43

Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

  • Upload
    vukhanh

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Ci) ~ lOO 0

-E 250 - 200i CD 150

fl)

c2 100 ~ s so

___ bull No Discharge

D Advanced

Secondary

D Less Than secondary

bull Raw

~ a 0

D 0

1940 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 2008 2012 Projected

Year Sourc9 US Public N~alth Servica and poundPA Clean Watarsh~ds Needs Surveys

Population Served by POTWs for Select Years between 1940 and 2012 and Projected (ifAll Needs Are Met) by Treatment Level

965 927 904 887 -24 -2 (9221 (7302) (7374) (6670)

Greater than Secondary 130 37 (4916 (5072) (5036) (6111)

1085 1130 1277 1749

146 169 160 267 -56 67 (2188 (2251) (2281) (2461)

Partial Treatment (218) (115) (23) (15)

2228 2264 2382 2949 (16583) (14770) (14748) (15280) 2452

Noce Tnese raclltles pr01CJe some treatment to astewater aoo a1scna1 tnelr erauents to other racrnues ror rurtner treatment ana oiscnargg Tile popu1auon assoctateo wnn cnase nae 11ues 1s omttuia rrom cnis uo1e to avoliO aouDle coun ne bull nts taole conta ns Dest avana1gt1e Information rrom states and Terr1t0Ms tnat OICI not 11ave t11e resoutes to corrplete tile upaaung or tll8 oata orltflO not

partlClpate n tne CWNS 2004 Cl( 2008 In these circumstances 1nrormatlon ror Ulls tao e was taken rrom pni1ous SWl)S

11 lndooes taltllllles grantoo section 30l(n) waMrs rrom seconaary trtrntment tor mscnarges to marim~ yatms AS or January 1 2012 walINS ror 36 racmtres mtne cv~s 2012 aataoasG naa oeen vanteo or ere pena111amp

14

Projected Water Reuse 2001to2015

12 --+-~~~~-------~~--------

10 -t-------------------~~

8 -+----------------------~

6 -------------------shy

4 ------shy---shy-shy17

2 -shy

Water Supply Water Usage (Ag Domestic Industrial)

~

US Water De1nands b Maior Uses

1

bull Public amp Do1nestic

D Industrialamp Connne1middotcial

D AgriculturaI Irrigation

bull LiYes1ock

D Il1e1middotmoelectric

r

Source Solley et al 1988

USGS 1995

Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia

IUU n

J ao 1 l

~o bullU~

co

10

Poilll1on lbullbulldUw

Figure $-6 Ch~nge In popult1Uon (2000middot2010) ind developed 1ind (1997middot2007) in the MidmiddotAtlontic region compared to the United sutes

--Odbullw1rbull

- WJ J-n1r 011 Clt _ brbftd

0 5 - r

00 -w-t i ~~fllf~B~~

Mon1h

Figure 5middot7 Averige monthly precipitition in the Mid-Atlantic region

5223 Water Use by Secto r Figure 5-8 shows freshwater use by sector in the MidshyAtlantic Region

Oomesttc ~elfmiddot supply

1

TillaquomOflelttrtc 81

Figure 5-8

Liv~ tock lt1

~~----Alt1uacul tu re 2

Industrial 79io

Freshwater use by sector for the Mid-Atlantic region

lampJ

1 l

UJ c l O

~ i bull D

J)

bullo fr

F111ur5-31 Ch~nge In popubticn (2000-2010) and developed lilnd (1997-2007) in t he Pi1ciF1C Nonhwest relion com~red to tlle Unit~ StalH

l)fl

Figull 5-3-9 Average monthly pcipibtion in the Pacific Nor111west region

Figure 5middot40 shows freshwater use by sector in Pacific Northwest

Oomc~uc sclmiddot supply

1 ii

3

Figure 5-40 Freshwater use by sector for the P11clfic Northwest region

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 2: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

965 927 904 887 -24 -2 (9221 (7302) (7374) (6670)

Greater than Secondary 130 37 (4916 (5072) (5036) (6111)

1085 1130 1277 1749

146 169 160 267 -56 67 (2188 (2251) (2281) (2461)

Partial Treatment (218) (115) (23) (15)

