66
Copyright © 2008 by Diego A. Comin, William Easterly, and Erick Gong Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. Was the Wealth of Nations Determined in 1000 B.C.? Diego A. Comin William Easterly Erick Gong Working Paper 09-052

Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Copyright © 2008 by Diego A. Comin, William Easterly, and Erick Gong

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

Was the Wealth of Nations Determined in 1000 B.C.? Diego A. Comin William Easterly Erick Gong

Working Paper

09-052

Page 2: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

1

Was the Wealth of Nations Determined in 1000 B.C.?*    

Diego Comin†    William Easterly‡      Erick Gongჶ  

September 2008  

Abstract  We assemble a dataset on technology adoption  in 1000 B.C., 0 A.D., and 1500 A.D.  for  the predecessors  to  today’s nation  states. We  find  that  this  very old history  of  technology  adoption  is  surprisingly  significant  for  today’s  national development  outcomes.  Our  strong  and  robust  results  are  for  1500  A.D. determining per capita  income  today We  find  technological persistence across long epochs: from 1000 BC to 0 AD, from 0 AD to 1500 AD, and from 1500 AD to the  present.  Although  the  data  allow  only  some  suggestive  tests  of  rival hypotheses to explain  long‐run technological persistence, we find the evidence to be most consistent with a model of endogenous technology adoption where the  cost  of  adopting  new  technologies  declines  sufficiently  with  the  current level  of  adoption.  The  evidence  is  less  consistent  with  a  dominant  role  for population as predicted by the semi‐endogenous growth models or for country‐level factors like culture, genes or institutions  Keywords: Technology adoption, technology history, economic development.  JEL codes: O3, N7. 

* We are thankful to Tobias Pfutze for comments and research assistance, to Tomoko Wada and Jason Zhan Shi for their research assistance, for comments, to Philippe Aghion, Michael Clemens, Rafael DiTella, Andrew Gelman, Simon Gilgricht, Gene Grossman, Pete Klenow, Michael Kremer, Robert Lucas, Nathan Nunn, Peter Peregrine, Louis Putterman, Romain Wacziarg, David Weil and seminar/conference participants at Johns Hopkins, Brown, Harvard/MIT, HBS and to the NSF (Grant # SES‐0517910) and the C.V. Starr Center for Applied Economics for their financial support.  † Harvard Business School and NBER. ‡ New York University and NBER. ჶ University of California at Berkeley. 

Page 3: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

2

 

1. Motivation  Cross‐country differences in per capita income in the pre‐industrial world were significantly smaller than today. For example, according to Madison (2000), per capita income in the UK in 1500 AD was sixty‐eight percent higher than in Mexico. In 2000, it was almost three times larger.   This observation has motivated two conclusions. First, that pre‐industrial country conditions, and in particular, the technology adoption level, did not vary much across countries.1 Second, that pre‐industrial country conditions are almost irrelevant to understand current development dynamics. A consequence of these conclusions is the emphasis of economic development practitioners and students on modern determinants of per capita income like quality of institutions to support free markets, economic policies chosen by governments, human capital components such as education and health, or political factors like violence and instability.   Could this discussion be missing an important, much more long‐run dimension to economic development? To the extent that history is discussed at all in economic development, it is usually either the divergence associated with the industrial revolution (e.g. Lucas, 2000) or the effects of the colonial regimes.2 Is it possible that precolonial, preindustrial history also matters significantly for today’s national economic development?  This paper explores these questions both empirically and theoretically. To this end, we assemble a new dataset on the history of technology over 2500 years of history prior to the era of colonization and extensive European contacts. The first significant finding is that there were important technological differences between the predecessors to today’s modern nations as long ago as 1000 BC, and that these differences persisted to 0 AD and to 1500 AD (which will be the three data points in our dataset). Further, these precolonial, preindustrial differences have striking predictive power for the pattern of both per capita incomes and technology adoption across nations that we observe today. Our strongest results are for the detailed technology dataset we assemble for 1500 AD, which is an excellent predictor of per capita income today. We find that the results for 1500 AD largely continue to hold when we include continent dummies and geographic controls.  Two questions naturally follow up our findings. First, what mechanisms propagate historical shocks that affect the history of technology adoption into the present? Second, what do our findings teach us about existing growth models? To answer these question, we present a simple model where the stock of technologies adopted reduces the cost of adopting new technologies. Depending on the strength of this elasticity, historical technology adoption will or will not have a significant effect on the adoption of technologies that have come along since the industrial revolution and hence on current development. Hence, our empirical exploration provides an estimate for this elasticity.  

1 This conclusion is not necessarily true as follows from the work of Kremer (1993), Galor and Weil (2000) and Jones (2001, 2005) and  Hansen and Prescott (2002). All these papers have Malthusian models where fertility increases with technology. In this context, countries may have significant differences in technology but very small differences in per capita income. 2 A notable, honorable, and famous exception is Jared Diamond (1997) . 

Page 4: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

3

Our simple model also helps us think about alternative hypothesis that may generate the observed importance of historical technology adoption on current development and, more importantly, it guides us in how to identify them in the data.   One such explanation is related to ideas increasing with population because there are more potential thinkers to create these (non‐rival) ideas. More ideas in turn creates better technology which can sustain a larger population, and then the virtuous circle continues. This idea dates back to Simon Kuznets, and Julian Simon and has been formulated more recently by Kremer (1993), Galor and Weil (2000) and by the semi‐endogenous models of Jones (1995, 1999, 2001, 2005), Kortum (1997), and Segerstrom (1998). A reduced form of these population and ideas models in technology alone would also show technological persistence, intermediated by population, and so our findings could provide another piece of evidence in support of these models.    However, we think it is interesting to identify whether the persistence of technology also results from a direct propagation mechanism of old to new technology , as opposed to being fully accounted for by the population channel. So we control for population in our regressions. We find that both the persistence of technologies and the effect of historical technology adoption on current development persist after controlling for historical population and for both historical and current population. Hence, our first exploration of the data suggests a direct effect of past technology on future technology that is not fully explained by the population channel.     Other potential propagation mechanisms currently discussed in the literature are institutions, culture or the genetic endowment.3 To identify whether technology or these other factors are propagating historical shocks into the present, we exploit the cross‐sector variation in technology adoption and explore whether the persistence of technology adoption holds after including country‐year effects and country‐sector fixed effects. We find not only that the persistence of technology holds also within sectors but that the magnitude of this effect is comparable to the estimated persistence before including country effects. Further, the persistence within sectors is not driven by any specific sector. In our view, these findings are suggestive that there is a direct technology effect even if institutions, genes or culture also matter since, if these latter factors accounted for all the persistence, they would do so through a common effect  on technology adoption across all sectors. This is hard to reconcile with our finding that the magnitude of the effect of historical technology is virtually unchanged after including the country effects. It is plausible that the knowledge from previous adoption experience has an important sector‐specificity which would rationalize the within sector persistence in adoption. 

3 Spolaore and Wacziarg (2006) have a fascinating exploration of the effect of genetic distance on log‐income distance. They take genetic distance as a difference between all characteristics vertically transmitted from parents to children (not only genetic, but even more importantly cultural), and suggest that differences in these characteristics act as a barrier to technology/development diffusion . They find that countries populated by more genetically distant cultures also have more different per capita incomes. This finding is complementary to ours because genetic distance is very persistent and was determined in a distant past. It differs, however, in at least two respects. First, we explore the effects of technology adoption history on current development. Our left hand side variable has a direct effect on development, while genetic distance surely does not have a direct effect on development. It is a proxy for costs of transferring technology. Second, by exploring a relationship in levels we are able to preserve the transitivity of our measures. This is not the case when looking at distances.  Ashraf and Galor (2008) have another interesting genetic story, stressing the differences in genetic diversity across regions of the world as a determinant of comparative economic development ,through the beneficial impact of diversity on technological creativity. 

Page 5: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

4

 In summary, what our findings teach us is that technology is remarkably persistent over the very long run, and that very significant inputs that shape the current cross‐country distribution of per capita income were determined a long time ago and were likely to be propagated into the current times by the dynamics of technology adoption.  Our paper is clearly related to the influential book by Jared Diamond (1997) Guns, Germs, and Steel. One important thesis in Diamond’s book is that current development is tied to ancient technologies. Diamond, however, does not systematically test the effect of ancient technologies on modern incomes or studies the propagation mechanisms as we will do here.  Perhaps for that reason, the Diamond work did not change much the tendency of development economics to focus on the modern period or at most the colonial period.   In a similar vein, economic historians have been debating the importance of past technology adoption for the adoption of subsequent technologies, especially what triggered the Industrial Revolution in Europe. Mokyr (1990, p. 169) and Rosenberg and Birdzell (1987) argue that technological experience is a long way from being a sufficient condition for the “European miracle”, stressing the earlier technological lead of China. Greene (2000), instead, argues that, in the West, Greco‐Roman dynamism was part of a long continuum from the European Iron Age to medieval technological progress and the industrial revolution.  Mokyr (1990, p. 164) also notes how many technological advances petered out throughout history without leading to a permanent stream of innovation.   However, while economic historians disagree on an initial technology advantage as a sufficient cause of the industrial revolution, their description of technology history reaches a consensus on many mechanisms that cause past technology to have an effect on future technology.  (There is no contradiction here – past technology could matter, and yet not be sufficient to explain why Europe and not China experienced the industrial revolution, which could also depend on other factors such as institutions and values). Specifically, they provide many case studies of technological innovation to document mechanisms that support the assumption of our model that a higher initial technology level lowers the cost of adopting new technologies (or in a few cases, raises the benefits of new technologies).  

‐‐‐‐‐‐‐‐‐‐ INSERT TBLE 1 HERE ‐‐‐‐‐‐‐‐‐‐‐‐‐  In Table 1, we list the surprisingly long list of such mechanisms detailed by economic historians (although some of mechanisms are related to each other), along with many of the illustrative examples  historians have given from technology history.  The examples are skewed towards the Industrial Revolution and after since that is where historians have focused most of their energies and the historical record is most complete (although many Greek/Roman and medieval examples do appear). It is possible that some of the mechanisms only started to operate at the time of the Industrial Revolution. However, we think it is plausible that the Industrial Revolution was only a speeding up of technology dynamics (which we will discuss below), and that many of these dynamic mechanisms will apply to earlier technological eras. If so, then we have a strong a priori case for the persistence of technology over long periods, which we can test against our long run dataset.   

Page 6: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

5

Our empirical methodology is very different from the case histories of the technology history literature; we don’t claim it to be superior, only a valuable additional method of testing the hypothesis of technology persistence. Clearly, one important barrier that may have prevented other researchers from implementing this strategy is the lack of a data set.  One of our contributions is to assemble a data set to explore more definitely these issues.  The rest of the paper is organized as follows. Section 2 presents the data set.  Section 3 uncovers the main findings and shows their robustness. Section 4 presents a simple model that rationalizes the facts and some extensions that yield some additional predictions that allow us to identify several competing hypothesis about the nature of the propagation mechanism. Section 5 concludes.  

2. Description of technology data set  The historical datasets presented in this paper measure the cross‐country level of technology adoption for over 100 countries in three periods: 1000 B.C., 0 A.D. and the pre‐colonial period in 1500 A.D.  Each dataset acts as a “snap shot” in time, capturing the levels of technology adoption by country throughout the world.    Technology adoption is measured on the extensive margin by documenting whether a country uses a particular technology, not how intensively it is used.  For example, in the dataset for 1000 B.C., we consider two transportation technologies: pack animals and vehicles.  A country’s level of technology adoption in transportation is then determined by whether vehicles and/or draft animals were used in the country at the time. The technologies that we examine change between the ancient period (1000 B.C. and 0 A.D.) to the early modern period (1500 A.D.) to reflect the evolution of the technology frontier.     Our focus on the extensive margin of technology adoption is motivated by data availability constraints and by its historical relevance.  It is much easier to document whether a technology is being used in a country (the extensive margin) rather than measuring the degree of its adoption (the intensive margin).4 In addition, the extensive margin has been up to 1875 or so a much more significant margin to explain the cross‐country variation in technology adoption (Pulkki and Stoneman, 2006).  The technologies in our data sets are state of the art technologies (at the time) in productive activities (i.e. activities that entered GDP) and for which it has been possible to document its presence or absence for a wide range of countries. Of course, it is a very incomplete list since it does not cover all the significant frontier technologies available at the time. However, the number of technologies covered (12 for 1000 BC and 0 AD and 24 for 1500 AD) is sufficient to make precise inferences about the technological sophistication of economies in the distant past. More fundamentally, the criteria for including technologies in our analysis do not generate any bias in our results because they involve the closeness to the World technology frontier in the distant past which, of course, is very different from the current technology frontier.5 

4 It is well documented that the Chinese were using iron for tools by 0 A.D; what is more difficult to assess is the share of tools constructed from iron at the time.   5 An argument in line with the appropriate technology literature is that it is optimal that some technologies are not present in some regions. Diamond (1997) for example, argues that horses were ineffective in the tropics. Given the 

Page 7: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

6

  A related issue is that some sectors are more densely covered than others (i.e. for 1500 AD we have 8 technologies in military but only 2 in metal working). To avoid overweighting sectors where we have been able to collect data on more technologies, we compute the average adoption rate in each sector and then compute the overall adoption level by averaging the sectoral adoption levels. We have also experimented with alternative aggregation approaches obtaining very similar results.  Since our main objective is to analyze the effects that historic technology adoption has on the current state of economic development, our datasets are partitioned using modern day nation states.  We use the maps from the CIA’s The World Factbook (2006) to put into concordance the borders of present day nations with the cultures and civilizations in 1000 B.C., 0 A.D. and 1500 A.D. For example, the technologies used by the Aztecs and their predecessors during pre‐colonial times are coded as the ones used by Mexico in 1500 A.D.  In cases where a country had multiple cultures within its borders during a certain time period, we take the culture with the highest level of technology adoption to represent that country.  This technique is a direct consequence of our goal of measuring the extensive margin of technology adoption in a country.  For example, in 1000 B.C. there were multiple cultures residing within Canada’s modern day borders.  The Initial Shield Woodland was the most technologically sophisticated of these cultures and we therefore use its level of technology adoption to represent Canada in 1000 B.C.    The use of the most advanced culture within a territory for a country’s level of technology could induce a mechanical correlation between technology and country size (as measured either by population or land area). The larger the size, the more cultures are being sampled, which makes the maximum of all cultures higher. For population, this “mechanical” effect is really the Kuznets‐Simon effect of population on technology mentioned in the introduction, if the most advanced technologies do indeed disseminate within the borders of what is today measured as a country. We will test for this effect in our empirics. For land area, this also could reflect a real economic phenomenon for the same reasons, but it would induce reverse causality between land area and technology. We will examine some simple tests as to whether this affects our results in the empirical section.    Each dataset is constructed following the methodology used by George Murdock and other ethnologists (Murdock 1967; Carneiro 1970; Tuden and Marshall 1972; Barry and Paxson 1971). Each dataset is coded by a team of researchers surveying multiple sources reducing, in this way, the likelihood of measurement error. Researchers take detailed notes including direct quotations and using, when appropriate, two inference techniques: technological continuity (Basalla 1988) and temporal extrapolation (Murdock & Morrow 1970: 314).    

technologies in our sample, we view this argument as very annecdotal. It is quite clear that virtually all of the technologies in the three historical datasets have a (large) positive effect on labor productivity in virtually all countries. A related point is that our empirical exploration does not try to establish the reasons for the failure to adopt a technology. Rather, whether this failure had consequences in the (very) long run. In a sense, if in historical times it was optimal not to adopt a technology, it is even more surprising to find negative effects in the (very) long run.  

