49
Watershed Condition Classification Technical Guide United States Department of Agriculture Forest Service FS-978 July 2011

Watershed Condition Classification Technical Guide - … Individual Indicators ... criteria for indicators that describe the three watershed condi- ... habitats that support adaptive

Embed Size (px)

Citation preview

Watershed Condition Classification Technical Guide

United States Department of Agriculture

Forest Service

FS-978

July 2011

Watershed Condition Classification Technical Guide

United States Department of Agriculture

Forest Service

FS-978

July 2011

“Ultimately, our success at the Forest Service will be measured in terms of watershed health on those 193 million acres of national forests and grasslands.”

Tom TidwellChief, Forest ServiceApril 29, 2010

Primary Authors

John P. PotyondyProgram Manager and HydrologistStream Systems Technology CenterWatershed, Fish, Wildlife, Air, and Rare Plants StaffWashington Office

Theodore W. GeierRegional HydrologistEastern Region

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communi-cation of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer.

Cover photo: Pisgah National Forest by Jack Holcomb.

Watershed Condition Classification Technical Guide iii

Contributors

Watershed Condition Advisory Team Members (October 2010)

John Potyondy WashingtonOffice(WO),Watershed,Fish,Wildlife,AirandRarePlants(WFWARP),StreamSystemsTechnologyCenter

Ted Geier EasternRegion(R-9),RegionalOffice,RegionalHydrologist

Penny Luehring WO,WFWARP,WatershedImprovementProgramLeader

Mark Hudy WO,WFWARP,FishandAquaticEcologyUnit(FAEU)

Brett Roper WO,WFWARP,FAEU

Ron Dunlap WO,WFWARP,AssistantDirector,Watershed,Fish,andAir(retired)

Tom Doane EasternRegion(R-9),DeputyDirector,Air,Water,Lands,Soils,MineralsandEnvironmentalEngineering/Services

Greg Kujawa WO,ForestManagement

Paul T. Anderson WO,Engineering

Jaelith Hall-Rivera WO,FireandAviationManagement

Jim Keys WO,EcosystemManagementCoordination

Michael Ielmini WO,InvasiveSpeciesProgram

Ann Acheson WO,WFWARPAirProgram

Ray Thompson WO,ProgramandBudget

Bob Davis SouthwesternRegion(R-3),RegionalDirector’sRepresentative

Sharon Friedman RockyMountainRegion(R-2),StrategicPlanningDirector

Karl Dalla Rosa WO,StateandPrivateForestry(ForestStewardshipProgram)

Thomas Brown RockyMountainResearchStation

Vacant WO,RangelandManagement

Vacant WO,EnvironmentalSciencesResearch

Major Contributors to Indicator Rule Sets Development

WaterQuality JohnPotyondy,TedGeier,CindyHuber

WaterQuantity JohnPotyondy,TedGeier

AquaticHabitat MarkHudy,BrettRoper,JohnPotyondy

AquaticBiota MarkHudy,BrettRoper

iv Watershed Condition Classification Technical Guide

Riparian/WetlandVegetation PennyLuehring

RoadsandTrails PaulT.Anderson

Soils PennyLuehring,CindyHuber

FireRegimeorWildfire JaelithHall-Rivera,PennyLuehring

ForestCover GregKujawa

RangelandVegetation CharlesQuimby

TerrestrialInvasiveSpecies MichaelIelmini

ForestHealth BorysTkacz,CindyHuber

Watershed Condition Classification Technical Guide v

Introduction............................................................................. 1

ObjectivesofThisGuide.......................................................... 1

DefiningWatershedCondition................................................. 2

WatershedConditionandEcologicalRestoration.................... 3

Watershed Condition Indicators........................................... 4

The Watershed Condition Model.......................................... 5

TypesofIndicators................................................................... 7

IndicatorLimitationsandtheNeedforProfessionalJudgment................................................................................... 8

ProvidingforNationalConsistencyandLocalFlexibility....... 8

ClassifyingIndividualIndicators.............................................. 9

Regional and National Oversight........................................ 11

ProceduralGuidance............................................................... 11

References.............................................................................. 13

Appendix. Rule Set for Watershed Condition Indicators and Attributes..................................................... 14

Contents

vi Watershed Condition Classification Technical Guide

Watershed Condition Classification Technical Guide 1

TheU.S.DepartmentofAgriculture(USDA)StrategicPlanforfiscalyear(FY)2010–2015targetstherestorationofwatershedandforesthealthasacoremanagementobjectiveofthenationalforestsandgrasslands.Toachievethisgoal,theForestService,anagencyofUSDA,isdirectedtorestoredegradedwatershedsbystrategicallyfocusinginvestmentsinwatershedimprovementprojectsandconservationpracticesatlandscapeandwatershedscales.