2228 2264 2382 2949 (16583) (14770) (14748) (15280) 2452

Noce Tnese raclltles pr01CJe some treatment to astewater aoo a1scna1 tnelr erauents to other racrnues ror rurtner treatment ana oiscnargg Tile popu1auon assoctateo wnn cnase nae 11ues 1s omttuia rrom cnis uo1e to avoliO aouDle coun ne bull nts taole conta ns Dest avana1gt1e Information rrom states and Terr1t0Ms tnat OICI not 11ave t11e resoutes to corrplete tile upaaung or tll8 oata orltflO not

partlClpate n tne CWNS 2004 Cl( 2008 In these circumstances 1nrormatlon ror Ulls tao e was taken rrom pni1ous SWl)S

11 lndooes taltllllles grantoo section 30l(n) waMrs rrom seconaary trtrntment tor mscnarges to marim~ yatms AS or January 1 2012 walINS ror 36 racmtres mtne cv~s 2012 aataoasG naa oeen vanteo or ere pena111amp

14

Projected Water Reuse 2001to2015

12 --+-~~~~-------~~--------

10 -t-------------------~~

8 -+----------------------~

6 -------------------shy

4 ------shy---shy-shy17

2 -shy

Water Supply Water Usage (Ag Domestic Industrial)

~

US Water De1nands b Maior Uses

1

bull Public amp Do1nestic

D Industrialamp Connne1middotcial

D AgriculturaI Irrigation

bull LiYes1ock

D Il1e1middotmoelectric

r

Source Solley et al 1988

USGS 1995

Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia

IUU n

J ao 1 l

~o bullU~

co

10

Poilll1on lbullbulldUw

Figure $-6 Ch~nge In popult1Uon (2000middot2010) ind developed 1ind (1997middot2007) in the MidmiddotAtlontic region compared to the United sutes

--Odbullw1rbull

- WJ J-n1r 011 Clt _ brbftd

0 5 - r

00 -w-t i ~~fllf~B~~

Mon1h

Figure 5middot7 Averige monthly precipitition in the Mid-Atlantic region

5223 Water Use by Secto r Figure 5-8 shows freshwater use by sector in the MidshyAtlantic Region

Oomesttc ~elfmiddot supply

1

TillaquomOflelttrtc 81

Figure 5-8

Liv~ tock lt1

~~----Alt1uacul tu re 2

Industrial 79io

Freshwater use by sector for the Mid-Atlantic region

lampJ

1 l

UJ c l O

~ i bull D

J)

bullo fr

F111ur5-31 Ch~nge In popubticn (2000-2010) and developed lilnd (1997-2007) in t he Pi1ciF1C Nonhwest relion com~red to tlle Unit~ StalH

l)fl

Figull 5-3-9 Average monthly pcipibtion in the Pacific Nor111west region

Figure 5middot40 shows freshwater use by sector in Pacific Northwest

Oomc~uc sclmiddot supply

1 ii

3

Figure 5-40 Freshwater use by sector for the P11clfic Northwest region

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 3: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

14

Projected Water Reuse 2001to2015

12 --+-~~~~-------~~--------

10 -t-------------------~~

8 -+----------------------~

6 -------------------shy

4 ------shy---shy-shy17

2 -shy

Water Supply Water Usage (Ag Domestic Industrial)

~

US Water De1nands b Maior Uses

1

bull Public amp Do1nestic

D Industrialamp Connne1middotcial

D AgriculturaI Irrigation

bull LiYes1ock

D Il1e1middotmoelectric

r

Source Solley et al 1988

USGS 1995

Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia

IUU n

J ao 1 l

~o bullU~

co

10

Poilll1on lbullbulldUw

Figure $-6 Ch~nge In popult1Uon (2000middot2010) ind developed 1ind (1997middot2007) in the MidmiddotAtlontic region compared to the United sutes