Page 8: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

7

Technological continuity stresses that innovations are a result of previous antecedents; innovations typically do not spontaneously arise without preexisting technologies.6  We use this technique to infer that countries with advanced technologies in a particular sector also had more primitive ones.  One example that illustrates this technique comes from the military technologies in 1500 A.D.  Large warships with over 180 guns on deck were considered the pinnacle of military technology in 1500 A.D. (Black 1996).  It is not unreasonable to assume that a country with heavily armed warships also had access to field artillery and muskets.    Therefore, in Portugal and Germany, the presence of large warships was used to infer the use of both muskets and field artillery.  Temporal extrapolation assumes that a technology maintains some level of persistence over time.  A technology adopted fifty to one hundred years earlier is assumed to still be in use.7 In addition, in most of the cases, we are able to document that the technology was present in 1550. An example of this is the coding of transportation technology in 1500 Turkey.  We code Turkey as having the magnetic compass in the 1500 A.D. dataset based on evidence that it was in use in the Ottoman Empire by 1450.   The datasets for 1000 B.C. and 0 A.D. are derived from the “Atlas of Cultural Evolution” 8 (henceforward abbreviated as “ACE”). (Peregrine 2003)   while we coded the dataset for 1500 A.D. in its entirety.  The ACE itself is based on the Encyclopedia of Prehistory (Peregrine & Ember 2001) whose compilation involved multiple data sources and over 200 researchers.  The 1500 A.D. dataset involved several researchers and over 200 sources.   It is important to note that, in a majority of cases, the coding of technology adoption is based on direct evidence of the presence or absence of technologies in the countries. A relevant consideration could arise if we had a civilization covering various modern day countries and we did not have any source of evidence that the code for the civilization applies to all the individual countries. In this event, the standard errors for our regressions would be misleading. To avoid this problem, for 1500 AD, we have searched for documentation that allows us to determine the presence or absence on the countries that correspond to historical empires. For example, for the countries that composed the Ottoman empire in 1500, we have documented the presence or absence in each of the countries.   In a few cases, we have not been able to document directly the absence of some specific technology in a given country ‘X’. In these cases, however, we have direct evidence of the absence of the technology is some neighboring country ‘Y’ that has been proven to dominate technologically country ‘X’ at the time. This allows us to infer the absence of the technology in country ‘X’.   An example of this is in our coding of communications in South America.  We have little information about the diffusion of these technologies in 1500 AD in Brazil, Uruguay, Paraguay, and Colombia.  Since the Incas were the most advanced civilization in South America during that time, any technologies absent from Inca civilization were assumed to be absent in the countries 

6 See Basalla (1988:30‐57) for a number of case studies documenting technological continuity or technological evolution.   7This_time_frame_rules_out_long_run_technological_regression_such_as_the_loss_of_some_Roman_achievements_in medieval_Europe or the Chinese ocean‐going voyages to East Africa. 8 Peregrine (2003) uses BP (Before Present) as the time variable when coding his datasets.  We convert the BP time periods to either B.C. or A.D.   Peregrine’s 3000 BP dataset is used for our 1000 B.C. dataset and Peregrine’s 2000 BP dataset is used for our 0 A.D. dataset.   

Page 9: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

8

listed above.  The Incas relied on Quipus (lengths of string knotted at intervals) for communications and had no written records (Scarre 1988:222; Encyclopedia Britannica 2006).  This implies that the Incas did not have books or movable type printing. Using this geographic dominance argument, we infer that Brazil, Uruguay, Paraguay, and Colombia did not have these technologies either.    This geographic dominance argument might, however, have consequences on the computation of the standard errors in our regressions. Despite the few occasions where we have used the geographic dominance argument, we avoid this issue by clustering the errors around the areas of technological influence used to code the data. Further, we have checked that our results are robust to clustering the errors by continents.   Finally, there are two potential concerns in interpreting our data that we want to address directly. The first is that countries that were more advanced at the time were more likely to leave records. The second is that currently rich countries may be more likely to find remains that document the existence of technologies in the past.   We do not believe that either of these concerns has a significant influence on our data set. This conclusion is based on three reasons. First, remember that we use direct evidence of the absence of the technologies to code that the technology was not present in a country. That is, lack of evidence on the presence of the technology is not sufficient to code its absence. Second, modern day archeologists dig wherever they believe they can find remains regardless of the origin of the archeologists. Indeed, most of the main archeological discoveries are in developing countries and have been found by archeologists from developed economies. Finally, as we show in section 4.3, our findings about the persistence of technology adoption hold even when we include country (fixed and/or time varying) effects and exploit the cross‐sectoral variation in technology adoption. That takes care of any country‐level bias including biases in the reporting or collection of data.    2.1 Technology Datasets for 1000 B.C. and 0 A.D.  The datasets for 1000 B.C. and 0 A.D. measure the level of technology adoption for agriculture, transportation, communications, writing, and military on 113 and 135 countries respectively.  The “ACE” does not contain any variable that measures directly the technologies used for military purposes.  To assess a country’s level of technology adoption for the military we use the “ACE” dataset to determine which metals were available for each culture.  Metallurgy is integral for the development of more advanced weapons (Macksey 1993:216; Scarre 1988; Collis 1997:29).  The progression from stone to bronze and finally iron corresponded to a progression of more powerful weapons; stone weapons were replaced by bronze swords and daggers; iron weapons were considerably stronger than their bronze predecessors (Hogg 1968:19‐22).  The relevant data from the ACE and how it is used can be found in Table 2.    _________________  Insert Table 2 here  _________________________  An example of how a country is coded in 1000 B.C. and 0 A.D will best illustrate our methodology.    

Page 10: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

9

Korea was inhabited by the Mumun peoples in 1000 B.C.  The Mumuns had no tradition of either writing or non‐written records.  The Mumuns however did rely on agriculture as its primary form of subsistence and used pack animals for transportation.  In addition the Mumuns produced metalwork and used bronze for tools but not iron (Rhee 2001).  The coding for the Mumun entry in the “ACE” dataset (Peregrine 2003) therefore is:   Writing and Records = 1 Technology Specialization = 3 Land Transportation = 2 Agriculture = 3 Tools = 2  Based on this data, we code Korea in 1000 B.C. as:   Communication: Mnemonic or nonwritten records = 0; True Writing = 0 Industry: Pottery = 1; Metalwork = 1 Transportation: Pack or draft animals = 1; Vehicles = 0 Agriculture: 10% or more, but secondary = 1; Primary = 1 Military: Bronze weapons = 1; Iron weapons = 0  We aggregate the technology adoption measures at the sector level by adding all the individual technology measures in the sector and dividing the sum by the maximum possible adoption level in the sector. In this way, the sectoral adoption index is in the interval [0,1]. The overall adoption level in each country and time period is the average of the adoption level across sectors. Obviously, the overall adoption index also belongs to the interval [0,1].   The adoption levels in the four sectors just reported in Korea in 1000 B.C. are the following:  Communications = 0 Industry = 1 Transportation = 0.5 Agriculture = 1 Military = 0.5  And the overall level of technology adoption for Korea in 1000BC is 0.6.  2.2 Technology Dataset for 1500 A.D.   The technology dataset for 1500 A.D. encompasses 113 countries and evaluates the level of technology adoption across the same five sectors (agriculture, transportation, military, industry, and communications) as the previous datasets. Our technology measures outside Europe are estimated before European colonization. It is important to stress, therefore, that our technology measures in 1500 A.D. do not incorporate the technology transferred by Europeans to the rest of the world after European exploration began around 1500.   Obviously, there are a larger number of sources covering the technology adoption patterns in 1500 A.D. than in 1000 B.C. or 0 A.D. This allows us to collect adoption data for 24 technologies 

Page 11: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

10

in the four sectors other than agriculture vs. the 11 technologies covered in the data sets for 1000 B.C. and 0 A.D. As a result, our estimate of the level of technology adoption in 1500 A.D. is likely to be more precise than for the earlier periods. Note that, as before, our measures attach equal weight to each of the five sectors, so our overall average is not biased towards sectors in which more technological information is available.  So for example, more information is available on military technologies (8) than industrial technologies (2), but military and industry have equal weights in our overall index. For the same reason, closely related technologies within a sector that might risk “double counting” do not increase the weight of that sector in our overall index. Table 3 presents the various technologies measured in 1500 A.D.9,10   ________________   INSERT TABLE 3 HERE  ________________   2.3 Current Technology   To explore whether historical technology differences have ‘persisted’ until current times, we construct a measure of current technology level based on Comin, Hobijn and Rovito (2006). This measure captures (one minus) the average gap in the intensity of adoption of ten major current technologies with respect to the US. These technologies are electricity (in 1990), internet (in 1996), pcs (in 2002), cell phones (in 2002), telephones (in 1970), cargo and passenger aviation (in 1990), trucks (in 1990), cars (in 1990) and tractors (in 1970) all in per capita terms.   More specifically, for each technology, Comin, Hobijn and Rovito (2006) measure how many years ago did the United States last have the usage of technology ‘x’ that country ‘c’ currently has. We take these estimates, normalize them by the number of years since the invention of the technology to make them comparable across technologies, take the average across technologies and multiply the average lag by minus one and add one to obtain a measure of the average gap in the intensity of adoption with respect to the US whose adoption level is one, by construction.   Note that this measure of current technology adoption differs from the historical measures in that it includes the intensive margin. This is the case because in the last 100 years or so, the extensive margin of technology has diffused very quickly across countries. Therefore, the intensive margin of technology adoption is the relevant margin to explain cross‐country differences in technology.   Since richer countries tend to demand more intensively new technologies, our measure of current technology adoption will be correlated with per capita GDP. However, as shown in Comin and Hobijn (2008b), there are many other determinants of technology adoption above and beyond per capita income. Hence, the usefulness of having a direct measure of current technology to assess the persistence of technology. 

9 In our analysis we have experimented with some alternative aggregation schemes such as collapsing the technologies of ships capable of crossing the various oceans into just one technology without any significant change in our results. 10 Our sectoral and overall technology adoption measures are very robust to reasonable variations in the definition of new technologies. For example, we have explored the effect of aggregating the technology to cross the various oceans into one unique variable. This results in a adoption measure for transportation with a correlation of 0.988 with respect to ours. Similarly, collapsing heavy naval guns and large ships with +180 guns into a unique technology results in a measure of adoption in military with a correlation of 0.996 with our measure. 

Page 12: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

11

 It is also worthwhile noting that, the major technologies used to summarize the current state of technology, belong to four of the sectors covered by the historical data sets (i.e. all but military). We shall take advantage of this feature of the data when estimating the persistence of technology within sectors in section 4.3.    

3. Data analysis  3.1 Cross‐country dispersion in technology  We start the data analysis by presenting in Table 4 some descriptive statistics for the overall technology adoption level in 1000BC, 0 AD,  1500 AD and in the present.   __________________   INSERT TABLE 4 HERE  _______________________  The increase in the cross‐country average of the overall technology adoption level between 1000 B.C. and 0 indicates the diffusion of the technologies described in the ACE. Recall that the technology adoption data set for 1500 A.D. contains different technologies than the first two periods. Therefore, we should not compare the absolute level in 1500 AD with the previous levels.   Table 4 can help us explore how large was the cross‐country dispersion in technology adoption. The binary nature of our measures of historical technology adoption for individual technologies provides two benchmarks to interpret the cross‐country dispersion in technology adoption.11 First, the maximum range for the average adoption level across countries is the interval [0,1]; 0 for a country that has not adopted any of the technologies and 1 for a country that has adopted all the technologies. Second, the maximum cross‐country dispersion in adoption would occur when half of the countries have adopted all the technologies and the other half has adopted none. In this case the standard deviation of the average adoption level across countries would be 0.5.   Similarly, a country that has no units of a given modern technology will have a measure of current adoption (for that technology) of 0, while a country that has the US intensity of adoption will be measured as 1. In a few countries and technologies we observe that the intensity of adoption is higher than in the US and the current technology adoption level is higher than one.    Figures 1a through 1c and Table 5 explore further the cross‐country variation in the overall technology adoption level. Table 5 explores the variation across continents in overall technology adoption. Figures 1a through 1c present a world map with the overall technology adoption level in each country and historical period. We use four colors to indicate technology adoption levels between 0 and 0.25, between 0.25 and 0.5, between 0.5 and 0.75 and between 0.75 and 1. Darker colors represent a higher overall technology adoption level. Missing values are represented in white.    _________________   INSERT TABLE 5 HERE   _________________  11 The exceptions to this rule are the measures of technology adoption in agriculture. 

Page 13: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

12

  In all three historical periods, Europe and Asia present the highest average levels of overall technology adoption, while America and Oceania present the lowest, with Africa in between. In current times, the average adoption level is highest in Europe and Oceania (driven by Australia and New Zealand), followed by America, Asia, and Africa.   ____________ INSERT FIGURES 1a‐1c HERE ______________________  A glimpse to the figures suffices to note that there is substantial variance in overall technology adoption both across and within continents. To make observation more precise, we decompose the cross‐country variation in overall technology adoption between the variation within continents and the variation between continents. In 1000BC, about 65 percent of the variance in overall technology adoption is due to variation within continents and 35 percent due to variation between continents. These proportions are reversed in 0 A.D. and in 1500 A.D. the share of total variance due to the between continent component rises to 78 percent.   Table 6 provides a more detailed comparison of the evolution of overall technology adoption in the most advanced countries. These countries correspond to four historical civilizations: Western Europe, China, the Indian civilization and the Middle Eastern peoples. Western Europe includes Spain, Portugal, Italy, France, United Kingdom, Germany, Belgium and Netherlands. The Indian civilization includes India, Pakistan and Bangladesh. Finally, the Middle Eastern civilization includes Saudi Arabia, UAE, Yemen, Oman, Iraq, Iran, Turkey, Syria, Lebanon, Jordan, Egypt, Libya, Tunisia, Algeria and Morocco.   _________________  INSERT TABLE 6 HERE  __________________  In 1000 B.C. the Middle Eastern empires and China have an overall technology adoption level of 0.95 and 0.9 respectively, while in India and Western Europe the average adoption level are 0.67 and 0.65 respectively. In 0 A.D. India and Western Europe catch up with China and the Middle Eastern empires. In 1500 A.D. Western Europe has completed the transition and is the most advanced of the four great empires with an average overall adoption level of 0.94. China remains ahead of most countries with 0.88. The Indian and the Middle Eastern empires have fallen behind to 0.7.  Today, the gap between Western Europe and the other three historical empires has widened considerably.  Why do our historical rankings differ from the view that ancient Europeans were barbarians, while China and the Middle East/Islamic civilizations were well in the lead for most of our sample period? Basically, it is for two reasons. First, our measure is more comprehensive and it is less likely to be swayed by highly visible inventions like gunpowder in China. Second, what we are measuring is the adoption of technologies rather than the invention (i.e. by 1500, gunpowder was already adopted in Western Europe and most of the Arab world). Most historians agree that Europe had caught up to and surpassed the Islamic civilization sometime in the late Middle Ages. Appendix 1 details what differences in technology adoption affected the most the rankings.   The usefulness of Table 6 goes beyond describing the relative evolution of technology in the major empires. Because our data collection exercise goes beyond a few case studies, we can put 

Page 14: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

13

in perspective the relative dynamics of technology in the empires. In particular, the levels of historical technology adoption reported for the empires in Table 5 until 1500 A.D. are all fairly high. Given the cross‐country distribution of technology reported above, this implies that whether Europe is ahead of China or vice‐versa is second order compared to the technological advantage of the historical empires compared to most of the rest of the countries in the world.   Underneath the overall technology adoption measures there is significant cross‐sectoral dispersion. To explore this, we subtract the country’s overall technology adoption from its adoption level in each of the five sectors. Then, we compute the cross‐country standard deviation of this variable to measure the within sector variation in technology adoption. Table 6 compares these measures to the cross‐country dispersion in the overall technology adoption for each of the three periods we study.   __________________   INSERT TABLE 7 HERE  _______________________   The main finding is that the within sector variation in technology adoption is approximately two thirds of the cross‐country dispersion in overall technology. In section 4.3, we explore further the implications of this strikingly large heterogeneity in sectoral technology adoption.   A final check we conduct to show that our technology adoption data sets are sensible is to correlate them with the contemporaneous urbanization rate. Several authors12 have use the urbanization rate as a proxy for development level specially for pre‐modern periods such as the ones covered by our technology adoption data set.    __________________   INSERT TABLE 8 HERE  _______________________   The urbanization rate for 1000 B.C. and 0 A.D. come from Peregrine’s “ACE”,13 while the urbanization rate for 1500 A.D. come from Acemoglu, Johnson and Robinson (2002). Table 8 reports the estimated contemporaneous effect of overall technology adoption on the urbanization rate. We find that there is a strong and positive contemporaneous association between technology adoption history and the contemporaneous urbanization rates. This provides further support for the quality of our measures of technology adoption in pre‐colonial times.14  3.2 Technology history and current development  We turn next to studying whether centuries‐old, pre‐colonial technology history is correlated with development today. To answer this question, we estimate the following regression   

12 Acemoglu, Johnson and Robinson (2002), for example. 13 Peregrine (2003) constructs a measure of the urbanization rate that can take three values. 1 if the largest settlement is smaller than 100 persons. 2 if it is between 100 and 399 persons. 3 if it is larger than 400 persons. 14 The working paper version of this article shows that the positive contemporaneous association between overall technology adoption and the urbanization rate is robust to controlling for distance to the Equator. 