Ina2006reviewoftheForestServiceWatershedProgram,theOfficeofManagementandBudget(OMB)concludedthattheForestServicelacksanationallyconsistentapproachtoprioritizewatershedsforimprovement(OMB2006).TheOMBalsonotedthatthecurrentForestServicedirectionintheForestServiceManual(FSM)2521fortrackingwatershedconditionclassisvague,opentovariedinterpretation,andinsufficienttoconsistentlyevaluatewatershedconditionortrackhowcondi-tionchangesovertime.Toaddresstheseissues,theForestServiceformedtheNationalWatershedConditionTeamandtaskeditwithdevelopinganationallyconsistent,science-basedapproachtoclassifytheconditionofallNationalForestSystem(NFS)watershedsandtodevelopoutcome-basedperformancemeasuresforwatershedrestoration.Theteamevaluatedalternativeapproachesforclassifyingwatersheds(USDAForestService2007)anddevelopedthewatershedconditionclassification(WCC)systemdescribedinthistechnicalguide.

TheteamdesignedtheWCCsystemto—

• ClassifytheconditionofallNFSwatersheds.

• Bequantitativetotheextentfeasible.

• RelyonGeographicInformationSystem(GIS)technology.

• Becosteffective.

• Beimplementablewithinexistingbudgets.

• Includeresourceareasandactivitiesthathaveasignificant

influenceonwatershedcondition.

Nationalforestsarerequiredtorevisetheclassificationonanannualbasis.Wewillusechangeinwatershedconditionclassasanoutcome-basedperformancemeasureofprogresstowardimprovingwatershedconditiononNFSlands.Inordertodemonstrateimprovementinconditionclass,weneedtotrackactivitiesatthesmallestfeasiblewatershedunit,the6th-levelhydrologicunit(typically10,000to40,000acresinsize).

TheWCCsystemisanationalforest-based,reconnaissance-levelevaluationofwatershedconditionachievablewithinexistingbudgetsandstaffinglevelsthatcanbeaggregatedforanationalassessmentofwatershedcondition.TheWCCsystemoffersasystematic,flexiblemeansofclassifyingwatershedsbasedonacoresetofnationalwatershedconditionindicators.Thesystemreliesonprofessionaljudgmentexercisedbyforestinterdisciplinary(ID)teams,GISdata,andnationaldatabasestotheextenttheyareavailable,andonwrittenrulesetsandcriteriaforindicatorsthatdescribethethreewatershedcondi-tionclasses(functioningproperly,functioningatrisk,andimpairedfunction).TheWCCsystemreliesonWashingtonOfficeandregionalofficeoversightforflexibleandconsistentapplicationamongnationalforests.TheWCCsystemisafirstapproximationofwatershedcondition,andwewillreviseandrefineitovertime.Theexpectationisthatwewillimproveandrefineindividualresourceindicatorsandthatwewilldevelopdatabasesandmapproductstoassistwithfutureclassifications.TheWCCinformationwillbeincorporatedintothewatershedconditionframework,whichwillultimatelybeemployedtoestablishpriorities,evaluateprogramperformance,andcommu-nicatewatershedrestorationsuccessestointerestedstakeholdersandCongress.

Objectives of This Guide

ThewatershedconditiongoaloftheForestServiceis“toprotectNationalForestSystemwatershedsbyimplementingpracticesdesignedtomaintainorimprovewatershedcondition,whichisthefoundationforsustainingecosystemsandtheproductionofrenewablenaturalresources,values,andbenefits”(FSM2520).U.S.SecretaryofAgricultureTomVilsackreemphasizedthispolicyinhis“VisionfortheForestService”whenhestatedthatachievingrestorationofwatershedandforesthealthwouldbetheprimarymanagementobjectiveoftheForestService(USDA2010).ThisWatershed Condition Classification Technical Guidehelpstoimplementthispolicyobjectiveby—

1. Establishingasystematicprocessfordetermining

watershedconditionclassthatallnationalforestscanapply

consistently.

2. ImprovingForestServicereportingandtrackingof

watershedcondition.

Introduction

2 Watershed Condition Classification Technical Guide

3. StrengtheningtheeffectivenessoftheForestServicetomain-

tainandrestoretheproductivityandresilienceofwatersheds

andtheirassociatedaquaticsystemsonNFSlands.