--Odbullw1rbull

- WJ J-n1r 011 Clt _ brbftd

0 5 - r

00 -w-t i ~~fllf~B~~

Mon1h

Figure 5middot7 Averige monthly precipitition in the Mid-Atlantic region

5223 Water Use by Secto r Figure 5-8 shows freshwater use by sector in the MidshyAtlantic Region

Oomesttc ~elfmiddot supply

1

TillaquomOflelttrtc 81

Figure 5-8

Liv~ tock lt1

~~----Alt1uacul tu re 2

Industrial 79io

Freshwater use by sector for the Mid-Atlantic region

lampJ

1 l

UJ c l O

~ i bull D

J)

bullo fr

F111ur5-31 Ch~nge In popubticn (2000-2010) and developed lilnd (1997-2007) in t he Pi1ciF1C Nonhwest relion com~red to tlle Unit~ StalH

l)fl

Figull 5-3-9 Average monthly pcipibtion in the Pacific Nor111west region

Figure 5middot40 shows freshwater use by sector in Pacific Northwest

Oomc~uc sclmiddot supply

1 ii

3

Figure 5-40 Freshwater use by sector for the P11clfic Northwest region

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 4: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Water Supply Water Usage (Ag Domestic Industrial)

~

US Water De1nands b Maior Uses

1

bull Public amp Do1nestic

D Industrialamp Connne1middotcial

D AgriculturaI Irrigation

bull LiYes1ock

D Il1e1middotmoelectric

r

Source Solley et al 1988

USGS 1995

Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia

IUU n

J ao 1 l

~o bullU~

co

10

Poilll1on lbullbulldUw

Figure $-6 Ch~nge In popult1Uon (2000middot2010) ind developed 1ind (1997middot2007) in the MidmiddotAtlontic region compared to the United sutes

--Odbullw1rbull

- WJ J-n1r 011 Clt _ brbftd

0 5 - r

00 -w-t i ~~fllf~B~~

Mon1h

Figure 5middot7 Averige monthly precipitition in the Mid-Atlantic region

5223 Water Use by Secto r Figure 5-8 shows freshwater use by sector in the MidshyAtlantic Region

Oomesttc ~elfmiddot supply

1

TillaquomOflelttrtc 81

Figure 5-8

Liv~ tock lt1

~~----Alt1uacul tu re 2

Industrial 79io

Freshwater use by sector for the Mid-Atlantic region

lampJ

1 l

UJ c l O

~ i bull D

J)

bullo fr

F111ur5-31 Ch~nge In popubticn (2000-2010) and developed lilnd (1997-2007) in t he Pi1ciF1C Nonhwest relion com~red to tlle Unit~ StalH

l)fl

Figull 5-3-9 Average monthly pcipibtion in the Pacific Nor111west region

Figure 5middot40 shows freshwater use by sector in Pacific Northwest

Oomc~uc sclmiddot supply

1 ii

3

Figure 5-40 Freshwater use by sector for the P11clfic Northwest region

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 5: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia

IUU n

J ao 1 l

~o bullU~

co

10

Poilll1on lbullbulldUw

Figure $-6 Ch~nge In popult1Uon (2000middot2010) ind developed 1ind (1997middot2007) in the MidmiddotAtlontic region compared to the United sutes

--Odbullw1rbull

- WJ J-n1r 011 Clt _ brbftd

0 5 - r

00 -w-t i ~~fllf~B~~

Mon1h

Figure 5middot7 Averige monthly precipitition in the Mid-Atlantic region

5223 Water Use by Secto r Figure 5-8 shows freshwater use by sector in the MidshyAtlantic Region

Oomesttc ~elfmiddot supply

1

TillaquomOflelttrtc 81

Figure 5-8

Liv~ tock lt1

~~----Alt1uacul tu re 2

Industrial 79io

Freshwater use by sector for the Mid-Atlantic region

lampJ

1 l

UJ c l O

~ i bull D

J)

bullo fr

F111ur5-31 Ch~nge In popubticn (2000-2010) and developed lilnd (1997-2007) in t he Pi1ciF1C Nonhwest relion com~red to tlle Unit~ StalH

l)fl

Figull 5-3-9 Average monthly pcipibtion in the Pacific Nor111west region

Figure 5middot40 shows freshwater use by sector in Pacific Northwest

Oomc~uc sclmiddot supply

1 ii

3

Figure 5-40 Freshwater use by sector for the P11clfic Northwest region

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 6: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

lampJ

1 l

UJ c l O

~ i bull D

J)

bullo fr

F111ur5-31 Ch~nge In popubticn (2000-2010) and developed lilnd (1997-2007) in t he Pi1ciF1C Nonhwest relion com~red to tlle Unit~ StalH

l)fl

Figull 5-3-9 Average monthly pcipibtion in the Pacific Nor111west region

Figure 5middot40 shows freshwater use by sector in Pacific Northwest

Oomc~uc sclmiddot supply

1 ii

3

Figure 5-40 Freshwater use by sector for the P11clfic Northwest region

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 7: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Figure 5-34 deptets average monthly prec1p1tallon m the states of the Pacific Southwest-Arizona Cabfomia Hawau and Nevada