Page 15: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

14

ccc uTy ++= βα                     (1) 

 where current development, yc, is measured either by the log of PPP adjusted per capita income in 2002 A.D. or by current technology adoption, Tc is the measure of historical technology adoption and uc is the error term.   

     ___________  INSERT TABLE 9 HERE _______________  The first three columns of Table 9 report the estimates of regression (1) when yc is per capita income in 2002 and Tc is measured successively by the overall adoption level in 1000 B.C., in 0 and in 1500 A.D. (T‐statistics are in parentheses.) The technology adoption level in 1000 B.C. is positively and significantly associated with the log of per capita GDP in 2002. Technology adoption in 0 A.D. is not significantly correlated to current development. The overall technology adoption level in 1500 A.D. is positively and significantly associated with current income per capita. This measure of technology in 1500 A.D. explains 18 percent of the variation in log per capita GDP in 2002.   In addition to being statistically significant, the effect is quantitatively large. Changing from the maximum (i.e. 1) to the minimum (i.e. 0) the overall technology adoption level in 1500 A.D. is associated with a reduction in the level of income per capita in 2002 by a factor of 5.   

         ___________  INSERT TABLE 10 HERE _______________  The first three columns of Table 10 show that current technology is associated with historical technology adoption very much in the same way as current per capita income. The association between current technology and technology in 1000B.C or 0 A.D. is insignificant. However, there is a strong and significant association between technology in 1500 A.D. and current technology. In particular, changing from the maximum (i.e. 1) to the minimum (i.e. 0) the overall technology adoption level in 1500 A.D. is associated with an increase in the time lag in the intensity of adoption with respect to the US of 22 percent of the years since the invention of the technology.   Figure 2 presents the scatter plot between overall technology adoption level in 1500 A.D. and current development. The positive relationship between these two variables is quite transparent. It is clearly not driven by outliers. In the bottom left quadrant of the plot we can see many African countries that had adopted very few of the technologies in our 1500 sample and that are quite poor today. European countries are in the top right corner.   Countries that roughly correspond to ancient empires such as Egypt, Iran, China, India, and Pakistan were middle‐income countries in 2002 and had adopted between 70 and 90 percent of the technologies in our 1500 A.D. sample. These countries are slightly below the regression line in the bottom right quadrant of Figure 2. This paper does not address some well‐known puzzles, such as the failure of China to capitalize earlier on its technological prowess, or the stagnation following the earlier technological prowess of the Islamic empire. These are very important puzzles that deserve (and have already attracted) their own literature, but we are concerned here with the global cross‐country average relationship between old technology and modern income, and these counter‐examples are not numerous enough to overturn the average global relationship.  

Page 16: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

15

___________ INSERT FIGURE 2 HERE______________  Latin American countries were behind the median country in the overall technology adoption level in 1500 but today they are middle income countries. This very likely has something to do with the long period of European settlement in Latin America, even though the European settlers were generally a minority of the population.  Finally, in the top left corner of Figure 2 we find the Neo‐Europes, the US, Canada, Australia and New Zealand. These were among the countries with most primitive technology in 1500 A.D. but are among the World’s richest countries today. This is very likely due to the large‐scale replacement of the original inhabitants with European settlers.15  We would expect that the European settlers in the Spanish and Portuguese colonies and in the Neo‐Europes affected quite dramatically the process of technology transfer (as well as other factors with which technology may be associated such as human capital accumulation and institutional development) in these countries during the colonial period. Another place where there was large scale (albeit still minority) European settlement was southern Africa.  Of course, there could be technology transfer in any colonized nation, but the duration and intensity of the influence of the settlement processes in southern Africa, Latin America and the Neo‐Europes suggest adding special controls. European settlement was mainly a function of an exogenous event – the susceptibility of natives to European diseases, which created lightly inhabited fertile lands to be taken over by European settlers (Easterly and Levine 2008). Further, the difference in the degree to which Europeans colonizers substituted for the local population (reflecting differential susceptibility to being entirely wiped out by European diseases) justifies the distinction between the Neo‐Europes and Latin America/southern Africa.16   To formalize this intuition, we use the fraction of European settlers in total population in 1900 from Acemoglu, Johnson and Robinson (2001).17 This fraction was over 90 percent for the Neo‐Europes, between 15 percent and 65 percent for South Africa, Lesotho and Swaziland, and most countries in Latin America and the Caribbean, and below 15 percent for the rest of non‐European countries.   Based on this, we create two dummies. The first captures predominant European settlers, and takes a value of one for the US, Canada, New Zealand and Australia and is zero for the rest of the countries. The second dummy reflects lesser European settler predominance than in the neo‐Europes, and takes a value of one for the Latin American colonies of Spain and Portugal, South Africa, Lesotho and Swaziland, and is zero otherwise.18 This yields the following regression equation:   

15 A very similar picture emerges when the dependent variable in current technology adoption as illustrated by Figure A1. 16 Indigenous mortality from European diseases was a big factor in Oceania and the Americas, but not so much in southern Africa. European settlement in the latter probably reflected the attraction of lightly populated lands in the temperate zones that Europeans preferred (Easterly and Levine 2008). 17 Similar results are obtained using the share of population from European descent in 1975 from Acemoglu, Johnson and Robinson (2001) or the fraction of European settlers 100 years after first settlement from Easterly and Levine (2006). 18 Given the small variation in historical technology both within the neo‐Europes and within Latin America, including the European influence dummies is equivalent to excluding these countries from the regression.  

Page 17: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

16

ccccc uMinorMajorTy ++++= βα                 (2) 

  Columns 5 through 7 in Table 9 and Table 10 report the estimates of equation (2) with yc measured both by per capita income in 2002 (Table 8) and current technology (Table 9) and with Tc measured successively by the overall technology adoption level in 1000B.C., 0 and 1500 A.D.   _______________INSERT FIGURES 3,4 AND 5 HERE_____________________  We find that the European settlement dummies have a significant positive relationship with both current per capita income and current technology. Further, when including the European settlement dummies, the correlation between the overall technology adoption and current development ‐‐measured both by per capita income and technology adoption‐‐ increases. In particular, the effects of the technology adoption levels in 1000 B.C. and 0 on current per capita income and technology become statistically significant, and the coefficients approximately double. In other words, once we control for the most obvious historical example of replacement of the indigenous technology by technologies brought by new settlers, technology in ancient times becomes an even more significant predictor of development today.  We acknowledge that there could have been other population migrations that transferred technology, and our singling out of the international European migration may be ad hoc, although it seems to us the primacy of European migration over the last 500 years is not really in doubt.   In any case, our results seem to hold for other population movements as well. We know from a collaborative exercise with David Weil that our findings hold also when we control more comprehensively for the international migration flows. Specifically, we use Putterman and Weil (2007)’s matrix which gives, for each country, the distribution of its current population by its origin. We then pre‐multiply the vector of overall technology in 1500 AD by the origin matrix and find that the origin weighted measure of technology predicts current per capita income slightly better than the regressors in column 7 of Table 8. We do not report these results here as Putterman and Weil (2007) have not yet made their data public. Also, we continue to find significant correlations in important specifications (such as those already reported in Table 7) even when the European influence dummies are excluded.  _______________INSERT FIGURES 6,7 AND 8 HERE_____________________  After including the settlement dummies, an increase in the overall adoption level from 0 to 1 in 1000 B.C. or in 0 A.D. is associated with an increase in income per capita in 2002 by a factor of 4. A similar increase in the overall adoption level in 1500 A.D. is associated with an increase in per capita income in 2002 by a factor of 19. This is half of the current difference in income per capita between the top and bottom 5 percent of the countries in the world. 19  After filtering the effect of European influence through the two dummies, the increments in the adoption of current technology associated with having a higher adoption of historical 

19 Table A1 shows the robustness of this finding to using as endogenous variable per capita income in earlier points in time. In particular, the table uses 1913, 1960 and 1990. 

Page 18: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

17

technologies are also dramatic. For example, moving from 0 to 1 in the adoption level in 1500 A.D. is associated with a reduction in the adoption lag with the US equivalent to 45 percent of the years since the technology has invented. This is more than twice as much as the observed cross‐country standard deviation in current technology adoption.  Similarly, 20 percent of the income difference between Europe and Africa is explained by Africa’s lag in overall technology adoption in 1000 B.C., 8 percent is explained by the technology distance in 0 A.D., and 78 percent is explained by Africa’s lag in overall technology adoption in 1500 A.D. This gives a very different perspective on Africa’s poverty compared to the usual emphasis on modern governments. It also shifts backward in time the historical explanations for Africa’s poverty, compared to the usual emphasis of historians on the slave trade and colonialism.20   Figures 3 through 8 display the scatter plots of the two measures of current development (i.e. per capita income ‐3 through 5‐ and technology adoption‐6 through 8) and overall historical technology adoption after regressing these variables on the European influence dummies. These figures confirm the significant association between current development and historical technology after conditioning on the European influence dummies. Clearly, the strongest relationship holds between overall technology adoption in 1500 A.D. and current development measures.   3.3 Robustness   We explore the robustness of the findings encountered so far. We start by exploring whether we are identifying the effect of historical technology on current development through the cross‐continent variation or also through the within continent variation. To answer this question, the first three columns of Table 11 and Table 12 report the estimates of regression (2) when the dependent variable is per capita income (Table 11) and current technology adoption (Table 12) and we add four continent dummies to the control set.   We extract two main conclusions from columns 1 through 3. First, much of the effect of technology history is detected from the cross‐continent variation. Adding the continent dummies eliminates the effect of overall technology adoption in 1000 B.C. on current development (column 1), and reduces, approximately, by 60 percent the effect of technology adoption in 0 A.D. (column 2) and in 1500 A.D. (column 3) on current development.  Only 1500 AD is still significant. The flip side of this is that a significant fraction of the effects of technology adoption history in 0 A.D. and 1500 A.D. on current development is driven by the within continent variation. In particular, the within continent variation in overall technology adoption in 1500 A.D. can still account for cross country variation in current income per capita by a factor of 4.5 and for about one standard deviation of the observed cross‐country dispersion in current technology adoption.21 In sum, the persistence of technology across the last 500 years, or the last 2000 years, is not just due to differences between continents.  

20 There was some slave trade before 1500 A.D. across the Sahara and along the Indian Ocean. However, most accounts of the negative effects of the slave trade stress the Atlantic slave trade, which only became nontrivial after 1500 A.D. 21 One interesting question is whether the effect of historical technology on current development works through a positive effect on total GDP or through a negative effect on current population. In the working paper we show that the relationship works entirely through the effect of technology on GDP. Indeed, historical technology also has a 

Page 19: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

18

  _______________  INSERT TABLE 11 HERE _________________   Gallup, Sachs and Mellinger (1999) have argued that the latitude is an important determinant of income per capita, with the tropics at a disadvantage. Hall and Jones (1999), Acemoglu, Johnson, and Robinson 2002, Easterly and Levine 2003 and Rodrik et al. (2003) argue that the effect of tropical location is through institutions. In principle, there is no reason for these effects to be linear. Columns 4 through 6 in Table 11 and 12 report the estimates of regression (2) after controlling for the distance to the Equator both with a linear and a quadratic term.22 As emphasized by the previous literature, being very far from the Equator tends to be associated with higher levels of current technology and income per capita. Controlling for the latitude of countries, however, does not eliminate the strong positive effect of overall technology adoption in 1500 A.D. on current development. This effect remains statistically significant, though the association of technology adoption history on 1000 B.C. and in 0 A.D. on current development become insignificant after controlling for the distance to the Equator.23 In columns 7 through 9 we additionally control for whether countries are land‐locked reaching the same conclusions as in columns 4 through 6.  In columns 10 through 12, we further experiment with a tropical dummy (and the land‐locked dummy) showing that the results on 1500 AD ‐both for current income and technology‐ are robust to this geographic control.    Hence, our robust finding is that 1500 AD matters for current development, while the results on 1000 BC and 0 AD mattering for today’s development are not robust. We still have the result that there is persistence in technology in the more ancient periods ‐‐ from 1000 BC to 0 AD, and from 0 AD to 1500 AD – but the variation in technology unexplained by persistence over each long epoch is high enough to make the direct link from 1000 BC to the present much weaker (not so surprisingly!) than the link from 1500 AD to the present.   _______________  INSERT TABLE 12 HERE _________________  An interesting question is why the geography controls reduce the significance of historical technology adoption on current development. Of course, there are many possible explanations for this observation. One consistent with the model presented in section 4 is that geography affects the diffusion of technologies. Technologies diffuse faster within than across continents. Diamond (1997) advanced the hypothesis that certain technologies diffuse along latitudes. Finally, landlocked territories may be less exposed to newer technologies and hence adopt them later and/or less intensively.  _______________  INSERT TABLE 13 HERE _________________  As we have noted above, the association between land area and ancient technology could be reverse causality, since a larger land area contained a larger sample of cultures and technologies from which we are coding the “best.” We conclude, however, that this is not a very significant 

strong and robust relationship with current population, but the effect on current GDP is so large that more than compensates the effect on population.  22 The results are extremely robust to all sort of polynomials in the latitude.  23 Similar results hold when including a tropical dummy instead of the distance from the Equator. 

Page 20: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

19

concern based on two results reported in Table 13. First, per capita GDP today and current technology are uncorrelated with land area. Second, the correlation between historical technology adoption and, both, per capita GDP today and current technology remain unaffected by the land area control. So the association between contemporaneous technology and land area does not seem to reflect any dominant “sampling” effect.  