Defining Watershed Condition

Watershed conditionisthestateofthephysicalandbiologicalcharacteristicsandprocesseswithinawatershedthataffectthehydrologicandsoilfunctionssupportingaquaticecosystems.Watershedconditionreflectsarangeofvariabilityfromnaturalpristine(functioningproperly)todegraded(severelyalteredstateorimpaired).Watershedsthatarefunctioningproperlyhaveterrestrial,riparian,andaquaticecosystemsthatcapture,store,andreleasewater,sediment,wood,andnutrientswithintheirrangeofnaturalvariabilityfortheseprocesses.Whenwa-tershedsarefunctioningproperly,theycreateandsustainfunc-tionalterrestrial,riparian,aquatic,andwetlandhabitatsthatarecapableofsupportingdiversepopulationsofnativeaquatic-andriparian-dependentspecies.Ingeneral,thegreaterthedeparturefromthenaturalpristinestate,themoreimpairedthewatershedconditionislikelytobe.Watershedsthatarefunctioningprop-erlyarecommonlyreferredtoashealthywatersheds.

Watershedsthatarefunctioningproperlyhavefiveimportantcharacteristics(Williamsetal.1997):

1. Theyprovideforhighbioticintegrity,whichincludes

habitatsthatsupportadaptiveanimalandplantcommunities

thatreflectnaturalprocesses.

2. Theyareresilientandrecoverrapidlyfromnaturaland

humandisturbances.

3. Theyexhibitahighdegreeofconnectivitylongitudinally

alongthestream,laterallyacrossthefloodplainandvalley

bottom,andverticallybetweensurfaceandsubsurfaceflows.

4. Theyprovideimportantecosystemservices,suchashigh-

qualitywater,therechargeofstreamsandaquifers,the

maintenanceofripariancommunities,andthemoderationof

climatevariabilityandchange.

5. Theymaintainlong-termsoilproductivity.

Watershed condition classification istheprocessofdescribingwatershedconditionintermsofdiscretecategories(orclasses)thatreflectthelevelofwatershedhealthorintegrity.Inourus-age,weconsiderwatershedhealthandintegrityareconceptuallythesame(Regier1993):watershedswithhighintegrity areinanunimpaired conditioninwhichecosystemsshowlittleornoinfluencefromhumanactions(Lackey2001).

TheFSMusesthreeclassestodescribewatershedcondition(USDAForestService2004,FSM2521.1).

1. Class1 watershedsexhibithighgeomorphic,hydrologic,and

bioticintegrityrelativetotheirnaturalpotentialcondition.

2. Class2watershedsexhibitmoderategeomorphic,

hydrologic,andbioticintegrityrelativetotheirnatural

potentialcondition.

3. Class3watershedsexhibitlowgeomorphic,hydrologic,and

bioticintegrityrelativetotheirnaturalpotentialcondition.

TheFSMclassificationdefineswatershedconditionintermsof“geomorphic,hydrologicandbioticintegrity”relativeto“potentialnaturalcondition.”Inthiscontext,integrityrelatesdirectlytofunctionality.Wedefinegeomorphicfunctionalityorintegrityintermsofattributessuchasslopestability,soilerosion,channelmorphology,andotherupslope,riparian,andaquatichabitatcharacteristics.Hydrologicfunctionalityorintegrityrelatesprimarilytoflow,sediment,andwater-qualityattributes.Biologicalfunctionalityorintegrityisdefinedbythecharacteristicsthatinfluencethediversityandabundanceofaquaticspecies,terrestrialvegetation,andsoilproductivity.Ineachcase,integrityisevaluatedinthecontextofthenaturaldisturbanceregime,geoclimaticsetting,andotherimportantfactorswithinthecontextofawatershed.Thedefinitionencompassesbothaquaticandterrestrialcomponentsbecausewaterqualityandaquatichabitatareinseparablyrelatedtotheintegrityand,therefore,thefunctionalityofuplandandriparianareaswithinawatershed.

Withinthiscontext,thethreewatershedconditionclassesaredirectlyrelatedtothedegreeorlevelofwatershedfunctionalityorintegrity:

1. Class1=FunctioningProperly.

2. Class2=FunctioningatRisk.

3. Class3=ImpairedFunction.

Inthisguide,wecharacterizeawatershedingoodconditionasonethatisfunctioninginamannersimilartonaturalwildlandconditions(KarrandChu1999,Lackey2001).Awatershedisconsideredtobefunctioningproperlyifthephysicalattributesareadequatetomaintainorimprovebiologicalintegrity.ThisconsiderationimpliesthataClass1watershedthatisfunction-ingproperlyhasminimalundesirablehumanimpactonitsnatural,physical,orbiologicalprocesses,anditisresilientandabletorecovertothedesiredconditionwhendisturbedbylargenaturaldisturbancesorlandmanagementactivities(YountandNeimi1990).Bycontrast,aClass3watershedhasimpaired

Watershed Condition Classification Technical Guide 3

functionbecausesomephysical,hydrological,orbiologicalthresholdhasbeenexceeded.Substantialchangestothefactorsthatcausedthedegradedstatearecommonlyneededtoreturnthewatershedtoaproperlyfunctioningcondition.

