47
Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal Durban, South Africa Water activity in aqueous Water activity in aqueous solutions of sucrose: an improved solutions of sucrose: an improved temperature dependence temperature dependence Mohamed MATHLOUTHI Laboratoire de Chimie Physique Industrielle Université de Reims, Champagne-Ardenne Reims, France

Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Maciej STARZAKSchool of Chemical EngineeringUniversity of KwaZulu-NatalDurban, South Africa

Water activity in aqueous Water activity in aqueous solutions of sucrose: an improved solutions of sucrose: an improved

temperature dependencetemperature dependence

Mohamed MATHLOUTHILaboratoire de Chimie Physique IndustrielleUniversité de Reims, Champagne-ArdenneReims, France

Page 2: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

OutlineOutline

1. Introduction2. Previous studies3. Experimental database4. Selection of the water activity model5. Relationships between experimental

variables and activity coefficients6. Data regression7. Results8. Recommended equation for water

activity coefficient

Page 3: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Water activity formulae popular amongst food technologists

Norrish, 1966 2ln A Bxγ α=

Chen, 19891000

1000 ( )A

A nA

M mM m A Bm

γ+

=+ +

Miyawaki, 1997 2 3ln A B Bx xγ α β= +

Page 4: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Models used to predictwater activity coefficient

n Redlich-Kister expansion - empirical (includes Margules equation)

n UNIQUAC - phenomenological(two-fluid theory)

n group contribution methods(UNIFAC, ASOG)

Page 5: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

( )2 2ln 1A B B BQ

x bx cxRT

γ = + +

Starzak & Peacock, 1997

Based on 1197 experimental points (56 data sets),mainly VLE data (BPE, vapour pressure, ERH,isopiestic solutions)

Page 6: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 20 40 60 80 1000.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

% mas. sucrose

Wat

er a

ctiv

ity c

oeff

icie

ntCatté et al., 1994

0 20 40 60 80 1000.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

% mas. sucrose

Wat

er a

ctiv

ity c

oef

ficie

nt

Starzak & Peacock, 1997

UNIQUAC Margules eq.

Page 7: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 10 20 30 40 50 60 70 80 90 1000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

% mass sucrose

Wat

er a

ctiv

ity c

oef

ficie

nt o

n th

e b

oili

ng

cu

rve

1193 points

Water activity coefficient (boiling curve)

Starzak & Peacock, 1997

Page 8: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Theoretical models of activityfor highly concentrated sucrose solutions

§ Van Hook, 1987:- sucrose hydration - sucrose association (clustering)

§ Starzak & Mathlouthi, 2002:- water association- sucrose hydration - sucrose association (clustering)

Page 9: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Previous studies (small exptl. databases)

Ø Le Maguer, 1992 (UNIQUAC)Ø Caté et al., 1994 (UNIQUAC)Ø Peres & Macedo, 1996 (UNIQUAC)Ø Peres & Macedo, 1997 (UNIFAC)Ø Spiliotis & Tassios, 2000 (UNIFAC)

Objective of this study:

q an empirical activity equationq wide range of temp. & concentrationsq large database

Page 10: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Thermodynamic data typically used to determine the activity coefficient

q VLE data (BPE, VPL, ERH, osmotic coeff. by isopiestic method)

q SLE data (FPD, sucrose solubility)

q Termochemical data (heat of dilution,excess heat capacity)

Page 11: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

470Heat capacity

1252338Total

10283Heat of dilution

34265Solubility

13213FPD

641507VLE

Literature sourcesExperimental pointsData type

EXPERIMENTAL DATABASE

Page 12: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Distribution of experimental data

Page 13: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Distribution of experimental data

Page 14: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

2

lnn

kA k B

k

xγ α=

= ∑

Selection of water activity model

n-suffix Margules equation

Advantages: linear with respect to its coefficients

Drawbacks: lack of sound theoretical foundation

Page 15: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

2 301 2 3 4 5( ) lnk

k k k k k kα

α θ α α θ α θ α θ α θθ

= + + + + +

General temperature dependence

Disadvantage: large number of parameters

0where T Tθ =

Page 16: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Simplified temperature dependence