~ ~ ~ ~ i ~ l - sect ~ Monlh

Figu-e 5-34 Average monthly precrpnauon In the Pacmc SoultlWest region

Miring 2

lndUsbial 1

Aquacutue 1

Livestock lt1

Figure 5-35

Oomoslic solfshysupply

1

Freshwater use by sector for the Pacific Southwest region

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 8: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

bull TMS fUTllll uses bull 10NmiddotPOTAIU RtCUIMfD

lUlJMgtO NOT ORN

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 9: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

+ Unrestricted Urban Reuse

+ Restricted Urban Reuse

middot+ Agriculturral Reuse for Food CrORS

bull Recreational Impoundments

lntrusian Barrier

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 10: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Urban Reuse

bull Landscape i1middot1middotigation

bull Golf courmiddotse i1middot1middotigation

bull Comme1middotcial uses

bull Deco1middotative wate1middot featu1middotes

bull Fi1middote p1middotevention

bull Toilet and u1middotinal flushing

bull Othe1middot nonpotable uses

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 11: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

-ampEPA-__

2 12 Guidelines for Water Reuse

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 12: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Unrestricted

Restricted

figtod Crops

Pr~sHI Food Crops and Nonfood Crops

Unres tricted

Restricted

Grounctw~ter Rechar- Nonpotab lt Reuse

Ind irect Pobbte Reuse(IPRt

Direct Pouble Reun(DPR)

~ use of re~llled watef for nonpotlb~ apphations in mun cipil settn~ ~republic access is no1 reS1nctid

Thie uw of rt~edwattrflaquo nonpot3tgtI appkWons in munlClpat ~ugs~epublic aocess Is con~d ot tSIMIM b-y pb~J or inslitu1lanal ~ Sucft 3S fMCltlg ad1t1sory sigr1t1ge or temporal aeoess restnction

~use of recbmed wawr to ilT~ fQOd eropi tigtat are intended fOf hu~n consumptiCWI

Tho use of recb1ned watM to inigMe a-ops ltat~ either processed beo1e human consumpcion or noc consumed by humans

The use of recbYried ~1er in art TPOUndPeflt I whictl no limitatcgtns ar1 imposEltf on bodyltontad wl1H riCffiltion JCtivites (sane stlltH caegorze snowmakig in this ca~gory)

The use of reWlled wa1elt in an ~poundmen1 where body contaCI IS restriceltJ (some states indude fi~g aoo boatng m tt$ category)

Thie uw of rechind w1tN to crec MhMlct susiain or wgment bullwltlltr bodies incfucling ~311ds 1Qlltie habitats or stre-irn low

The use of recbmed water in ndustrial appl1catJcns and f~lrties power prochxtxm and extraction o fossil fuels

Thie use of recbmd ~ter to rtchJrgt J(luien that lrt not used as a poiablewaier souru

Augmentation oa drinkng water soorce (surface deg groundwater) witn reclaJmed water followed by a11

erwllnmental bufer tha1 PfeOEdes nonnal drinkTIV wateJ lrecai1men

Thie in110duction d rteJJjmed WJter (Wth ot wflhout fltMtion in an MginHld ~rorag~ bulfr) er~ to a wnet tre31ment plani Mher col~d ot ~~ lttim lhe advanced wasllviatertreatment system

27

-43

3 1

16

0

1 Individual mte re~ POIPltJIM often ncorporat emiddot diffe~nl rerrninoQgy so Ole reader should exerci~ cotltoo in ltXlmparng Ille categories in lhltw tables direlt11y to 5tate reglb1ocy ciElini lions

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 13: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

---------UNPLANNED de facto) potable water reuse

bull a

bullbull 0 IU~lI TIN If~ U CO -middot-

bull

bull

bull

middot~middot

s

0

i I bull

I

Source Rivers of DWTP Intake SitH

The NAE report stated that de facto reuse with 5 treated wastewater posed higher risks from wastewater contaminants than planned Potable reuse schemes