4. A model of endogenous technology adoption and discussion  We next present a model that provides a simple rationalization for the facts uncovered so far. The model is also an effective tool to help us think about alternative hypothesis and how to identify them in the data.   4.1 Baseline model   Generations are indexed by t. Countries are indexed by c. Let Act denote the number of technologies adopted up to t. The representative agent in the country lives for one generation and decides how many new technologies to adopt during that period. The (gross) value he obtains from adopting  ctAΔ  new technologies technology is 

 

ctctct AΔΘ=π               (3) 

where  ctΘ  is a potentially time‐varying parameter.   The cost of adopting new technologies is given by the following function.  

1

)(

Δ=

ct

ctctct A

AbC

γ

            (4) 

where  bct may be time‐varying and γ ),1[ ∞∈  implying that the cost is increasing and convex in the number of new technologies adopted in the period. Note that, in this formulation, the cost of adoption declines with the stock of technologies previously adopted in the country. This is the case both because existing technologies reduce the physical cost of adopting the new technologies and because adopters learn from previous adoption experience. This learning may be formal (e.g. training) and/or informal (e.g. trial and error) but as a result of it, technological leaders are the first to adopt new technologies. See our discussion of all the mechanisms by which this effect could operate in Table 1 (although some of the mechanisms in Table 1 have to do with the benefit of the new technology, which could be easily incorporated in our model as an effect of initial technology on value rather than cost of adoption).24,25 

24 We have also developed an extended version of the model that allows for cross country differences in the technology frontier. This extension permits us to capture country interactions and the effect of international migration and colonization. This generalization of the model could also account for the great divergence during the  XIX century. All the testable implications of the simpler model go through in this more general version. The  Generalization is available upon request from the authors.  25 Our stylized model ignores the intensive margin of adoption (i.e. how many units of the technology are adopted in the country). This is not a bad approximation up to approximately 1875, since the extensive margin accounts for a very significant share of the cross‐country variation in adoption. It is easy to see, however, how a similar argument to the one made above helps explain cross‐country variation in the intensive margin of adoption in more recent times. (That is, the cost of adoption faced by individual adopters declines with the stock of technologies they adopted in the 

Page 21: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

20

     Optimal adoption of new technologies yields the following law of motion for Act. 

11

11

11

1

−−

−⎟⎟⎠

⎞⎜⎜⎝

⎛ Θ=

Δ γ

γct

ctct

ct

ct

AA

AA

          (5) 

where  

ct

ctct bγ

Θ≡Θ               (6) 

It is quite clear from (5) that the long run dynamics of technology depend on the value of γ. Suppose for simplicity that  ctΘ  is stationary. Then if γ is smaller than 2, the number of 

technologies adopted grows at an accelerating rate as technology level rises in the long run. This would also apply across countries, so that more advanced countries will have faster growth and there will be divergence. If γ is equal to 2, Act grows endogenously in the long run at a stationary rate; there is technological persistence but neither convergence nor divergence. Finally, if γ is greater than 2, Act grows at a decreasing rate in the long run as technology rises. Less advanced countries will grow faster than more advanced countries and there will be convergence.26   One interesting feature of an accelerating growth model for certain parameter values is that the acceleration can be extremely gradual for long periods, but then when A gets sufficiently high, growth can suddenly accelerate very rapidly. Figure 9 shows a simulation of equation 5 in which growth is virtually nonexistent for millennia and then spikes up to modern growth levels over the last two centuries.27 Another more backward area with lower initial technology (assumed to be half of the initial technology of the more advanced area) would not have this spike. So our simplistic toy model could account for both the acceleration of growth with the industrial revolution of the last two centuries and the great divergence between countries over the same period! Of course, we don’t take this entirely seriously, but we think it is a cute illustrative demonstration of the potential power of technology propagation models.  (Two big reasons not to take this exercise too seriously: (1) as is well known in the new growth literature, increasing returns quickly becomes an embarrassment as growth will keep accelerating to absurd levels. If the model is to be rescued, there must be something else that slams the brakes on further increases in growth once it reaches modern growth rate levels, such as a limit on how many new technologies can be absorbed per unit of time relative to existing technologies. (2) Our actual estimates of  γ discussed below show it to be very close to 2.  To make further progress, it is useful to rewrite (5) using the log approximation around the deterministic steady state as follows:  

      111

11

−−+

−= ctctct aa

γθ

γ          (7) 

past.)   The model also ignores other micro aspects of the adoption decision that may not be of first order importance to understanding the adoption dynamics such as who is the adopter, a firm, a person, the government,...  26 Note that, our model has two ways of generating the observed acceleration of the growth of the world frontier: 

having  

γ>2 or an increase in  ctΘ  .  

27 The parameter values are ctΘ = .14, γ=1.5, and initial A = .0165. We experimented with different parameter 

values until we found an example like that shown in Figure 9.

Page 22: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

21

where  )log( ctct Θ≡θ and  )log( ctct Aa ≡ . 

 Iterating (7) back in time we obtain 

01

1 11

11

c

tt

ctct aa ⎟⎟⎠

⎞⎜⎜⎝

⎛−

+⎟⎟⎠

⎞⎜⎜⎝

⎛−

= ∑=

+− γγθ

τ

ττ        (8) 

We further assume that  ctctct θεαθθ += −1 , where  ,00 =ctE θε for t>0. Then,  it follows that the 

expected level of technology adopted at t given the adoption history up to time 0 is 

000 11

11

11

1)( c

t

c

tt

ct aaE ⎟⎟⎠

⎞⎜⎜⎝

⎛−

+

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−=

γθ

γα

γα

γα            (9) 

To derive the relationship between historical technology and current per capita income, we just need to assume that, at least in modern times, per capita income is determined by contemporaneous technology.28 Formally,          ctct ay =             (10) 

Hence,  

000 11

11

11

1)( c

t

c

tt

ct ayE ⎟⎟⎠

⎞⎜⎜⎝

⎛−

+

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−=

γθ

γα

γα

γα        (11) 

This simple model delivers three testable predictions. First, since 't' is very large in our sample, 

the coefficient of ac0 in (11), can help us calibrate γ. In particular, the coefficient ,t

⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ,

tends to 0  if  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ<1. (That is, if γ>2.) Similar, this coefficient should be very large, and in 

particular greater than 1, if   ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ>1. (That is if γ<2.) Finally, the coefficient of ac0 in (11) can 

only be between 0 and 1 if  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ≈1. (That is if γ≈2.)  

Second, equation (9) implies that, if  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ≈1, there is persistence in technology adoption. 

One implication of this is that the technology adoption history helps predict current technology adoption. Third, the reason why technology adoption history can predict current development is 

28 This might not have been the case in pre‐industrial societies where population is determined by Malthusian dynamics as in Kremer (1993), Galor and Weil (2000), Prescott and Hansen (2002) and Jones (2001, 2005), but it is a very reasonable assumption for modern societies supported by the findings in Comin and Hobijn (2008) . 

Page 23: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

22

because it can predict current technology. Therefore, after controlling for current technology historical technology adoption should not help us forecast current development.29   These predictions can easily be tested with our data. We have already observed in Tables 9 and 11 that overall technology adoption in historical periods predicts current technology. To explore further whether technology is persistent, we estimate the cross‐country correlation of technology adoption across the historical time periods.   _________________   INSERT TABLE 14 HERE _______________  As reported in Table 14, the correlation of the overall technology adoption level between 1000 B.C. and 0 is 0.62, between 0 A.D. and 1500 A.D. it is 0.71 and between 1000 B.C. and 1500 A.D. it is 0.68. (It is also reassuring that the error rate on our technological measures is not disastrously high.)  We find instructive to make a quantitative assessment of this persistence. If ‘t’ is measured in years, the autocorrelations estimated in the first column of Table 14 imply that when calibrated 

annually,  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ≥ 0.9995.  

 We also observe this high persistence of technology adoption for the sector‐level measures.  The average correlation coefficient between the technology adoption in a sector in one period and in the subsequent period is around 0.5. Technology adoption is most persistent in military, industry and transportation. The lowest correlation is in communications between 1000 BC and 1500 AD. This latter correlation is still statistically significant at the 5 percent level. All the other correlations reported in Table 14 are significant at the 1/10000 level.  ________________  INSERT TABLE 15 HERE _________________  As shown in Tables 12 and 15, this persistence of technology adoption is not driven by the geographical variables since it holds once we control for the continent, the latitude and whether the country is landlocked.   ________________  INSERT TABLE 16 HERE _________________  We conclude this exploration of the model predictions by investigating the third prediction, namely that the effect of historical technology adoption on current development operates through current technology adoption. Table 15 shows the strong positive association between current technology and per capita income in 2002. The R2 in this regression is 80 percent. The 

29 There is a fourth interesting prediction which we cannot test due to lack of data which is that, if technology is so 

persistent that  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ≈1, factors that affect the historical return to adopting the technology (i.e. institutions) may 

also affect current development even if institutions are not persistent and even after controlling for historical technology. This is the case because such factors affect the change in technology at time 0, hence affect the level of technology (at least shortly) after 0 and hence affect subsequent technology adoption.    

Page 24: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

23

importance and significance of this variable is robust to controlling for the distance to the equator and for the continent dummies.   In columns 4 through 8 of Table 16 we include our measure of overall technology adoption in 1500 AD as an additional control. However, its association with current development becomes insignificant once we control for current technology. This is the case even after including the European influence dummies (columns 7 and 8). Since technology 1500 AD was robust and significant in our previous regressions, we interpret this finding as evidence that the effect of historical technology on current development operates most robustly through the effect that historical technology adoption has on current technology adoption.  4.2 Population  One interpretation of the findings so far is that technology is a very powerful propagation mechanism. That is, a variety of factors (e.g. institutions, geography shocks, luck,...) affect the return to adopting technology in the distant past and  those historical technology adoption levels are propagated into the present through the effect that technology has on the agent's incentives to adopt subsequent technologies.   An alternative view, also consistent with the model presented above, is that the powerful propagation mechanism is not the dynamics of technology adoption but the dynamics of the 

return to adopting technology ( ctθ ). That is, rather than having  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ≈1, the persistence of 

historical adoption results from α≈1.  One variable that has been linked to improved technology is population.  Kremer (1993) develops models where this is the case because more population means more inventors of ideas. Similarly, semi‐endogenous growth models (e.g. Jones (1995,1999, 2001, 2005), Kortum (1997), Segerstrom (1998)) also have the feature that the force that ultimately keeps technology improving is the continuous expansion of the scale in the economy through population growth. The reduced form of these models in technology alone would also predict technological persistence, and so this fact alone is not enough to assess the weight to be attached to different models.   These models stress the effect of population through the supply of ideas with the increased number of thinkers. We can generate a similar population effect by having population affect our return to ideas (as it obviously does with non‐rival ideas). Our simple model can accommodate these insights by assuming that  ctct l=θ , where  ctl is the log population and evolves according 

to  lctctcct lnl ε++= −1 ,  ,00 =lctE ε for t>0. Then, act can be expressed as:  

  01

1

10 1

11

1)1( c

tt t

qlcqccct altna ⎟⎟

⎞⎜⎜⎝

⎛−

+⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛+++−= ∑ ∑

=

+−

= γγετ

τ

τ

τ    (12) 

Over the long horizons we consider in this paper, tlln cct

c0−

≈ . Hence, (12 implies)  

Page 25: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

24

0001

0 21

11

11)(

11)1()( c

t

c

t

cct

t

ct lallt

taE−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−+⎟⎟

⎞⎜⎜⎝

⎛−

+−⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

+−= ∑

= γγ

γγτ

τ

τ

       (13) 

Expression (13) implies that if  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ<1, historical technology should not predict current 

technology once we control for historical and current population. Further, failing to control for current and past population in our regressions may cause an upward bias in our estimate of 

⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γif the return to adopting technology,  ctθ , is  higher in larger countries.  

 To identify whether the observed persistence of technology is driven by the omission of population in our regressions or because technology has a direct propagation mechanism, we control for historical and current population in our baseline regression (2). As we show in the appendix, this identification strategy is valid regardless of the influence from other countries technology in the adoption cost. Table 17 and 18 report the estimation results .   ________________  INSERT TABLE 17 HERE _________________  The first three columns of Table 17 report the effect of technology and population in 1500 AD on current per capita income (column 1), current technology (column 2) and current population (column 3). The main finding is that the observed effect of historical technology on current development and current technology is robust to controlling for historical population. Indeed, the effect of historical population on current development is negative and significant. Both historical technology and population have positive significant effects on current population, although the significance of historical population is much higher.   We conduct similar exercises with technology (column 4) and population (column 5) in 1500 AD as dependent variables and technology and population in 0 as independent variables. Our findings are very similar to those reported in the first three columns of Table 17. For example, the effect of technology adoption in 0 on technology in 1500 persists after controlling for population in 0.   ________________  INSERT TABLE 18 HERE _________________  Expression (13) implies that to identify the propagation mechanism that generates the persistence of technology, we should control both for historical and for current population. Table 18 conducts this more proper test by including current population as control. Regardless of whether we use current development (column 1) or technology (column 2) as dependent variables, we still find that technology in 1500 AD has a strong and significant effect on current outcomes. Current population has a negative and significant effect on current development and technology. Population in 1500 has an insignificant effect. A shortcoming of this exercise is the endogeneity of current population, which we do not have a good means of addressing because of a lack of any obvious instrument.  

Page 26: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

25

In columns 3 and 4 of Table 18 we control further for the continent dummies. This reduces the magnitude of the coefficients but the effect of technology adoption in 1500 on current development and technology still remains significant.   We are inclined to interpret our findings as supporting a direct effect of old technology on new technology, even controlling for the population channel. We don’t claim to have refuted the population and technology model, since our coefficients on population are all over the place and usually insignificant; we think a more detailed test of the many predictions of the population and technology models would be needed to pass judgment on those models.  For now, we conclude at a minimum that population dynamics are not the ONLY propagation mechanism that generates the observed effect of technology adoption history on current development.   4.3 Institutions, culture, genes  The literature has emphasized at least three more variables that are likely to affect the return to adopting technology and could be driving the observed persistence of technology. These are institutions, culture and genetics. If any of these variables affects historical technology adoption 

and is sufficiently persistent, its omission from our regression will bias the estimate of  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ 

and could rationalize the facts presented so far. 32 

Further progress can be made in the estimation of  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ if we assume that, the effect of 

institutions, culture and genetic endowment on the return to technology adoption has an important symmetric component across sectors. That is, good institutions preserve property rights and induce agents to adopt new technologies in all sectors (covered by our data set).33 

Under this sensible assumption, we can estimate  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ by exploiting the large observed 

within sector variation in technology adoption (see Table 6). This intuition is formalized with the following multi‐sector extension of our baseline model.   Suppose that the profits and costs from adopting  cstAΔ  new technologies technology in sector s 

are, respectively  

cstcstcst AΔΘ=π              (14) 

32 Common measures of institutions do not seem to be sufficiently persistent to cause any significant bias. Przeworski (2004) has calculated that the correlation of 'constraints on executive' for 59 countries from Polity IV from first year of independence to most recent year available is only .26. Similarly, we have estimated the cross‐country correlation in the democracy variable from Polity IV in 2000 with the same variable in 1950 to be .33. It seems remarkable that these widely used measures of institutions are less persistent over a 50‐year period than technology adoption over a 2500 year period. However, this is only one measure of institutions, and “deeper” measures of institutions may show much more persistence. If institutions really do have low persistence, omitting historical 

institutions from our baseline regression should not bias our estimate of  ⎟⎟⎠

⎞⎜⎜⎝

⎛−11

γ. 