Advantage: reduced number of parameters

22

ln ( )n

kA k B

k

a b xγ θ −=

= ∑2 30

1 2 3 4 5( ) lna

a a a a a aθ θ θ θ θθ

= + + + + +

Disadvantage: temperature effect patternindependent of composition

Page 17: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

2

lnn

kB k A

k

xγ β=

= ∑

Sucrose activity coefficient

ln lnA BA B

A B

d dx x

d x d xγ γ

=

Gibbs-Duhem equation

Page 18: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Expansion coefficients of sucrose activity

( 1) , 2n

kk l

l k

lA k

= −

∑³

³

1

1, 2,3,..., 1l l l

n n

lA l n

lA

α α

α

++

= − = −

=

where

Page 19: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

2 2 3 4 5 6 7

3 3 4 5 6 7

4 4 5 6 7

5 5 6 7

6 6 7

7 7

3 5 72 2

2 2 28 35

5 83 3

15 359

4 224

145

356

β α α α α α α

β α α α α α

β α α α α

β α α α

β α α

β α

= + + + + +

= − − − − −

= + + +

= − − −

= +

= −

Expansion coefficients of sucrose activity, n = 7

Page 20: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Expansion coefficients of sucrose activityMatrix representation

=ß Ma

1

1 11

, 1, 2,..., 1n

k kl ll

M k nβ α−

+ +=

= −∑ =

Page 21: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Processing experimental data

lnlnln

/

/

A

A

B

Easym

Epasym

H RT

C R

γγγ

⇒⇒⇒

VLE dataFPD dataSolubility

Heat of dilution

Specific heat

Page 22: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

lnVLE data Aγ⇒

Modified Raoult’s law

0(1 ) ( )AB A

Px P T

γ =−

ERH 1001A

Bxγ =

Equilibrium relative humidity (ERH):

BPE, vapour pressure, osmotic coeff. :

Page 23: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

lnFreezing point data Aγ⇒

Solid-liquid equilibrium

( ) ( )ln 1

2

( )ln 1 ln(1 )

2

fA m pA m A m mA

m f

pA m f fA mA m B

m m

H T C T B T TRT R T

C T T TB TB T x

R T T

γ ∆ ∆ ∆

= − − + −

∆ ∆+ − ∆ + − − −

( ) ( )( )pA pA m

A m

C T C TB T T

R R

∆ ∆= + ∆ −Assumed

for pure water:

Page 24: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

lnSucrose solubility data Bγ⇒ %

Solid-liquid equilibrium (asym. convention)

00

( ) ( )( )pB pB

B

C T C TB T T

R R

∆ ∆= + ∆ −

Assumedfor sucrose:

00 0 0

0

00

( )( ) ( )ln 1

2

( )ln 1 ln( )

2

pBB m dB B mB

B m

pB B mB B

m m

C TT H T B T T TRT R T T

C T B TT TB T x

R T T

γγ

γ

∆ ∆ ∆ = − − + − ∆ ∆

+ − ∆ − − −

Page 25: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Heat of dilution dataEasymH

RT⇒

Two-step procedure

q fitting each set of isothermal data toMcMillan-Mayer expansion (evaluatingcoefficients of expansion)

q data generated from the expansion usedas input data for regression

Page 26: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

I. Amount of heat liberated per one mole of sucrose in solution after addition of a known amount of pure water

Types of experimental heats of dilution

1 1I0

2

(J/mol solute) (f ) (i)k kk

kB

Hh m m

n− −

=

∆ = − ∑

Page 27: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Types of experimental heats of dilution

II. amount of heat liberated per one moleof water in original solution afteraddition of a known amount of dilutesucrose solution

[ ]

II

02

(J/mol solvent)(i)

(i) (a) (f ) (a) (a) (i) (i)(i)

A

k k kA A A A

kk A

Hn

n n m n m n mh

n=

∆=

+ − −∑

Page 28: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Types of experimental heats of dilution

