1.2, the precision

    of the proposed method was increased. The average of ( V cr,CAL /1.2  −

    V cr,TEST)/ V cr,TEST was reduced to  −0.22%, as listed in Table 16.

    5. Conclusions

    Elastic buckling behaviors of the web-post in the CSB under vertical

    shear were investigated using nite element method. Through treating

    the upper part of the web-post as a free body under horizontal shear

    force, whose shear buckling strength can be calculated by the thin-

    plate shear buckling theory, the vertical shear buckling strength of the

    web-post was obtained after providing the shear buckling coef cient k.

    The shear buckling coef cient k wasnot only affected by thedimen-

    sionless parameters of the web-post, such as e/ t w, h0/ t w, and hf / t w, but

    also the thickness of the web-post t w and incline angle of the opening

    edge   α .  k  was calculated through reverse analysis after the vertical

    shear buckling strength of the CSB was obtained through FEM simula-tion.  e/ t w,  h0/ t w, and  h f / t w,  t w  and   α  all had great inuences on the

    shear buckling coef cient. A simplied method was proposed to calcu-

    late k. The vertical shear buckling strength of the web-post employing

    the proposed k agreed well with FEM results.

    For the proposed method was based on the elastic buckling of the

    web-post, it overestimated the shear buckling strength when the

    web-post buckled in the elastic–plastic state, such as those with thick

    web thickness. The average of (V cr,CAL  − V cr,TEST)/ V cr,TEST was 19.7%.

    Through introducing a safety factor of 1.2, the precision of the proposed

    method was increased. The average of (V cr,CAL /1.2  −  V cr,TEST)/ V cr,TESTwas reduced to  −0.22%. The simplied method for calculating shear

    buckling coef cient k  in elastic–plastic state needed to be investigated

    later.

    The proposed equation for calculating the shear buckling strength of web-posts was derived from the CSBs with hexagonal web openings.

     Table 16

    Shear buckling strength of CSBs obtained by proposed method and tests  [15,19].

    Specimens   k1   k2   k3   k4   k5   kp   k V cr   P TEST (kN) (V cr,CAL  −  V cr,TEST)/ V cr,TEST   (V cr,CAL /1.2  −  V cr,TEST)/ V cr,TEST

    10-5a [15]   1.65 0.25 0.34 15.89 2.10 5.58 4.64 54.23 46.35 17.0%   −2.5%

    10-5b [15]   1.65 0.25 0.34 15.89 2.10 5.58 4.64 54.23 50.45 7.5%   −10.4%

    10-6 [15]   1.65 0.25 0.34 15.89 2.10 5.58 4.64 54.23 47.4 14.4%   −4.7%

    10-7 [15]   1.65 0.25 0.34 15.89 2.10 5.58 4.64 54.23 42.2 28.5% 7.1%

    10-1 [19]   1.96 0.23 0.33 15.88 2.10 4.77 4.99 57.42 39.55 45.2% 21.0%

    10-3 [19]   1.97 0.24 0.34 15.87 2.07 5.26 5.30 40.97 36.92 11.0%   −7.5%

    12-1 [19]   2.00 0.25 0.35 15.53 2.10 4.99 5.82 79.47 57.33 38.6% 15.5%

    12-3 [19]   2.02 0.22 0.34 15.56 2.07 3.78 4.89 55.71 58.22   −4.3%   −20.3%

    Average 21.0% 0.8%

     Table 15

    Calculated parameters of CSBs with hexagonal web openings.

    Specimens   e/ t w   h0/ t w   hf    hf / t w   t w   α    tanα    yi   s (mm)

    10-5a [15]   21.85 74.78 52.56 14.76 3.56 60.00 1.73 13.11 308.00

    10-5b [15]   21.85 74.78 52.56 14.76 3.56 60.00 1.73 13.11 308.00

    10-6 [15]   21.85 74.78 52.56 14.76 3.56 60.00 1.73 13.11 308.00

    10-7 [15]   21.85 74.78 52.56 14.76 3.56 60.00 1.73 13.11 308.00

    10-1 [19]   16.25 68.68 57.97 16.19 3.58 60.00 1.73 14.86 256.04

    10-3 [19]   16.04 72.17 53.50 14.82 3.61 45.00 1.00 13.26 369.82

    12-1 [19]   15.65 75.23 56.39 12.02 4.69 60.00 1.73 14.62 350.0212-3 [19]   15.45 65.48 68.19 14.76 4.62 45.00 1.00 18.46 441.44

    183P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

  • 8/18/2019 Wang 2016

    12/12

    Whether the CSBs with other web opening shapes could use the pro-

    posed equation needed to be investigated later.

     Acknowledgments

    Theauthors wish to acknowledge thesupport from theFundamental

    Research Funds of Shandong University (No. 2015JC 046), the Natural

    Science Foundation of Shandong Province (ZR2015EM041) and the Nat-

    ural Science Foundation of China (51578322) for the work reported inthis paper.