33 Similarly, the forces by which culture and genes affect technology adoption (e.g. higher willingness to experiment or higher I.Q.) are relevant to all the sectors covered in our data sets.  

Page 27: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

26

1

)(

Δ=

cst

cstcstcst A

AbC

γ

            (15) 

Note that in this formulation, the cost of adoption declines in the level of technology adopted in the sector. Then the optimal adoption of technology in sector s and country c implies the following law of motion for technology. 

11

11

1

1

−−

−⎟⎟⎠

⎞⎜⎜⎝

⎛ Θ=

Δ γ

γcst

cstcst

cst

cst

AA

AA

          (16) 

where  

Scst

Scs

Ict

cst

cstcst b

ΘΘΘ=Θ

≡Θ **γ

         (17) 

Let  )log( Scst

Scst Θ≡θ be a zero mean, iid, term,  Ict

Ict

Ict

Ict εαθθ +=Θ≡ −1)log( , where  00 =IctE ε for t>0 and 

)log( Scs

Scs Θ≡θ . Note that, in this formulation,  I

ctθ captures (potentially time‐varying) factors that affect the 

return to adopting technology in all sectors, Scsθ reflects fixed factors that affect the return to adopting 

technology in sector s of country c, and  Scstθ captures other factors that affect the return to adopting 

technology. 

  ( ) 01

11 11

11

cs

ttSct

Scs

Ictcst aa ⎟⎟

⎞⎜⎜⎝

⎛−

+⎟⎟⎠

⎞⎜⎜⎝

⎛−

++=∑=

+−+− γγθθθ

τ

τττ         (18) 

and  

   000 1

1

111

111

11

11

1)( cs

tScs

t

Ic

tt

cst aaE ⎟⎟⎠

⎞⎜⎜⎝

⎛−

+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−=

γθ

γ

γθ

γα

γα

γα      (19) 

 The empirical counterpart to equation (19) is  cstcstcsctcst uaa +++= −− 11 *ϑββ (20) This regression includes a country effect (βct‐1) that could be time‐varying and a country‐sector fixed effect (βcs). The identification of ϑ  presents the well‐known challenge often encountered in convergence regressions of a lagged dependent variable. To solve this problem we first difference equation (20) obtaining  

cstcstcstctctcstcst uaaaa +−+−=− −−−−− )(* 21211 ϑββ (21) 

and instrumenting  21 −− − cstcst aa with  2−csta . If  2−csta  is uncorrelated with  cstu  our estimate of 

ϑ  will be unbiased. We are going to implement regression (21) with t = 2000 AD, t‐1 = 1500 AD 

and t‐2 = 0 AD. We find it sensible that  15002000 cscscst uuu −≡  is uncorrelated to the technology 

adoption level in 0 AD (i.e. 1500 years before).   In our list of current technologies we have no military technology. Hence, we estimate (21) using data on the other four sectors in our data set. Since, from our previous results, the European influence will have an effect on the growth of technology between 1500 and 2000, we control for the two European influence dummies when estimating ϑ in (21).   

Page 28: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

27

________________  INSERT TABLE 19 HERE _________________  Table 19 reports the estimates of ϑ  with (column 1) and without (column 2) the country fixed effects in the growth rates. The main finding is that we observe very large and significant estimates of ϑ in both specifications. There are several important implications from these estimates. Recall that both of these regressions include country fixed effects in levels and country‐sector fixed effects in levels.  This is suggestive that persistent factors that have remained constant over the last 500 years and which may or may not have affected asymmetrically technology adoption in the country ‐ such as genes or geography‐ are not the primary drivers of the estimates of the persistence of technology (i.e. ϑ ).   A second interesting observation is that the estimates of ϑ are virtually unaffected by the inclusion of the country (time‐varying) effects. These terms capture changes at the country level between 1500 and 2000 which affect symmetrically the adoption of technology across sectors (within the country), such as an improvement in institutions (see Jones 2001). Including these country effects in the regressions does not affect the size of our estimate of ϑ  (indeed it increases). Our results say that if a technology in one sector in one country improves more than average country‐wide technological improvement in 1500, that technological improvement shows up in better technology in that sector (relative to the country‐wide average) in 2000. This is suggestive that omitted time‐varying factors that affect the adoption of technology in many sectors in the economy – such as an improvement in institutions – are not solely responsible for the observed high persistence in technology adoption.34 Note that this argument stands even if the omitted variable has a differential effect across sectors as long as it has a significant common component. We take this as very supportive of our hypothesis that there is a direct effect of old technology on new technology adoption, even if institutional and other country‐wide factors also matter.   Because of potential cross‐technology differences in diffusion not captured by our model, we explore the robustness of our estimates of ϑ to including technology‐specific intercepts. As is clear from columns (3) and (4) of Table 19, the significance of ϑ  is unaffected. Interestingly, the similarity of the point estimates with and without country (time‐varying) effects also persists after including technology‐specific intercepts.  We conclude our empirical exploration of the sources of persistence in technology adoption by showing that the significance of ϑ is not driven by any single sector. In columns 5 through 8 of Table 19 we report the estimates of ϑ  after eliminating successively one of the four sectors covered in our data set ‐recall that we have excluded the military technologies from this analysis.   Two observations emerge from this exercise. First, the significance of the estimate of ϑ is not driven by any specific sector. Second, when comparing the estimates of ϑ obtained by exploiting the sectoral variation in technology adoption (e.g. columns 3‐8 of Table 19) with the estimates we obtained when using the cross‐country variation (e.g. columns 3, 6, 9 and 12 of Table 12) it turns out that the former are not smaller than the later.  

34 We do not know whether the aspects of culture which are relevant for adoption of technology are fixed over a 500 year period or time varying, but in either case, they are also likely to  be taken care off by one of the two arguments posed above.

Page 29: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

28

 As argued above, this is hard to reconcile with theories where the ONLY mechanism that induces the persistence of technology operates at a country‐wide level. Instead, this observation can be accounted for naturally by our simple theory since the knowledge created when adopting a technology in a given sector is likely to reduce the costs of adopting subsequent technologies in the sector but not so much in other sectors.   Hence, we are inclined to conclude from the findings presented in this paper that the dynamics of technology adoption are a direct propagation mechanism that transmits significant technology shocks of very diverse nature into the distant future. The primary feature of our model that predicts this result is that the cost of technology adoption is lower the higher is the previous stock of technology.  

5. Conclusions  The main finding of this paper is a simple one: centuries‐old technological history is associated with the wealth of nations today. This is largely robust to including continent dummies and geographic controls, so it is not just driven by “Europe vs. Africa” or “tropical vs. temperate zones.” There are two surprising parts of the finding. The first is just how old the history can be and still be correlated with modern outcomes. Our most robust finding is that technology in 1500 AD is correlated with development outcomes today, itself remarkably old when we consider that most history discussions of developing countries start (at most) with European contact and colonization. The second surprising aspect of our finding is how large is the magnitude of the association between historical technology adoption and current development. In our baseline specification, going from having none to having adopted all the technologies available in 1500 AD is associated with an increase in current per capita GDP by a factor of 17. Even after including a battery of controls, this factor is over 5.   In an effort towards understanding what drives this surprising correlation, we have found suggestive results that technology is very persistent, that this persistence is not driven only by the persistence of population, and that it does not diminish when exploiting the sectoral variation in technology adoption after removing the country average adoption level in the period and country‐sector fixed effects (hence controlling for any factors that operate at a country‐wide level such as institutions). This evidence provides support to the hypothesis that the technology adoption dynamics ‐‐ in which the cost of adopting new technology falls with the stock of previous technology ‐‐ are the mechanism that generates the propagation uncovered in the data.    

Page 30: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

29

 References  Acemoglu, D., S. Johnson and J. Robinson,(2002), “Reversal of Fortune: Geography and 

Institutions in the Making of the Modern World Income Distribution” Quarterly Journal of Economics, (November), v. 117, iss. 4, pp. 1231‐94 

 Adshead, S.A.M. (1988) China in World History. New York: St. Margin's Press, Inc.  Ashraf, Quamrul and Oded Galor (2008), Human Genetic Diversity and Comparative Economic 

Development, mimeo, Brown University, June 2008  Barry, H. , III, & L.M. Paxson (1971) "Infancy and Early Childhood: Cross Cultural Codes 2," 

Ethnology. 10, pp. 466‐508.  Basalla, G. (1988) The Evolution of Technology. Cambridge, United Kingdom: Cambridge 

University Press.  Black, J. (1996) The Cambridge Illustrated Atlas of Warfare: Renaissance to Revolution 1492‐

1792. Cambridge, United Kingdom: University of Cambridge.  Carneiro, R.L. (1970) "Scale Analysis, Evolutionary Sequences, and the Rating of Cultures" In: R. 

Naroll & R. Cohen eds. A Handbook of Method in Cultural Anthropology. Garden City, New York: The Natural History Press. pp: 834‐871. 

 Collis, J. (1984) The European Iron Age. New York: Routledge.  Comin, D. and Hobijn (2008a) "An Exploration of Technology Diffusion" HBS w.p. #08‐093.  Comin, D. and Hobijn (2008b) "Lobbies and technology Diffusion" Review of Economics and 

Statistics, forthcoming.  David P. A. (1975) Technical Choice, Innovation and Economic Growth: Essays on American and 

British Experience in the Nineteenth Century. Cambridge University Press.   Diamond, J. (1997) Guns, Germs, & Steel. New York: W.W. Norton & Company.  Easterly, W. and R. Levine (2008), “European Settlement and Economic Development,” mimeo,   Easterly, W. and R. Levine (2003) “Tropics, germs, and crops: the role of endowments in 

economic development” Journal of Monetary Economics, 50:1, January 2003.  Encyclopedia Britannica (2006h) "chariot," Encyclopædia Britannica Online. 

http://search.eb.com/eb/article‐9022532  Encyclopædia Britannica (2006) "Inca" Encyclopædia Britannica Online. 19 Aug. 2006  

http://search.eb.com/eb/article‐9042237  

Page 31: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

30

Erman, A. (1971) Life in Ancient Egypt. New York: Dover Publications Inc.  Gallup,J., J. Sachs, and A. Mellinger (1999) "Geography and Economic Development,", 

International Regional Science Review, Vol. 22,  No. 2, pp. 179‐232, August 1999.   Galor O., "From Stagnation to Growth: Unified Growth Theory", in P. Aghion and S. Durlauf, 

editors, Handbook of Economic Growth, 2005, 171‐293.  Galor, O., and D.N. Weil (2000), “Population, Technology and Growth: From the Malthusian 

regime to the Demographic Transition”, American Economic Review 110: 806‐828.  Greene, K. (2000). Technological Innovation and Economic Progress in the Ancient World: M.I. 

Finley Re‐Considered. The Economic History Review, New Series, Vol. 53, No. 1 (Feb. 2000), pp. 29‐59. 

 Hall, R. and C. Jones (1999) "Why Do Some Countries Produce So Much More Output per 

Worker than Others?", Quarterly Journal of Economics, February 1999, Vol. 114, pp. 83‐116.  Hogg, O.F.G. (1968) Clubs to Cannon, Warefare and Weapons before the introduction of 

Gunpowder. London: Gerald Duckworth & Co. Ltd.  Jones, C.. “Growth and Ideas.”in P. Aghion and S. Durlauf, editors, Handbook of Economic 

Growth, 2005  Jones, C.."Was an Industrial Revolution Inevitable? Economic Growth Over the Very Long Run" 

Advances in Macroeconomics, August 2001, Vol. 1, No. 2, Article 1.  Jones, C.."Growth: With or Without Scale Effects?" American Economic Review Papers and 

Proceedings, May 1999, Vol. 89, pp. 139‐144.  Jones, C.. "R&D‐Based Models of Economic Growth" Journal of Political Economy, August 1995, 

Vol. 103, pp. 759‐784.  Kerr, R. & N. Wood (2004) Joseph Needham Science and Technology in China, Vol 5 Chemistry 

and Chemical Technology, Part XII: Ceramic Technology. Cambridge, United Kingdom: Cambridge University Press. 

 Kipfer, B.A. ed. (2000) Encyclopedic Dictionary of Archaeology. New York: Lluwker 

Academic/Plenum Publishers.  Klenow, P. and A. Rodriguez‐Clare (1997) "The Neoclassical Revival in Growth Economics: Has It 

Gone Too Far?" with Andrés Rodríguez‐Clare, NBER Macroeconomics Annual 1997, B. Bernanke and J. Rotemberg ed., Cambridge, MA: MIT Press, 73‐102 

 Kremer, M. “Population Growth and Technological Change: One Million B.C. to 1990,” The 

Quarterly Journal of Economics, Vol. 108, No. 3 (Aug., 1993), pp. 681‐716.  

Page 32: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

31

Landes, D. (1969) Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present, Cambridge University Press  

 Lucas, A. (1934) Ancient Egyptian Materials & Industries. London: Edward Arnold & Co.  Macksey, K. (1993) The Penguin Encyclopedia of Weapons and Military Technology, Prehistory to 

the Present Day. New York: Penguin Books USA.  McEvedy, C. and R. Jones (1978) Atlas of World Population History Penguin Books, London.  Mokyr, J. (1990) The Lever of Riches: Technological Creativity and Economic Progress. Oxford; 

New York; Toronto and Melbourne: Oxford University Press.  Mokyr, J. (2002). The Gifts of Athena: Historical Origins of the Knowledge Economy. Princeton: 

Princeton University Press.  Mokyr, J. (2005) , The Intellectual Origins of Modern Economic Growth,  The Journal of 

Economic History, VOLUME 65 JUNE 2005 NUMBER 2, 285‐351.  Mokyr, Joel (2005).  “Long‐term Economic Growth and the History of Technology,” in the 

Handbook of Economic Growth, edited by Philippe Aghion and Steven Durlauf, Amsterdam: Elsevier, 2005, pp. 1113‐1180. 

 Murdock, G.P. (1967) Ethnographic Atlas. University of Pittsburgh Press.  Murdock, G.P. & D.O. Morrow (1970) "Subsistence Economy and Supportive Practices" In: A. 

Spoher ed. Ethnology, 9. No. 3. pp: 302‐330.  Murdock, G.P. & C. Provost (1973) "Measurement of Cultural Complexity" In: A. Tuden ed. 

Ethnology, 12, No. 4. pp: 379‐392.  Murdock, G.P. & S.F. Wilson (1972) "Settlement Patterns and Community Organization," 

Ethnology. 11, pp. 254‐295.   O'Brien, P.K. ed. (1999) Atlas of World History. New York: Oxford University Press.  Peregrine, P.N. (2003) "Atlas of Cultural Evolution" In:J.P. Gray ed. World Cultures,14, no. 3. pp: 

1‐75.  Peregrine, P.N. , & M. Ember eds. (2001a) Encyclopedia of Prehistory. Vols 1‐8. New York: Kluwer 

Academic/Plenum Publishers.  Peregrine, P.N. , & M. Ember eds. (2001b) Encyclopedia of Prehistory. Vol 9.New York: Kluwer 

Academic/Plenum Publishers.  Pulkki, A.M., and P. Stoneman (2006) “International Diffusion of New Technologies: Intensive 

and Extensive Margins.” Mimeo University of Warwick.  