Source Rice and Westerhgff (2015) Environ Sci Technol 49 (2) 982-989

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 14: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Permiddotcent Opposed to Uses of Effluent

Type of Re 11~ e

Drinking Vater Bathing in th~ ho~

wi1nming l11ioation of dairy pasture

Orrha1d ilrigation Re idential irligation Golf course i11ioation

Road ronst111Ction

General Option~ Survty (Oo)

54 33 21 14 10

4 3 2

Source BrnYold 1988

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 15: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

IRRIGAT N WITH RECLAIMED WATER

DO NO DRINK I

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 16: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

wetLlais and Other 6~ ~ricultunllrri gatJon

19~ Gro111d W ll er Recharge

16

Industrial Reuse

15

PublicAccess Irrigation

44

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 17: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Habitate R estoration

6

Recreit ional

I1T1gto inI ments

4

Seawats Barris

3

Gtoind W et er Recharge

1 2 Agr icultu1al Irr igation

48

Ind ustr ial Reuse

5

lBndscape Irrigation and

l ~und ITEf1tS

20

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 18: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

California Water Shortage (Billion Cubic Meters per Year)

Lov A1erage High Average Lo Drought High Drought

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 19: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Development of the Reclamation Concept Municipal Uses

Agricultural Uses

Aquitard

400 Ft Aquifer

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 20: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Seawater Intrusion Barrier

Groundvater Flolv Inland due to Basin Pumping

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 21: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Technical Issues and Public Concerns Remain

+ Constant effluent supply vs variable demand + Reliability of treatment systems to assure

high quality at all times bull 1 _middot ~ bull Water quality issuest middot

bull disinfection by-products trace amounts of NDMAs pharmaceuticals endocrine disrupters emerging pathogens etc

+ Public opinionacceptance barriers bull human origin (the Yuck factor)

bull~dustrial input amp household products

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 22: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

MICROFILTRATION CARTRIDGE FILTERS REVERSE OSMOSIS AND ADVANCED (UV) OXIDATION AT OCWD

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 23: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

California Model IPR

Surface Water (nutrients)

Namibia Model (No RO)

Gwinnen County IPR

Cloudcraft Model (MBR)

Figure 6-1 Potable reuse treatment scenarios (Chalmers et al 2011)

Regardless of the end use and desired reclaimed water quality there

are technologies available to treat water to whatever level is required

for the targeted end use In a1ddition to successful implem1entation of

current advanced treatment technologies for producing reclaimed

water there is ongoing research into optimizing these processes and

investigating emerging technologies to meet treatment objectives for

both pathogens and chemical constituents

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 24: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

1

2

3

4

5

6

7

8

WEFAWWA

NWRI - A Path Forward

NRC

State of the Science Report and Equivalency Criteria for Treatment Trains (WRRF 11-02-2)

Australian Academy of Technological Sciences and Engineering -Australia-specific

Direct Potable Reuse Resource Document (TWDB) - Texas-specific

Framework for Direct Potable Reuse (AWWA NWRI WEF and WateReuse)

EPA Potable Reuse Supplement

2008

2011

2012

2013

2013

2015

2015

2015

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 25: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

TECHNOLOGIES FOR THE INDIRECT AND DIRECT POTABLE REUSE

Flow equal atJOn added fn the new Threshold inhibtor facdrty expansKJn (SU WlC aad

o o ther)

Effluent ______ Chloraminc Cartridge Break r~lter Submergedpump tilterstankscreen m1crof1ltrat1ontatton

Return lo wATP

Filtered secondary

emuent

Hdrogen poroxido

UV acrvanced LimeoXJdation and Decarbonator Pump [ To mJecbonRO feed Reverse station wel sos nfection (C()i strpper)pump

~ i-----4shyl -- To spreading

StablbzaUon basins AdvancedDecarbonal1on Concentrate to treatedbypass to balance disposal wafer (ATW)hardness

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 26: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

INDIRECT VERSUS DIRECT POTABLE REUSE

Drinkii wa~ M~anceo vater

lltamen1 IAIGt~aa bull irntilt raclnt(DWT~1 C01mitli1 realmem aaciuy (AII1t-)