Definingspecificclassesforwatershedconditionissubjectiveandproblematicforseveralreasons.First,watershedconditionisnotdirectlyobservable(Suter1993).Innature,nodistinctlinesseparatewatershedsthatarefunctioningproperlyfromimpairedwatersheds,and,therefore,everyclassificationschemeisarbitrarytosomeextent.Second,watershedcondi-tionisamentalconstructthathasnumerousdefinitionsandinterpretationsinthescientificliterature(Lackey2001).Third,theattributesthatreflectthestateofawatershedarecontinu-allychangingbecauseofnaturaldisturbances(e.g.,wildfire,landslides,floods,insects,anddisease),naturalvariabilityofecologicalprocesses(e.g.,flowsandcyclesofenergy,nutri-ents,andwater),climatevariabilityandchange,andhumanmodifications.

Watershed Condition and Ecological Restoration

Themosteffectivewaytoapproachcomplexecologicalissuesistoconsiderthematthewatershedlevel,wherethefunda-mentalconnectionamongallcomponentsofthelandscapeisthenetworkofstreamsthatdefinethebasin(Heller2004,Na-tionalResearchCouncil1999,Newbold2002,OggandKeith2002,Reidetal.1996,Sedelletal.2000,Smithetal.2005,Williamsetal.1997).Watershedsarealsoreadilyrecognizedbylocalcommunitiesandresonatewithmuchofthepublicasalogicalwaytoaddressresourcemanagementissues.Water-shedsareeasilyidentifiedonmapsandontheground,andtheirboundariesdonotchangemuchovertime(Reidetal.1996).

Watershedsareintegralpartsofbroaderecosystems,andwecanviewandevaluatethematavarietyofspatialscales.Becausewatershedsarespatiallylocatedlandscapefeatures

thathavebeenuniformlymappedfortheentireUnitedStatesatmultiplescales,theyareidealfortrackingwatershedimprove-mentaccomplishmentsbothintermsofoutputs(acrestreatedontheground)andoutcomes(improvementinwatershedconditionclass).Reportingaccomplishmentsandoutcomesbyeachwatershed’suniquehydrologicunitcode(HUC)avoidsdoublecounting.TheWCCsystemanalyzestheeffectofallactivitieswithinawatershed;therefore,thesystemprovidesanidealmechanismforinterpretingthecumulativeeffectovertimeofamultitudeofmanagementactionsonhydrologicandsoilfunction.Finally,manyhydrologicandaquaticrestorationissuescanbeproperlyaddressedonlywithintheconfinesofwatershedboundaries.Watershedsprovideabasisfordevelop-ingrestorationplansandprioritiesthatcantreatamultitudeofresourceproblemsinastructured,comprehensivemanner.

Manyterrestrialecologicalrestorationissues,however,arepoorlyaddressedinawatershedcontext.Ecologicalrestorationissuesdealingwithvegetationandwildlifespeciescomposition,structure,pattern,anddiversitymaynotaffecthydrologicandsoilfunctionsandarebestevaluatedusingecologicalstratifica-tionssuchasthosedepictedinthemap,Bailey’sEcoregionsandSubregionsoftheUnitedStates,PuertoRico,andtheU.S.VirginIslands(Bailey1995).Consequently,weviewwatershedcondition,watershedhealth,andwatershedrestorationasasubsetofecologicalcondition,ecologicalhealth,andecologicalrestoration.

Insummary,ecologicalrestorationfocusesonthecomposition,structure,pattern,andecologicalprocessesnecessarytomaketerrestrialandaquaticecosystemssustainable,resilient,andhealthyundercurrentandfutureconditions.Thisincludeswatershedconditionandhealth.Watershedconditionassess-mentplacesspecificemphasisonthephysicalandbiologicalcharacteristicsandprocessesaffectinghydrologicandsoilfunc-tionsthatsupportaquaticecosystems.Therefore,inthisWCCsystem,primaryemphasisisplacedonindicatorsthatdirectlyorindirectlyaffectsoilandhydrologicfunctionsandassociatedriparianandaquaticecosystems.