Page 33: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

32

Rodrik, D. A. Subramanian,  F. Trebbi (2004) “Institutions Rule: The Primacy of Institutions over Geography and Integration in Economic Development.”  Journal of Economic Growth, June 2004, v. 9, iss. 2, pp. 131‐65 

 Rosenberg, N. (2000) Schumpeter and the Endogeneity of Technology, Routledge: London and 

New York.  Rosenberg, N. (1994) Exploring the Black Box: Technology, Economics, and History, 

Cambridge University Press.  Rosenberg, N. (1982) Inside the Black Box: Technology and Economics. Cambridge University 

Press.  Rosenberg, N. and L.E. Birdzell Jr. How the West Grew Rich: The Economic Transformation of the 

Industrial World, Basic Books: New York, 1986.  Rouse, I. (1972) Introduction To Prehistory, A Systematic Approach. New York: McGraw‐Hill Book 

Company.  Scarre, C. ed. (1988) Hammond Past Worlds The Times Atlas of Archaeology. Maplewood, New 

Jersey: Hammond Inc.  Spolaore, Enrico and Romain Wacziarg, The Diffusion of Development, mimeo, Tufts and 

Stanford, March 2006  Tuden, A. & C. Marshall (1972) "Political Organization," Ethnology. 11, pp. 436‐464.  Wager, D. B. (1993) Iron and Steel in Ancient China. New York: E.J. Brill.    

 

Page 34: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

33

 Appendix 1  In Table 5 we document the progression of advanced civilizations (Western Europe, China, India, and the Arab Empire) from 1000 BC to 1500 AD.  Initially Western Europe lagged behind other civilizations but assumed technological leadership by 1500 AD.   Western Europe initially started as the least technological sophisticated of the major advanced civilizations in 1000 B.C. It’s lowly position was due to its slower adoption of communications, transportation, and military technology.   Western Europe, with the exception of Italy,  had not yet adopted written records for communication, vehicles for transportation, and iron weapons.  Other advanced civilizations at the time, such as China and the Arab Empire already were using these technologies.  However, by 0 A.D. Western Europe had adopted these technologies, and by 1500 A.D. it was the most technologically advanced civilization.  Western Europe’s ascendancy is primarily due to advances in transportation and military technology.  During the 16th century, Western Europe alone had expeditions across all major oceans (The famous Chinese explorer Cheng Ho had voyaged across the Indian Ocean as far as East Africa in 1405‐1431, but these voyages turned out to be an aberration as the voyages were stopped and ships destroyed by a subsequent emperor) .  These journeys required adopting a number of shipbuilding and navigational technologies.  Western Europe also was at the forefront in naval weapons.  The navies of Western Europe deployed large warships (in excess of 1500 ton deadweight) with armaments of over 180 guns by the 16the century.  Even advanced civilizations such as China and the Arab Empire had not yet adopted these advanced weapons.     

Page 35: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

34

 Figure 1a: Overall technology adoption in 1000 B.C. 

  

Figure 1b: Overall technology adoption in 0 A.D. 

  

Figure 1c: Overall technology adoption in 1500 A.D. 

Page 36: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

35

   Figure 2: Technology in 1500 and current development  

PRY

URY

AUS

ARGBWA

NAMBRA

CAN

COL

CRI

GUY

NIC

PAN

USA

VENFJI

NZL

PNG

TON

BOL

CHL

ECU

PER

AGO

BEN

CMR

CIV

GAB

LSO

MRT

SLE

ZAF

ZMB

CAF

ZAR

KENCOG

TZA

BLZSLVGTM

HND

UGA

MEX

GNB

NPLSEN

MDG

SDNGHA

TCD

GIN

MAR

MNG

NER

UZB

NGA

SAU

BFAMLI

ETH

PHL

BGD

IDN

FIN

ROM

SYR

MYS

SGP

PAKKHMLAO

THA

IND

DZA

EGY

TUN

IRL

RUS

VNM

MDA

IRNBIH

CZESVK

CHEJPN

HRV

TUR

LTUPOL

UKR

KOR

BLR

EST

LVA

CHN

HKGAUTBELDNKDEU

HUN

ITA

MLT

NLDNOR

SWEFRA

GRCPRT

GBRESP

6

7

8

9

10

11

log

per c

apita

inco

me

in 2

002

0 .2 .4 .6 .8 1Overall technology adoption level in 1500AD

 Figure 3: (Conditional) overall technology adoption in 1000 B.C. and (conditional) current  

development  

Page 37: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

36

PRY

URY

AUS

ARGBWA

NAM BRA

CANCOL

CRI

GUY

NIC

PANUSA

VEN

PNGBOL

CHL

ECU

PER

AGO

BEN

CMR

CIV

GAB

LSO

MRT

ZAF

ZMBZAR

KENCOG

TZA

BLZ

SLVGTM

HND

UGA

MEX

NPLSEN

SDNGHA

TCD

GIN

MAR

MNGUZB

NGABFAMLI

ETH

BGD

IDN

FIN

ROM

MYS

PAKKHMLAO

THA

IND

DZA

EGY

RUS

VNM

MDA

IRNBIH

CZE

CHEJPN

HRV

TUR

LTUPOL

UKR

KOR

BLR

EST

LVA

CHN

AUTBELDNKDEU

HUN

ITANLD

NOR

SWEFRA

GRCPRT

GBRESP

BGR

MOZ

SWZ

GMB

KAZ

TJK

TKM

-2

-1

0

1

2

Res

idua

l log

per

cap

ita in

com

e in

200

2

-.5 0 .5Residual overall technology adoption level in 1000BC

 

Page 38: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

37

Figure 4: (Conditional) overall technology adoption in 0 A.D. and (conditional) current  development 

 

PRY

URY

AUS

ARG BWA

NAM BRA

CANCOL

CRI

GUY

NIC

PAN USA

VEN

NZL

PNGBOL

CHL

ECU

PER

AGO

BEN

CMR

CIV

GAB

LSO

MRT

SLE

ZAF

ZMB

CAF

ZAR

KENCOG

TZA

BLZ

SLVGTM

HND

UGA

MEX

GNB

NPLSEN

MDG

SDNGHA

TCD

MAR

MNG

NER

UZB

NGA

SAU

BFAMLI

ETH

PHL

BGD

IDN

FIN

ROM

SYR

MYS

SGP

PAKKHMLAO

THA

IND

DZA

EGY

IRL

RUS

VNM

IRNBIH

CZESVK

CHEJPN

HRV

TUR

LTU POL

UKR

KOR

BLR

EST

LVA

CHN

AUTBELDNKDEU

HUN

ITANLD

NOR

SWEFRA

GRCPRT

GBRESP

ALB

BGRMKD

MWI

MOZ

SWZ

GMB

ISR

JOR

KAZLBN

OMN

TJK

TKM

YEM

DOM

-2

-1

0

1

2

Res

idua

l log

per

cap

ita in

com

e in

200

2

-.6 -.4 -.2 0 .2Residual overall technology adoption level in 0AD

Page 39: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

38

Figure 5: (Conditional) overall technology adoption in 1500 A.D. and (conditional) current  development  

 

PRY

URY

AUS

ARGBWA

NAM BRA

CANCOL

CRI

GUY

NIC

PANUSA

VENFJI

NZL

PNG

TON

BOL

CHL

ECU

PER

AGO

BEN

CMR

CIV

GAB

LSO

MRT

SLE

ZAF

ZMB

CAF

ZAR

KENCOG

TZA

BLZ

SLVGTM

HND

UGA

MEX

GNB

NPLSEN

MDG

SDNGHA

TCD

GIN

MAR

MNG

NER

UZB

NGA

SAU

BFAMLI

ETH

PHL

BGD

IDN

FIN

ROM

SYR

MYS

SGP

PAKKHMLAO

THA

IND

DZA

EGY

TUN

IRL

RUS

VNM

MDA

IRNBIH

CZESVK

CHEJPN

HRV

TUR

LTUPOL

UKR

KOR

BLR

EST

LVA

CHN

AUTBELDNKDEU

HUN

ITA

MLT

NLD

NOR

SWEFRA

GRCPRT

GBRESP

-2

-1

0

1

2

Res

idua

l log

per

cap

ita in

com

e in

200

2

-.6 -.4 -.2 0 .2 .4Residual overall technology adoption level in 1500AD

    

Page 40: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

39

Figure 6: (Conditional) overall technology adoption in 1000 B.C. and (conditional) current  technology 

 

              

CZE

YUG

BIH

ITA

RUS

FIN

POL

NLD

MDA

SWEDNKDEU

GRC

LTU

ESP

AUT

LVA

BLR

ROM

BEL

CHE

GBR

PRT

NOR

BGR

UKR

FRA

HUN

EST HRV

AGO

GNQZWE MAR

UGABFATZA TCD

ZAF

SENDZA

BEN

ZMBCOGBWA

SWZ

SDNLSO

MLI

NGA

ETH

KENCIVMRTEGY

GHA

GMBMOZ ZAR

GIN

CMR

SOM

NAM

GAB

KHMVNM

IDN

UZBLAOMMR

IRN

NPL

HKG

JPN

TJK

MNG

TKM

PAKIND

MYS

BGD

THA

CHN

TUR

AFG

KAZ

MEX

HNDGUYPAN

PERECU

PRY

CANVENARG

SLV

BRA

CUB

URY

NIC

CHL

COL

GTM

CRIUSA

BOLPNG

AUS

-.2

0

.2

.4

Res

idua

l ove

rall

curr

ent t

echn

olog

y ad

optio

n

-.5 0 .5Residual overall technology adoption level in 1000BC

    

Page 41: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

40

 Figure 7: (Conditional) overall technology adoption in 0 A.D. and (conditional) current  

technology  

   

CZE

YUG

BIH

ITA

RUS

FIN

POL

NLDSWEDNKDEU

SVKGRC

LTU

ESP

AUT

LVA

MKD

BLR

ROM

BEL

CHE

GBR

PRT

NOR

BGR

UKR

FRA

ALB

HUN

EST

IRL

HRV

CAF

AGO

ZWE

SLE

MAR

UGABFA

TZATCD

ZAF

SENDZA

BEN

ZMBCOGBWA

SWZ

SDNLSO

MLI

NGANERETH

KEN

GNB

CIVMRT

MDG

EGY

GHA

GMBMOZZAR

CMR

LBY

SOM

NAM

LBR

GAB

KHMVNM

IDN

UZBLAOMMR

IRN

NPL

LBN

HKG

JPN

TJK

ISR

MNG

YEMSYR

SGP

TKM

ARE

PAKIND

SAU

PHL

OMN

IRQ

MYS

BGD

THA

CHN

TUR

AFG

KAZ

JOR

MEX

HNDGUYPAN

PERECU

PRY

CANVENARG

SLV

BRA

CUB

URY

NIC

CHL

COL

GTM

CRI USA

DOMBOL

NZL

PNG

AUS

-.2

0

.2

.4

Res

idua

l ove

rall

curr

ent t

echn

olog

y ad

optio

n

-.6 -.4 -.2 0 .2Residual overall technology adoption level in 0AD

 

Page 42: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

41

Figure 8: (Conditional) overall technology adoption in 1500 A.D. and (conditional) current  technology 

 

CZE

YUG

BIH

ITA

RUS

FIN

POL

NLD

MDA

SWEDNKDEU

SVKGRC

LTU

ESP

AUT

LVA

BLR

ROM

BEL

CHE

GBR

PRT

NOR

UKR

FRA

HUN

EST

IRL

HRV

CAF

AGO

GNQ ZWE

SLE

TUNMAR

UGABFA

TZA TCD

ZAF

SENDZA

BEN

ZMBCOGBWA

SDNLSO

MLI

NGANER ETH

KEN

GNB

CIVMRT

MDG

EGY

GHAZAR

GIN

CMR

LBY

NAM

LBR

GAB

KHMVNM

IDN

UZBLAOMMR

IRN

NPL

HKG

JPN

MNG

SYR

SGP

PAKIND

SAU

PHL IRQ

MYS

BGD

THA

CHN

TUR

AFG

MEX

HNDGUYPAN

PERECU

PRY

CANVENARG

SLV

BRA

CUB

URY

NIC

CHL

COL

GTM

CRIUSA

BOL

NZL

PNG

AUS

-.2

0

.2

.4

Res

idua

l ove

rall

curr

ent t

echn

olog

y ad

optio

n

-.5 0 .5Residual overall technology adoption level in 1500AD

 

Page 43: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

42

Figure 9: Simulated Growth Rate of Technology

0

0.005

0.01

0.015

0.02

0.025

0.03-1

000

-853

-706

-559

-412

-265

-118 29 17

6

323

470

617

764

911

1058

1205

1352

1499

1646

1793

1940

g advanced initial technology

g backward initial technology

Page 44: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

43

Figure A1: Technology in 1500 and current technology  

   

CZE

YUG

BIH

ITA

RUS

FIN

POL

NLD

MDA

SWEDNKDEU

SVKGRC

LTU

ESP

AUT

LVA

BLR

ROM

BEL

CHE

GBR

PRT

NOR

UKR

FRA

HUN

EST

IRL

HRV

CAFAGO

GNQZWE

SLE

TUNMAR

UGABFA

TZA TCD

ZAF

SENDZA

BEN

ZMBCOGBWA

SDNLSO

MLI

NGANER ETH

KEN

GNB

CIVMRT

MDG

EGY

GHAZAR

GIN

CMR

LBY

NAM

LBR

GAB

KHMVNM

IDN

UZBLAOMMR

IRN

NPL

HKG

JPN

MNG

SYR

SGP

PAKIND

SAU

PHL IRQ

MYS

BGD

THA

CHN

TUR

AFG

MEX

HNDGUY

PANPERECU

PRY

CAN

VENARG

SLV

BRA

CUB

URY

NIC

CHL

COL

GTM

CRI

USA

BOL

NZL

PNG

AUS

.2

.4

.6

.8

1

Cur

rent

Ove

rall

Tech

nolo

gy A

dopt

ion

0 .2 .4 .6 .8 1Overall technology adoption level in 1500AD

  

Page 45: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Table 1: Mechanisms for persistence of technology from economic history literature Mechanism for technology persistence Examples from economic history literature Complementarities between existing technology and new technology (CT is “complementary to”) If a new technology is complementary to an old technology, then the cost of adopting the new technology is lower. The more technologies in the initial technology set, the more new technologies there will be that are complementary.

Cement masonry CT roads and aqueducts under Romans (Mokyr 1990, pp. 19-20), Roman water lifting CT power transmission ( gears, cams, chains) (Mokyr 1990, p. 21), medieval waterwheels CT grain mills (Rosenberg and Birdzell 1986, p. 154), medieval heavy plow CT fallow system CT draft animals feeding on fallow and fertilizing field CT horse collar and nailed horseshoe (Mokyr 1990 pp. 32-35), compass CT astrolabe CT advances in astronomy CT oceangoing ships in 15th century (Mokyr 1990, p. 47, Rosenberg and Birdzell pp. 72, 84), metallurgy CT Gutenberg press (Mokyr 1990, p. 48), new crops alfalfa and clover CT stall feeding of livestock CT animal fertilizer and abandonment of fallow system 1500-1750 (Mokyr 1990, p. 58) Chain mail CT breastplates and armor for soldiers (Rosenberg and Birdzell 1986, p. 58), Textile machinery CT Chemical innovation on detergents, bleaches mordants, and dyes (Landes 1969, p. 108)

Recombination of old technologies to make new technology. Many new technologies are novel combinations of old technologies. The greater the number of old technologies, the greater the number of possible combinations to make new technologies.