    References

    [1]   K.F. Chung, T.C.H. Liu, A.C.H. Ko, Investigation on Vierendeel mechanism in steelbeams with circular web openings, J. Constr. Steel Res. 57 (5) (2001) 467–490.

    [2]   T.C.H. Liu, K.F. Chung, Steel beams with large web openings of various shapes andsizes:  nite element investigation, J. Constr. Steel Res. 59 (9) (2003) 1159–1176.

    [3]   P.J. Wang, Q.J. Ma, X.D. Wang, Investigationon Vierendeel mechanism failureof cas-tellated steel beams with  llet corner web openings, Eng. Struct. 74 (1) (2014)44–51.

    [4]   P. Panedpojaman, T. Thepchatri, S. Limkatanyu, Novel simplied equations forVierendeel design of beams with (elongated) circular openings, J. Constr. SteelRes. 112 (1) (2015) 10–21.

    [5]   E. Ehab, Interaction of buckling modes in castellated steel beams, J. Constr. Steel Res.67 (5) (2011) 814–825.

    [6]   P. Panedpojaman, T. Thepchatri, S. Limkatanyu, Novel design equations for shear

    strength of local web-post buckling in cellular beams, Thin-Walled Struct. 76 (1)(2014) 92–104.

    [7]   A.R. Zainal Abidin, B.A. Izzuddin, Meshless local buckling analysis of steel beamswith irregular web openings, Eng. Struct. 50 (special issue IASS-IACM 2012: Model-ling and Computations) (2013) 197–206.

    [8]   S. Durif, A. Bouchaïr, O. Vassart, Experimental tests and numerical modeling of cel-lular beams with sinusoidal openings, J. Constr. Steel Res. 82 (1) (2013) 72–87.

    [9]   S. Durif, A. Bouchaïr, O. Vassart, Experimental and numerical investigation on web-post member from cellular beams with sinusoidal openings, Eng. Struct. 59 (2014)587–598.

    [10]   K.D. Tsavdaridis, C. D'Mello, Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes, J. Constr. SteelRes. 67 (10) (2011) 1605–1620.

    [11]   K.D. Tsavdaridis, C. D'Mello, Optimisation of novel elliptically-based web openingshapes of perforated steel beams, J. Constr. Steel Res. 76 (1) (2012) 39–53.

    [12]   British Standard Institution, BS5950-1:2000, Structural Use of Steelworks in Build-

    ing, BSI, 2000.[13]   P.J. Wang, X.D. Wang, N. Ma, Vertical shear buckling capacity of web-posts in castel-lated steel beams with  llet corner hexagonal web openings, Eng. Struct. 75 (1)(2014) 315–326.

    [14]   R.M. Lawson, J. Lim, S.J. Hicks, W.I. Simms, Design of composite asymmetric cellularbeams and beams with large web openings, J. Constr. Steel Res. 62 (6) (2006)614–629.

    [15]   R.G. Redwood, S. Demirdjian, Castellated beam web buckling in shear, J. Struct. Eng.ASCE 124 (8) (1998) 1202–1207.

    [16]   ABAQUS Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc., USA, 2008vols. 1, 2 and 3. Version 6.8-1.

    [17]   R.D. Krieg, D.B. Krieg, Accuracies of numerical solution methods for the elastic-per-fectly plastic model, ASME J. Press. Vessel. Technol. 99 (4) (1977) 510–515.

    [18]   H.L. Schreyer, R.F. Kulak, J.M. Kramer, Accurate numerical solutions for elastic–plas-tic models, ASME J. Press. Vessel. Technol. 101 (3) (1979) 226–234.

    [19]   W. Zaarour, R.G.Redwood,Web bucklingin thin webbedcastellated beams,J. Struct.Div. Proc. ASCE 122 (8) (1996) 860–866.

    [20]   F. Erdal, M.P. Saka, Ultimate load carrying capacity of optimally designed steel cellu-lar beams, J. Constr. Steel Res. 80 (1) (2013) 355–368.

    184   P. Wang et al. / Journal of Constructional Steel Research 121 (2016) 173–184

    http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0005http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0005http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0005http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0005http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0025http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0025http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0025http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0025http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0040http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0040http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0040http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0040http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0055http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0055http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0055http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0055http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0060http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0060http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0075http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0075http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0075http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0075http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0080http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0080http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0085http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0085http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0085http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0085http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0095http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0095http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0095http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0095http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0100http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0100http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0100http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0100http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0100http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0100http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0095http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0095http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0090http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0085http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0085http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0080http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0080http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0075http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0075http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0070http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0065http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0060http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0060http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0055http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0055http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0050http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0045http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0040http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0040http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0035http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0030http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0025http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0025http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0020http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0015http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0010http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0005http://refhub.elsevier.com/S0143-974X(16)30036-0/rf0005