SW

SUr1AC~ A-Star ~toraIO ~IOI Trea1eo COllC~I ~

W11s1eN3~t wfle1e RO no1rbull~ r IJSad

Indirect potable reuse (IPiR) San Vicent e reservoir San Diego CA

Altlitanced treated vater (ATW)

Surface water or groundwaler

u nder the fluence omiddotr surface wabuller

D ing Advanced vraer treatment wastawatu wal~r treatment faa ty (DWlF) Community 1reament rac111ty (AWTf) ----

L----1

Engineered )lorage

Treated concenaate buer (eSB wutewritebull Viitiere RO (optional) not fOCCled ~used

Direct potable reuse (DPR)

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 27: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Namibia Model bull OPR bull No RO

Cloudcroft Model bull DPR bull MBA __

B ig Springs Model bull DPR bull UV-AOP

Wichita Falls Model bull OPR bull UV WWTP

Singapore Model bull IPR bull UV WWTP

California Model bull IPR bull UV-AOP

Upper Occoquan Service Authority (UOSA Model bull IPR bull

Chlorination

Gwinnett County bull IPR bull OzoneBiofiltration

an Diego Advanced Waler Purification Demonstration Projectbull Demo Only bull lN-ADPBAC OioneBACFull Advanced Treatment

Buffers Blends

~ Aquifer ~ Surface Water Body 0 Spring and Well Water 0 Surface Water

Blending occurs in engineered storage buffer (holding lagoon) bullbull Only re uires chlorination after residence time

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 28: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

TSS turbidity some protozoan Microfiltration Pressure differential 005 oocysts and cysts some bacteria

and viruses Macromolecules conords most Ultramtration Pressure dlfferenUal 0002-0050 bacteria some viruses rotelns small molecules someNanofiltratlon lt0002I Pressure differential hardness viruses Very small molecules color

Reverse Osmosis Pressure differential lt0002 hardness sulfates nitrate sodium other ions

1 Information taken from California Department of Public Heatth (2012 Metcalf amp Eddy (2003) 2 Information from Watpoundyen Treatment Membrane Processes (AWWA 1996)

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 29: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Bacteria x x x Protozoa and helminths x x x Viruses x x

Indicative Log ReducUons in Varimiddotous Stages of Wastewater Treatment1

Secondary treatment 1 - 3 05 - 1 05- 25 - 3 05 - 2 05 - l 5 05- 1 0 - 2 Dual media filtration1 0- 1 0 - 1 1 - 4 0 - 1 05 - 3 1 - 3 l5 - 25 2 - 3 Membrane filtration (UF NF and R0)1 4 - gt6 gt6 2 - gt6 gt6 2 - gt6 gt6 4 - gt6 gt6

Reservoir storage 1 bull 5 NIA 1 bull 4 1 bull 5 1 bull 4 3 4 1 35 15 gt3

Ozonation 2middot6 0 05 2-6 2middot6 3middot6 2middot 4 1 2 NIA UV disinrecoon 2 gt6 NIA 3 gt6 2 gt6 1 -gt6 3 gt6 3 gt6 NIA Advanced oxidation gt6 NIA gt6 gt6 gt6 gt6 gt6 NIA Chlorination 2 gt6 1 bull 2 0 25 2 gt6 1 bull 3 05 15 0 05 0-1

(Sources Bitton 1999 EPHC 2008 Mara and Horan 2003 NRC 1998 NRC 2012 Rose et al 1996 Rose et al 2001 EPA 1999 2003 2004 W HO 1989)

1Reduction rates depend on specific operating conditions such as retention times contact Limes and concentrations or chemicals used pore size filter depths pretreatment and other ractors Ranges given should not be used as design or regulatory bases-they are meant 1to show relative comparisons only gtIncluding coagulation 3Remova1 rates vary dramatically depending on the installation and maintenance of the membranes NlA =not available

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 30: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Table 6-4 Categories of trace chemtcal constituents (natural and synthetic) potentiaUy detectable in reclaimed water and illustrative example chemicals NRC 2012)

End use Category I Exampres

Industrial chemicals 14-Dioxane perfiurooctanoic acid methyl tertiary butyl ether tetractltoroethane Pesticides blocldes and herbicides Atrazlne llndane dluron flpronil Natural chemicals Hormones (17(3-estradiol) phytoestrogens geosmin 2-methylisoborneol