“the lever , the wedge and the screw , … the ratchet , the pulley , the gear , and the cant” used to make Greek/Roman war machines (Mokyr 1990, p. 21), salt preservation of meat and improved transportation in 15th century = long distance trade in cattle from rural areas to cities (Rosenberg and Birdzell 1986, pp. 75-76), steam power + iron and steel metallurgy = factory machines (Rosenberg and Birdzell 1986, p. 146), steam engine + rails = railroad, refrigeration + steamships = long distance meat exports to Europe, electricity generation + conductors + meters + lamps = electric light (Rosenberg 1982, pp. 58-59), germ theory+ bactericidal molds + mass chemical production = penicillin (Mokyr 2002, p. 107) internal combustion engine + glider + propeller=airplane (Mokyr 2002, p. 114)

Feedback from technology to science. Whentechniques “work,” this gives new evidence to scientists to test theories why they work. Science will in turn be used to make further innovations in technique. “Science” should be defined very broadly beyond formal science to include general understanding of “laws of nature” or “the way the world is,” making statements that are true or false. Technology is defined as the toolkit of “techniques,” which are not “true or false,” but simply “work.”

Working machines to Galileo’s general theory of machine principles (Mokyr 1990, p. 75), Steam engine to thermodynamics (Mokyr 1990, p. 90; Rosenberg 1982, p. 14), food canning to bacteriology and germ theory of disease (Rosenberg and Birdzell 1986, p. 245), Wright brothers to aerodynamics (Mokyr 2005, Mokyr 2002, pp. 96-97) Rosenberg 1982, p. 157), discovery of transistor to field of solid-state physics (Rosenberg 2000, p. 33), telegraph to mathematical physics (Mokyr 2002, p. 90)

Feedback from technology to lower access costs for knowledge. The more advanced are certain “access” technologies, the easier it is to obtain general scientific knowledge, which then lowers the cost of innovation and adoption.

Greek/Roman alphabetization, Arabic numerals, Gutenberg printing, 19th century innovation in paper and printing, lower transport costs for people and books, postal services, standard weights and measures, encyclopedias, ICT revolution (Mokyr 2002)

Page 46: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Table 1 (continued): Mechanisms for persistence of technology from economic history literatureSpillover of technology from one sector to another. Technological ideas from one sector inspire new approaches to problems in other sectors.

Clockmaking and watchmaking beginning with medieval town clocks spillover to precision machining for factories in industrial revolution (Rosenberg and Birdzell 1986, pp. 148-150), Steam engine inventor Watt’s background was in mining industry, which required knowledge of metallurgy, chemistry, mechanics, and civil engineering (Mokyr 1990 p. 162); spillover from petrochemical industry for auto fuel to plastics and synthetic fibers (Rosenberg 2000 p. 92)

Economies of scale. Some technologies have fixed costs or internal economies of scale such that it is only worth adopting them at higher scale of operation of the economy. The greater is initial technology, the greater the scale of operation of the economy.

Larger oceangoing ships and expanding world trade in 15th century (Rosenberg and Birdzell 1986, pp. 82-83), Mechanical reaper (David 1975), Assembly line and interchangeable parts (Mokyr 2002)

Economies of scope of General Purpose Technologies. When a GPT is invented, it’s payoff is greater, the more technologies in which it can be used. Hence the greater is initial technology, the greater the payoff to a GPT.

Gutenberg printing press, Ocean-going ships in 15th century, Electric engine for factories in virtually all sectors and multiple home appliances (Rosenberg 1982, pp. 78-79), ICT (Mokyr 2002, pp. 112-113)

Feedback from technology to improved lab equipment. Improved lab equipment lowers the cost of scientific discovery, innovation, or adoption. The better is existing technology, the better the lab equipment.

Medieval optics made possible telescope and microscope (Rosenberg and Birdzell 1986, p. 58), instruments measuring time, distance, weight, pressure, temperature, Volta’s battery, Petri dish (Mokyr 2005) advances in lens grinding to make better telescopes and microscopes (Mokyr 2002, pp. 97-100)

Learning by doing. Much of technological progress consists of learning how to make old techniques work better through small adjustments, minor innovations, and adaptation to local circumstances.

Ocean-going ships since 15th century improved sailing efficiency and ship design until advent of steam power (Rosenberg and Birdzell p. 263), coal required to generate kilowatt-hour of electricity fell drastically over the decades; semiconductors moved from a single transistor on a chip to more than a million such components (Rosenberg 1994, pp. 14-15), high pressure steam engine design and transmission (Mokyr 2002, p. 84); transition from Bessemer to Siemens Martin steelmaking process (Mokyr 2002, pp. 86-87)

Page 47: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

“ACE” Dataset Technology Dataset for 1000 B.C. & 0 A.D.

( 0 = indicates absence of technology, 1 = presence of technology)

Writing & Records Communication1 = None

2 = Mnemonic or nonwritten records 0,13 = True Writing 0,1

Technological Specialization Industry1 = None

2 = Pottery 0,13 = Metalwork (alloys, forging, casting) 0,1

Land Transport Transportation1 = Human Only

2 = Pack or draft animals 0,13 = Vehicles 0,1

Agriculture Agriculture1 = None 0

2 = 10% or more, but secondary 13 = Primary 2

Military Military1 = Stone Tools

2 = Bronze Tools Bronze weapons: 0,13 = Iron Tools Iron weapons: 0,1

Table 2: Coding Concordance Between “ACE” and the Technology Adoption Dataset

Page 48: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Variable Description Values

Military

Standing Army An organization of professional soldiers. 0,1Cavalry The use of soldiers mounted on horseback. 0,1

Firearms Gunpowder based weapons 0,1

Muskets The successor to the harquebus (the common firearm of European armies) was larger and a muzzle-loading firearm. 0,1

Field Artillery Large guns that required a team of soldiers to operate. It had a larger caliber and greater range than small arms weapons. 0,1

Warfare capable ships Ships that were used in battle are considered "warfare" capable. 0,1

Heavy Naval Guns Ships required significant advances in hull technology before they were capable of carrying heavy guns. 0,1

Ships (+180 guns), +1500 ton deadweight Large warships that only state navies had the capability of building. 0,1

Agriculture

Hunting & Gathering The primary form of subsistence. 0Pastoralism The primary form of subsistence. 1

Hand Cultivation The primary form of subsistence. 2Plough Cultivation The primary form of subsistence. 3

Transportation

Ships Capable of Crossing the Atlantic Ocean Any ship that had successfully crossed the Atlantic Ocean. 0,1

Ships Capable of Crossing the Pacific Ocean Any ship that had successfully crossed the Pacific Ocean. 0,1

Ships Capable of Reaching the Indian Ocean Any ship that had reached the Indian Ocean from either Europe or the Far East. 0,1

Wheel The use of the wheel for transportation purposes. The most common use was for carts. 0,1

Magnetic Compass The use of the compass for navigation. 0,1Horse powered vehicles The use of horses for transportation. 0,1

Communications

Movable Block Printing The use of movable block printing. 0,1Woodblock or block printing The use of woodblock printing. 0,1

Books The use of books. 0,1Paper The use of paper. 0,1

Industry

Steel The presence of steel in a civilization. 0,1Iron The presence of iron in a civilization. 0,1

Table 3: Variables in the 1500 A.D. dataset

Page 49: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Table 4: Descriptive statistics of Overall Technology Adoption

Period Number Obs. Average Std. Dev. Min Max

1000BC 113 0.45 0.28 0 1

0 135 0.73 0.28 0 1

1500AD 130 0.48 0.32 0 1

Current 109 0.45 0.2 0.15 1

Note: Overall technology adoption measure in a country results from aveadoption across tecnologies in the sector and then averaging sectoral adoption measures across the sectors.

Page 50: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Table 5: Descriptive statistics of Overall Technology Adoption by Continent

Period Continent Number Obs. Average Std. Dev. Min Max

1000BC

Europe 30 0.66 0.16 0.5 1

Africa 34 0.36 0.31 0 1

Asia 23 0.58 0.25 0.1 1

America 24 0.24 0.12 0 0.4

Oceania 2 0.2 0.14 0.1 0.30AD

Europe 33 0.88 0.15 0.7 1

Africa 40 0.77 0.2 0.6 1

Asia 34 0.88 0.15 0.6 1

America 25 0.33 0.17 0 0.6

Oceania 3 0.17 0.11 0.1 0.31500AD

Europe 32 0.86 0.07 0.69 1

Africa 39 0.32 0.2 0.1 0.78

Asia 25 0.66 0.19 0.07 0.88

America 24 0.14 0.07 0 0.26

Oceania 9 0.12 0.04 0 0.13Current

Europe 34 0.63 0.19 0.27 0.87

Africa 42 0.31 0.08 0.13 0.54

Asia 33 0.41 0.15 0.23 0.76

America 22 0.47 0.17 0.34 1

Oceania 3 0.73 0.32 0.36 0.92

Page 51: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 7

: Ave

rage

Ove

rall

Tec

hn

olog

y A

dop

tion

in A

dva

nce

d C

ivili

zati

ons

Civi

lizat

ion

1000

BC0

AD

1500

AD

Curr

ent

W. E

urop

e0.

650.

960.

940.

71

Ch

ina

0.9

10.

880.

33

In

dian

0.67

0.9

0.7

0.31

A

rab

0.95

10.

70.

43

Not

e: W

. Eur

ope

inclu

des S

pain

, Por

tuga

l, Ita

ly, F

ranc

e, U

nite

d K

ingd

om, G

erm

any,

Belg

ium

and

Net

herla

nds.

Indi

an E

mpi

re in

clude

s Ind

ia, P

akist

an a

nd B

angl

ades

h.A

rab

Em

pire

inclu

des S

audi

Ara

bia,

UA

E, Y

emen

, Om

an, I

raq,

Iran

, Syr

ia, L

eban

on, J

orda

n,

Egy

pt, L

ibya

, Tun

isia,

Alg

eria

and

Mor

occo

Page 52: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 7

: Cro

ss-c

oun

try

vari

atio

n in

ove

rall

tech

nol

ogy

vs. s

ecto

ral t

ech

nol

ogy

Std

Perio

dN

Ove

rall

Agr

icultu

reIn

dust

ryM

ilita

ryTr

ansp

ort.

Com

m.

1000

BC11

30.

280.

350.

180.

160.

220.

23

013

60.

280.

250.

240.

180.

260.

32

1500

AD

130

0.32

0.2

0.2

0.2

0.12

0.26

Curr

ent

152

0.2

0.13

0.12

-0.

110.

14

Not

e: St

d. O

vera

ll is

the

cros

s-co

untry

stan

dard

dev

iatio

n in

ove

rall

level

of te

chno

logy

ado

ptio

n.St

d of

dev

iatio

ns fr

om o

vera

ll te

ch. i

s the

cro

ss-c

ount

ry st

anda

rd d

eviat

ion

in te

chno

logy

ad

optio

n lev

el in

the

sect

or a

fter r

emov

ing

for e

ach

coun

try th

e ov

erall

tech

nolo

gy a

dopt

ion

level

Std.

of d

eviat

ions

from

ove

rall

tech

.

Page 53: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 8

: Urb

aniz

atio

n r

ate

and

tec

hn

olog

y ad

opti

on h

isto

ry

Dep

ende

nt V

ariab

le: U

rban

izat

ion

rate

in

1000

B.C

.0

A.D

. 15

00 A

.D.

1000

B.C

. 0

A.D

. 15

00 A

.D.

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

000B

C2.

08

1.96

(10.

48)

(1

5.21

)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 0

1.69

1.68

(6.9

9)(7

.39)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D

8.04

947

(2

.57)

(2.8

7)

Dist

ance

from

Equ

ator

0.

390.

16-3

.75

(1

.25)

(0.8

4)(0

.56)

N11

313

554

106

126

51R2

0.5

0.58

0.18

0.48

0.59

0.2

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

All

regr

essio

ns in

clude

a c

onst

ant

Page 54: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tabl

e 9:

Tec

hnol

ogy

Hist

ory

and

Curr

ent D

evelo

pmen

t

Dep

ende

nt V

ariab

le

III

III

IVV

VI

VII

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

000B

C0.

751.

45(1

.87)

(3.1

9)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 0

0.09

1.49

(0.1

9)(1

.84)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D1.

593.

03(3

.22)

(6.6

)

Majo

r Eur

opea

n In

volv

emen

t1.

762.

472.

853.

31(8

.33)

(8.4

1)(8

.18)

(11.

43)

Min

or E

urop

ean

Invo

lvem

ent

0.1

0.62

0.86

1.51

(0.5

1)(2

.17)

(1.8

7)(4

.84)

Cons

tant

8.2

8.45

7.77

8.5

7.68

7.21

6.74

(28.

22)

(19.

62)

(22.

1)(4

5.64

)(2

2)(9

.63)

(27)

N10

412

311

011

010

512

311

0

R20.

030

0.18

0.08

0.17

0.13

0.5

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

Majo

r Eur

opea

n In

volv

emen

t is a

dum

my

that

is 1

for U

S, C

anad

a, N

ew Z

ealan

d an

d A

ustra

lia.

Min

or E

urop

ean

Invo

lvem

ent i

s a d

umm

y th

at is

1 m

ostly

for L

atin

Am

erica

n, C

arib

ean

Coun

tries

and

sout

hern

Afr

ica.

Log

Inco

me

per c

apita

in 2

002

Page 55: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tabl

e 10

: Tec

hnol

ogy

Hist

ory

and

Curr

ent T

echn

olog

y

Dep

ende

nt V

ariab

le

III

III

IVV

VI

VII

Ove

rall

Tech

nolo

gy a

dopt

ion

leve

l in

1000

BC0.

085

0.17

5(1

.37)

(2.7

1)

Ove

rall

Tech

nolo

gy a

dopt

ion

leve

l in

00.

014

0.24

(0.1

4)(2

.14)

Ove

rall

Tech

nolo

gy a

dopt

ion

leve

l in

1500

AD

0.22

0.45

(2.5

8)(6

.47)

Majo

r Eur

opea

n In

volv

emen

t0.

50.

580.

660.

73(1

7.35

)(1

1.8)

(8.5

7)(2

1.47

)

Min

or E

urop

ean

Invo

lvem

ent

-0.0

20.

040.

080.

19(0

.95)

(0.9

4)(1

.48)

(5.1

)

N10

913

011

713

410

913

013

4

R20.

020

0.12

0.19

0.23

0.25

0.5

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clus

tere

d st

anda

rd e

rror

s. A

ll re

gres

sions

incl

ude

a co

nsta

ntM

ajor E

urop

ean

Invo

lvem

ent i

s a d

umm

y th

at is

1 fo

r US,

Can

ada,

New

Zea

land

and

Aus

tralia

.M

inor

Eur

opea

n In

volv

emen

t is a

dum

my

that

is 1

mos

tly fo

r Lat

in A

mer

ican

, Car

ibea

n Co

untri

es a

nd so

uthe

rn A

fric

a.

Curr

ent T

echn

olog

y

Page 56: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tabl

e 11

: Prim

itive

Tec

hnol

ogy

and

Curr

ent D

evelo

pmen

t, Ro

bust

ness

Dep

ende

nt V

ariab

le

III

III

IVV

VI

VII

VII

IIX

XX

IX

II

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

000B

C0.

210.

27

-0.0

80.

39(0

.36)

(0.9

3)

(0.3

1)(0

.95)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 0

0.64

0.15

0.

260.

74(1

.6)

(0.3

4)

(0.6

7)(1

.29)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D1.