III. amount of heat liberated per onegram of water added after additionof a small amount of pure water(differential heat of dilution)

III0

2

1(J/g solvent added) (i)

1000

(f ) (i)

kk

kA

Hh m

w

m m=

∆= − ∑

@

Page 29: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Heat of dilution dataEasymH

RT⇒

Excess enthalpy of solutionfrom McMillan-Mayer expansion

02(J/mol)1000

kk

E kasym

A

h mH

m M==

+

Page 30: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

/Specific heat data Epasym

C R⇒

Apparent molar heat capacity of sucrose:

1 ( )1000( )

Bp pA

c

M m c m cm

m

+ − Φ =

Excess heat capacity of solution

[ ]( ) (0)(J/mol K)

1000E c c

pasymA

m mC

m MΦ − Φ

=+

×

Page 31: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Experimental variables& Margules expansion coefficients

SLE (asym. convention) - solubility

[ ]1

21

2 1 2

( )ln

( ) ( ) ( )1

B mB

B

n n nk k

k l l A mk l k

T

ba T M b x a T a T

k

γγ

γ

−−

−= = =

=

+ −−∑∑ ∑

Page 32: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Experimental variables& Margules expansion coefficients

Excess enthalpy of solution

Derived from free Gibbs energy:

( )ln lnEA A B BG RT x xγ γ= +

( / )E EH G RTT

RT T∂

= −∂

2 lnE E Basym BH H RT x

Tγ ∞∂

= +∂

Page 33: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Experimental variables& Margules expansion coefficients

Excess enthalpy of solution

2

2

( )1

E nasym kk

Bk

H bT a T x

RT k−

=

′=−∑

2 302 3 4 5

0

( ) 2 3

where

aT a T a a a a

T T

θ θ θθ

θ

′ = − + + + +

=

Page 34: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Experimental variables& Margules expansion coefficients

Excess heat capacity of solution

By definition: ( )E Ep asymasym

C H R

R T

∂=

∂Hence:

[ ] 2

2

2 ( ) ( )1

En

pasym kkB

k

C bT a T Ta T x

R k−

=

′ ′′= +−∑

[ ] 2 32 3 4 52 ( ) ( ) 2 6 12T a T Ta T a a a aθ θ θ′ ′′+ = + + +

Page 35: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

DATA REGRESSIONPerformance index

2 2 2VLE VLE, , , VLE

2 2 2 2FPD , , FPD SOL , , SOL

22 ,,, , , ,2 2

HE CE

( , ) (ln ln )

(ln ln ) (ln ln )

a b expi A i A i

i

exp expA i A i B i B i

i i

E E expE E expp pasym i asym i asym i asym i

expi ii i

I w w

w w

C CH Hw w

RT RT R R

γ γ

γ γ γ γ

= −

+ − + −

+ − + −

∑ ∑

∑ ∑

% %

Page 36: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Results of data regression: correlation diagrams

Page 37: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

BPE experimental, ºC

BP

E p

red

icte

d, º

C

Boiling point elevation – predicted vs experimental

1507 points

Page 38: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 20 40 60 800.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

% wt. sucrose

Wat

er a

ctiv

ity c

oeff

icie

nt,

γ A

0 20 40 60 800

5

10

15

20

25

30

35

40

% wt. sucrose

Fre

ezin

g p

oin

t dep

ress

ion

[°C

]

Results of FPD data regression

213 points

213 points

Page 39: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 50 100 150-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

Temperature [°C]

ln [

γ B γ

∞ B( T

m) /

γ∞ B

]

0 50 100 15060

65

70

75

80

85

90

95

100

Temperature [°C]

% w

t. s

ucr

ose

Solubility curve

Results of solubility data regression

265 points

265 points

Page 40: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 0.1 0.20

0.1

0.2

20°C

0 0.1 0.20

0.1

0.2

30°C

0 2 40

20

40

12°C

0 2 40

20

40

16°C

0 2 40

50

18°C

0 2 40

20

40

22°C

0 2 40

50

10026°C

0 2 40

5030°C

0 0.1 0.20

0.1

0.218°C

0 0.5 10

1

218°C

0 2 40

5020°C

1 1.5 20

10

200°C

1 1.5 20

10

20

100

0 x

Hea

t of d

ilutio

n,

HE/R

T [

-]