Pharmaceuticals and metabolites Antibacterials (sulfamethoxazole) analgesics (acetominophen ibuprofen) beta-blockers (atenolol anliepileptics (phenytoin carbamazepine) veterinary ancJ human antibiotics (azjthromycin) oral contraceptives (ethinyl estradiol)

Personal care products Triclosan sunscreen ingredients fragrances pigments Household chemicals and rood additives

Sucralose bisphenol A (BPA dibutyl phthalate alkylphenol polyethoxylates flame retardants (perfluorooctanoic acid perfluorooctane sulfonate)

Transformation products NOMA HAAS and THMs

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 31: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

Secondary nd 10-50 nd 10- 50 gt90 nd gt90 nd 50- 90

(activaled slud e) Soil aquifer nd nd nd 25-50 gt90 gt90 gt90 gt90 nd gt90 gt90 treatment Aquifer storage nd 50-90 10-50 50-90 50- 90 Nd gt90 nd

Microfiltration nd lt20 lt20 lt20 lt20 lt20 lt20 lt20 nd lt20 Ultra filtration powdered activated carbon PAC)

nd gt90 gt90 gt90 gt90 gt90 nd gt90 nd gt90 gt90

NanofiJtralion gt80 50-SO 50-80 50-SO 5()-8() 50-80 50-SO 50-80 50-SO 50-80

Reverse osmosis gt80 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 gt95 25- 50

PAC gt80 20-gt80 50-80 50-80 20-50 lt20 50--80 5()-80 50--80 50- 80 Granular activated

gt90 gt90 gt90 gt90 gt90 gt90 gt90 gt90 carbon

Ozonalion gt80 gt95 50-80 50-80 gt95 50-80 gt95 gt95 gt80 50-90 50-90

Advanced oxidation 50-80 50-80 gt80 gt80 gt80 gt80 gt80 gt80 50- 80 gt90

High~level ultraviolet 20-gt80 lt20 2()-50 gt80 20-50 gt80 gt80 20-50 nd gt90

Chlorination gt80 gt80 20-50 - lt20 gt80 lt20 gt80 gt80 lt20 20-gt80

Chlorami nation 50-80 lt20 lt20 lt20 50-80 lt20 gt80 gt80 lt20 lt20 (Sources Ternes and Joss 2006 Snyder el al 201 O) Ba)p = benz(a)pyrene CBZ = carbamazepine DBP = disinfection by-product DCF diclofenac DZP diazepam IBP = ibuprofen NDMA=Nshynicrosodimcthylaminc nd bull no daia PAC bull powdered acuvatcd carbon PCT bull paracciamol 1 erythmmycin sulfamelhoxazole triclosan lrimelhoprim 2 ethynylestradiol estrone esuadiol and estriol 1 progesterone testosterone

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43
Page 32: Water Reuse: Trends in the U.S. · 1950 1962 1968 1972 1978 1982 1988 1992 1996 2000 2004 .2008 2012 Projected : Year : Sourc9: U.S ... y,;atms. AS or January ; 1. ... Metcalf & Eddy

MOVING TOWARD WATER RESOURCE

RECOVERY FACILllilES

put Cm

ENABLING THE FUTURE

  • Water Reuse Trends in the US
  • Slide Number 2
  • Slide Number 3
  • Projected Growth of Water Reuse in the US
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Water Use by Sector
  • Mid-Atlantic Delaware District of Columbia Maryland Pennsylvania Virginia and West Virginia
  • Pacific Northwest Idaho Oregon Washington and Alaska
  • Pacific Southwest Arizona California Hawaii Nevada and Pacific Territories
  • Slide Number 13
  • Reuse Categories
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • Slide Number 21
  • Slide Number 22
  • Potable and Reclaimed Water Usage City of St Petersburg FL
  • Floridarsquos Recent Reuse History
  • California Water Recycling Potential
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Technical Issues and Public Concerns Remain
  • GWR System (OCWD and OCSD)Advanced Water Treatment Flow Diagram
  • Slide Number 32
  • Slide Number 33
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Alternative treatment trains
  • Slide Number 38
  • Slide Number 39
  • Slide Number 40
  • Slide Number 41
  • Disinfection alternatives to chlorine
  • Slide Number 43