521.

6

1.33

2.37

(1.9

4)(2

.37)

(2

)(4

.06)

Eur

ope

dum

my

1.71

1.55

0.39

(9.2

8)(3

.77)

(.54)

Afr

ica d

umm

y-0

.35

-0.6

9-1

.12

(1.7

5)(2

.33)

(2.2

7)

Asia

dum

my

0.42

0.36

-0.5

4(1

.79)

(1.1

1)(0

.9)

Am

erica

dum

my

0.18

0.14

-0.1

6(1

.05)

(0.9

3)(0

.53)

Dist

ance

to e

quat

or0.

640.

44-0

.18

2.24

1.08

0.62

(0.3

3)(0

.15)

(0.0

8)(1

.38)

(0.5

)(0

.26)

Dist

ance

to e

quat

or sq

uare

d5.

015.

724.

332.

824.

583.

35(2

.12)

(1.6

4)(1

.41)

(1.3

4)(1

.79)

(1.0

5)

Trop

ical D

umm

y-1

.14

-1.1

6-0

.46

(4.4

9)(5

.28)

(1.6

9)

Land

-Loc

ked

-0.7

6-0

.74

-0.6

6-0

.7-0

.74

-0.5

2(6

.53)

(6.1

5)(3

.1)

(3.8

5)(4

.4)

(2.3

3)

N10

412

311

097

114

103

9711

410

310

412

311

0

R20.

580.

610.

620.

560.

530.

590.

630.

590.

630.

410.

410.

54

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

All

regr

essio

ns in

clude

majo

r and

min

or E

urop

ean

invo

lvem

ent d

umm

ies a

nd a

coLo

g In

com

e pe

r cap

ita in

200

2

Page 57: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tabl

e 12

: Prim

itive

and

Cur

rent

Tec

hnol

ogy,

Robu

stne

ssD

epen

dent

Var

iable

III

III

I VV

VI

VII

VII

IIX

X

XI

XII

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

000B

C-0

.02

0.02

-0

.02

0(0

.32)

(0.5

2)

(0.3

7)(0

.14)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 0

0.16

0.08

0.

110.

16(1

.76)

(1.3

2)

(1.9

1)(2

.12)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D0.

170.

24

0.22

0.36

(2.1

8)(2

.82)

(2

.49)

(4.1

3)

Eur

ope

dum

my

0.31

0.22

0.2

(4.4

6)(2

.36)

(2.2

4)

Afr

ica d

umm

y-0

.03

-0.1

-0.0

5(1

.06)

(1.8

9)(1

.58)

Asia

dum

my

0.04

0-0

.03

(1.1

2)(0

.1)

(0.4

8)

Am

erica

dum

my

0.03

00

(1.0

6)(0

.18)

(0.3

2)

Dist

ance

to e

quat

or-0

.59

-0.5

4-0

.88

-0.3

7-0

.46

-0.7

9(2

.07)

(1.2

9)(2

.73)

(1.3

5)(1

.39)

(2.4

1)

Dist

ance

to e

quat

or sq

uare

d1.

921.

82.

061.

611.

671.

93(4

.41)

(3.4

)(4

.1)

(3.7

5)(3

.83)

(3.8

2)

Trop

ical D

umm

y-0

.18

-0.1

6-0

.07

(4.4

2)(5

.71)

(1.4

4)

Land

-Loc

ked

-0.0

9-0

.09

-0.0

6-0

.11

-0.1

1-0

.055

(5.1

2)(5

.17)

(1.8

3)(3

.39)

(3.8

1)(1

.55)

N10

913

011

510

112

010

710

112

010

710

913

011

5

R20.

620.

60.

630.

650.

620.

70.

680.

660.

710.

410.

430.

52N

ote:

t-sta

tistic

s in

pare

nthe

sis c

ompu

ted

usin

g clu

ster

ed st

anda

rd e

rror

s.

Curr

ent T

echn

onol

ogy

All

regr

essio

ns in

clude

majo

r and

min

or E

urop

ean

invo

lvem

ent d

umm

ies a

nd a

con

stan

t.

Page 58: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Table 13: Technology history, current technology and per capita GDP after controlling for arable land

Dependent Variable

I II III IV V VI VII VIII

Overall Technology adoption level in 1000BC 1.43 0.19(2.83) (2.68)

Overall Technology adoption level in 0 1.51 0.25 (1.79) (2.12)

Overall Technology adoption level in 1500AD 3.38 0.53 (7.37) (7.43)

Log arable land area 0.02 -0.008 -0.03 -0.17 0.01 -0.01 -0.01 -0.03(0.43) (0.21) (0.88) (4.13) (0.48) (0.96) (1.74) (4.36)

Major and Minor european influence dummies NO NO

N 127 101 120 108 113 106 127 113

R2 0 0.17 0.14 0.55 0 0.23 0.26 0.57

Note: t-statistics in parenthesis computed using clustered standard errors.All regressions include a constant.

Log per capita GDP 2002

YES

Current technology

YES

Page 59: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 1

4: C

orre

lati

on o

f te

chn

olog

y ad

opti

on m

easu

res

over

tim

e

Ove

rall

Agr

i.M

ilita

ryIn

dust

ryCo

mm

.Tr

ansp

ort.

Corr

elatio

n (1

000B

C, 0

AD

)0.

620.

390.

510.

390.

320.

64p-

valu

e0

00

00

0

Corr

elatio

n (0

AD

, 150

0 A

D)

0.69

0.41

0.51

0.64

0.52

0.71

p-va

lue

00

00

00

Corr

elatio

n (1

000B

C, 1

500A

D)

0.69

0.42

0.69

0.66

0.24

0.6

p-va

lue

00

00

0.01

70

Page 60: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 1

5: C

orre

lati

on o

f te

chn

olog

y ad

opti

on m

easu

res

over

tim

e D

epen

dent

Var

iable

Ove

ral t

echn

olog

y ad

optio

n in

:0

A.D

.15

00 A

.D.

1500

A.D

.0

A.D

.15

00 A

.D.

1500

A.D

.

Ove

rall

Tech

nolo

gy A

dopt

ion

in 1

000

B.C.

0.66

0.64

0.41

0.24

(5

.74)

(5.2

4)(6

.3)

(2.4

4)

Ove

rall

Tech

nolo

gy A

dopt

ion

in 0

A.D

.

0.66

0.

36

(9

.97)

(3

.92)

Dist

ance

from

Equ

ator

-0.6

90.

48-0

.05

-0.1

10.

540.

65

(1.1

7)(0

.91)

(0.1

)(0

.25)

(1.6

7)(2

.08)

Dist

ance

from

Equ

ator

squa

red

1.3

0.3

1.12

0.1

-0.8

7-0

.92

(1.5

4)(0

.4)

(1.6

8)(0

.12)

(1.8

6)(1

.92)

Land

-Loc

ked

0.17

-0.1

10

0.06

-0.0

8-0

.07

(3.7

9)(2

.39)

(0.1

)(1

.61)

(1.8

2)(1

.55)

Cont

inen

t dum

mies

N10

310

594

103

105

91R2

0.51

0.7

0.66

0.75

0.87

0.84

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

NO

YE

S

Page 61: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 1

6: C

urr

ent

tech

nol

ogy

and

dev

elop

men

t

Dep

ende

nt V

ariab

le:

III

III

IVV

VI

VII

VII

I

Curr

ent T

echn

olog

y ad

optio

n5.

164.

474.

574.

94.

424.

514.

554.

83(2

2.42

)(1

6.27

)(1

6.31

)(1

7.6)

(13.

38)

(11.

55)

(14.

34)

(11.

49)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D

0.

440.

160.

740.

570.

78

(1

.63)

(0.5

1)(1

.17)

(1.2

3)(1

.37)

Dist

ance

from

Equ

ator

0.

89

0.

72

0.53

(3

.05)

(1.6

6)

(1.3

6)

Land

-lock

ed-0

.27

-0.3

3-0

.27

(2.1

1)(2

.47)

(2.4

8)

Cont

inen

t Dum

mies

NO

NO

YE

SN

ON

OY

ES

NO

YE

SE

urop

ean

Influ

ence

Dum

mies

NO

NO

NO

NO

NO

NO

YE

SY

ES

N12

311

512

310

699

106

9910

6R2

0.8

0.81

0.83

0.83

0.85

0.86

0.88

0.87

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

All

regr

essio

ns in

clude

a c

onst

ant

(lo

g) p

er c

apita

inco

me

in 2

002

Page 62: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 1

7: P

opu

lati

on t

ech

nol

ogy

and

dev

elop

men

t

Dep

ende

nt V

ariab

le:

Y/L

Tech

nolo

gyPo

pulat

ion

Tech

nolo

gyPo

pulat

ion

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D3.

350.

490.

69

(7

.75)

(6.1

5)(1

.37)

(Log

) Pop

ulat

ion

in 1

500

AD

-0.1

6-0

.02

0.85

(3.1

3)(1

.67)

(19.

95)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 0

AD

0.

690.

48

(6.1

1)(1

.7)

(Log

) Pop

ulat

ion

in 0

AD

0.

040.

77

(1.6

9)(1

4.15

)

N10

511

011

598

98R2

0.55

0.53

0.72

0.49

0.8

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

All

regr

essio

ns in

clude

a c

onst

ant.

The

regr

essio

ns w

ith c

urre

nt d

epen

dent

var

iables

inclu

de E

urop

ean

influ

ence

dum

mies

.

Curr

ent

1500

AD

Page 63: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 1

8: P

opu

lati

on t

ech

nol

ogy

and

dev

elop

men

t

Dep

ende

nt V

ariab

le:

Y/L

Tech

nolo

gyY

/LTe

chno

logy

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D3.

390.

51.

50.

15(8

.12)

(6.6

2)(1

.98)

(1.7

3)

(Log

) Pop

ulat

ion

in 2

000

AD

-0.2

5-0

.05

-0.0

6-0

.015

(2.1

9)(2

.94)

(0.5

2)(0

.76)

(Log

) Pop

ulat

ion

in 1

500

AD

0.06

0.02

00.

01(0

.49)

(1.0

9)0.

01)

(0.6

1)

Cont

inen

t Dum

mies

NO

NO

YE

SY

ES

N10

510

910

510

9R2

0.58

0.57

0.68

0.69

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

All

regr

essio

ns in

clude

a c

onst

ant a

nd E

urop

ean

influ

ence

dum

mies

Curr

ent

Page 64: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tab

le 1

9: P

eris

ten

ce o

f T

ech

nol

ogy

wit

hin

sec

tors

Dep

ende

nt V

ariab

le:

III

III

IVV

VI

VII

VII

I

Tec

hnol

ogy c

st-1

0.

950.

850.

310.

410.

170.

270.

460.

34(7

.66)

(7.3

9)(4

.67)

(5.4

7)(2

.55)

(3.0

7)(4

.54)

(4.6

4)

Coun

try-S

ecto

r Fix

ed e

ffect

sY

ES

YE

SY

ES

YE

SY

ES

YE

SY

ES

YE

SCo

untry

tim

e-va

ryin

g ef

fect

s Y

ES

NO

YE

SN

OY

ES

YE

SY

ES

YE

STe

chno

logy

-spe

cific

trend

sN

ON

OY

ES

YE

SY

ES

YE

SY

ES

YE

SSe

ctor

s exc

lude

d ot

her t

han

mili

tary

--

--

Agr

i.Co

mm

.Tr

ansp

.In

dust

.

N40

540

540

540

530

330

030

530

7R2

--

0.4

0.35

0.38

0.45

0.18

0.53

Not

e: Pa

nel r

egre

ssio

n us

ing

tech

nolo

gy a

dopt

ion

level

in se

ctor

, s, i

n co

untry

, c, i

n ye

ar t.

t in

clude

s yea

rs 2

000

AD

and

150

0 A

D.

Mos

t gen

eral

regr

essio

n is:

Tec

hnol

ogy c

st =

�cs

+�ct+�

s*t+

�*Te

chno

logy

cst-1

+�cs

t

whe

re �

cs is

a c

ount

ry-s

ecto

r fix

ed e

ffect

, �ct is

a c

ount

ry ti

me-

vary

ing

effe

ct, �

s is a

tech

nolo

gy sp

ecifi

c tre

nd a

nd �

cst i

s the

err

or te

rm.

Regr

essio

ns a

re e

stim

ated

taki

ng ti

me

diffe

renc

es a

s fol

low

s: T

echn

olog

y cst-T

echn

olog

y cst

-1 =

�ct-�

ct-1

+� s

+�*

(Tec

hnol

ogy c

st-1

-Tec

hnol

ogy c

st-2

)+� cs

t-�cs

t-1

To a

void

bias

es d

ue to

lagg

ed d

epen

dent

var

iable,

(Tec

hnol

ogy c

st-1

-Tec

hnol

ogy c

st-2

) is i

nstru

men

ted

with

Tec

hnol

ogy c

st-2

t-st

atist

ics in

par

enth

esis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

All

regr

essio

ns in

clude

Eur

opea

n in

fluen

ce d

umm

ies w

hen

t=20

00.

Tec

hnol

ogy c

st

Page 65: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Tabl

e A

.1: P

rimiti

ve te

chno

logy

and

cur

rent

dev

elopm

ent,

robu

stne

ss c

heck

s

Dep

ende

nt V

ariab

le: L

og In

com

e pe

r cap

ita i

n

III

III

IVV

VI

IVV

VI

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

000B

C-0

.36

0.78

1.14

(0.6

2)(2

.32)

(2.2

8)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 0

1.08

1.27

1.35

(1.6

2)(2

.6)

(1.8

1)

Ove

rall

Tech

nolo

gy a

dopt

ion

level

in 1

500A

D2.

141.

872.

98(4

.91)

(4.8

5)(6

.47)

N51

6057

9511

610

310

712

911

3R2

0.18

0.28

0.4

0.17

0.18

0.4

0.14

0.12

0.5

Not

e: t-s

tatis

tics i

n pa

rent

hesis

com

pute

d us

ing

clust

ered

stan

dard

err

ors.

Majo

r and

min

or E

urop

ean

inf;u

ence

dum

mies

inclu

ded

in a

ll re

gres

sions

.

1913

1960

1990

Page 66: Was the Wealth of Nations Determined in 1000 B.C.? Files/09-052_0958c9f5... · Was the Wealth of Nations Determined in 1000 B.C.?* Diego Comin† William Easterly‡ Erick Gongჶ

Table A2: Average adoption level by sector in the EmpiresYear Empire

Agriculture Industry Communications Transportation Military1000 B.C.

W. Europe 1 1 0.125 0.5625 0.56

China 1 1 1 1 0.5

Indian 1 0.83 0.33 0.5 0.66

Arab 1 1 1 1 0.75

0 A.C.W. Europe 1 1 0.875 0.9375 1

China 1 1 1 1 1

Indian 1 1 0.66 0.83 1

Arab 1 1 1 1 1

1500 A.D.W. Europe 1 1 1 0.6875 0.968

China 1 1 1 0.66 0.75

Indian 1 1 0.5 0.55 0.458

Arab 0.85 0.94 0.527 0.57 0.61

Note: W. Europe includes Spain, Portugal, Italy, France, United Kingdom, Germany, Belgium and Netherlands. Indian Empire includes India, Pakistan and Bangladesh.Arab Empire includes Saudi Arabia, UAE, Yemen, Oman, Iraq, Iran, Syria, Lebanon, Jordan, Egypt, Libya, Tunisia, Algeria and Morocco

Sectors