5°C

1 1.5 20

10

2010°C

1 1.5 20

10

2015°C

1 1.5 20

10

2020°C

1 1.5 20

10

2025°C

1 1.5 20

10

2030°C

1 1.5 20

10

20

33°C

0 1 20

10

20

25°C

0 5 100

50

100

20°C

0 5 100

50

100

40°C

0 5 100

50

100

60°C

0 5 100

50

80°C

0 1 20

5

1025°C

0 1 20

10

20

Molality

25°C

Regression of 26 heat of dilution data sets

________

experimental

predicted

Page 41: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 2 4 6 80

20

40

60

80

100

120

140

0°C

5°C

10°C

20°C

40°C

60°C

80°C

Molality, mol/kg

1000

x E

nth

alp

y o

f dilu

tio

n, H

E /RT

[-]

0 20 40 60 800

10

20

30

40

50

60

70

80

90

100

1 mol/kg (26%)

2 mol/kg (41%)

3 mol/kg (51%)

4 mol/kg (58%)

5 mol/kg (63%)

6 mol/kg (67%)

Temperature, °C

1000

x E

nth

alp

y o

f dilu

tio

n, H

E /RT

[-]

Prediction of enthalpy of dilution

Page 42: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 2 4 60

0.1

0.2

0.3

0.4

Exc

ess

heat

cap

acity

, C

E/R

[-]

T = 20°C

0 2 4 60

0.05

0.1

0.15

0.2

0.25

0.3

T = 25°C

0 0.5 1 1.50

0.01

0.02

0.03

0.04

T = 25°C

0 0.5 1 1.50

0.01

0.02

0.03

0.04

0.05

Molality, mol/kg

T = 25°C

0 2 4 60

0.1

0.2

0.3

0.4

T = 15°C

Gucker & Ayres, 1937 Gucker & Ayres, 1937 Banipal et al., 1997

DiPaola & Belleau, 1977 Vivien, 1906

Regression of 5 heat capacity data sets

Page 43: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

0 2 4 6 8-1.5

-1

-0.5

0

0.5

1

0°C 5°C

10°C

20°C

40°C

60°C

80°C

Molality, mol/kg

Exc

ess

hea

t cap

acit

y, C

E/R

[-]

0 20 40 60 80-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 mol/kg

2 mol/kg

3 mol/kg

4 mol/kg

5 mol/kg

6 mol/kg

Temperature, °C

Exc

ess

hea

t cap

acit

y, C

E /R [

-]

Prediction of excess heat capacity of solution

Page 44: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

70 75 80 85 90 95 100

0.6

0.8

1

1.2

1.4

1.6

% wt. sucrose

Wat

er a

ctiv

ity

coef

fici

ent,

γ A

ISOTHERMS BETWEEN 0°C and 150°C

Prediction of water activity coefficient

Page 45: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

85 90 95 1000.5

0.6

0.7

0.8

0.9

1

% wt. sucrose

Wat

er a

ctiv

ity

coef

fici

ent,

γ A

150°C

0°C 20°C 40°C60°C

80°C100°C

Prediction of water activity coefficient

Page 46: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

Final water activity coefficient equation

2 21 2

201 2 3 4

ln ( ) (1 )

( ) ln

A B B Ba b x b x xa

a a a a a

γ θ

θ θ θ θθ

= + +

= + + + +

a0 = -268.59a1 = -861.42a2 = -1102.3a3 = 1399.9a4 = -277.88

b1 = -1.9831b2 = 0.92730

Page 47: Water activity in aqueous solutions of sucrose: an …eurofoodwater.eu/pdf/2004/Session1/download.php?file=...Maciej STARZAK School of Chemical Engineering University of KwaZulu-Natal

AcknowledgementAcknowledgement

Association Andrew van Hook forthe Advancement of the Knowledge on Sugar, Reims, France