4 Watershed Condition Classification Technical Guide

Watershed Condition Indicators

resourceareas.Soundmanagementorimprovingmanagementpracticescanoftenbeaseffectiveasimplementingrestorationprojectsandmustnotbeoverlooked.Todemonstrateimprove-mentinconditionclass,wewillneedtotrackactivitiesatthesmallestfeasiblewatershedunit,the6th-levelHUC(typically,10,000to40,000acres).1

TheWCCsystemconsistsof12watershedconditionindicators:

1. WaterQuality

2. WaterQuantity

3. AquaticHabitat

4. AquaticBiota

5. Riparian/WetlandVegetation

6. RoadsandTrails

7. Soils

8. FireRegimeorWildfire

9. ForestCover

10. RangelandVegetation

11. TerrestrialInvasiveSpecies

12. ForestHealth

TheWCCsystemdescribedinthistechnicalguideuses12indicatorscomposedofattributesrelatedtowatershedprocesses.Theindicatorsandtheirattributesaresurrogatevariablesrepresentingtheunderlyingecologicalfunctionsandprocessesthataffectsoilandhydrologicfunction.Formostoftheindicators,theForestServicecantakedirectaction,orcauseotherstotakeaction,whichcontributestomaintainingorimprovingwatershedcondition.Thisstructureprovidesforadirectlinkagebetweentheclassificationsystemandmanage-mentorimprovementactivitiestheForestServiceconductsontheground.Becauseofthislinkage,whenasufficientnumberofproperlydesignedandimplementedrestorationand/ormanagementactionsoccurwithinawatershed,wecanexpresstheoutcomeasachangeinconditionclassandusetheresult-ingchangeinconditionclassforperformanceaccountabilitypurposes.Managementactivitiesthataffectthewatershedconditionclassarenotlimitedtosoilandwaterimprovementactivities;theyincludeabroadarrayofresourceprogramareas:hazardousfueltreatments,invasivespecieseradica-tion,abandonedminerestoration,riparianareatreatments,aquaticorganismpassageimprovement,roadmaintenanceandobliteration,andothers.Tochangeawatershedconditionclasswill,inmostcases,requirechangeswithinawatershedthataresignificantintheirscopeandincludetreatmentsfrommultiple

1Inthecontextofthisclassificationsystem,weusetheterms“watershed”and“hydrologicunit”synonymously.Hydrologicunits,however,aretrulyonlysynonymouswiththeclassicwatersheddefinitionwhentheirboundariesincludeallthesourceareascontributingsurfacewatertoasingle,definedoutletpoint.Fortheintendedusesofthisreconnaisance-levelassessment,thisdistinctionisrelativelyunimportant.

Watershed Condition Classification Technical Guide 5

The Watershed Condition Model

effectscomefrom20percentofthecauses.Wealsowantedtoberesponsivetouserinputobtainedduringpilottestingonnationalforeststokeeptheassessmentcompatiblewiththesubjectivenatureofmanyoftheevaluations.WethereforeconstrainedthenumberofattributesandconsequentlytheamountofdatathatnationalforestIDteamswillneedtodealwithduringtheclassificationprocess.

Werecognizefromascientificperspectivethatthiswatershedconditionsmodelwithitsmanyindicatorswillhaveproblemswithautocorrelation.Becauseofthemanagementneedtoshowlinkagesbetweenactivitiesonthegroundandimprovementinwatershedconditionforperformanceaccountability,however,wechosetoincludeacomprehensivesuiteofindicatorsthatrepresentsthefullscopeofForestServicemanagementactivitiesandprogramareas.Forexample,roadconditionandstreamhabitatconditionmaybehighlycorrelated,however,eliminat-ingstreamhabitatconditionasanindicatorwouldthenprecludehavingafeedbackmechanismfortakingcreditforwatershedconditionimprovementsderivedfromstreamhabitatimprove-mentwork.Usingacomprehensivesetofindicatorsfavorsmanagementperformancetrackingandaccountabilityattheexpenseofamorescientificallycorrectclassificationmodel.

Thebasicmodelusedinthisclassificationsystemprovidesaforestwide,reconnaissance-levelevaluationofwatershedcondition.Itoffersasystematic,flexiblemeansofclassifyingandcomparingwatershedsbasedonacoresetofnationalwatershedconditionindicators.Theindicatorsaregroupedac-cordingtofourmajorprocess categories:(1)aquaticphysical,(2)aquaticbiological,(3)terrestrialphysical,and(4)terrestrialbiological(fig.1).Thesecategoriesrepresentterrestrial,ripar-ian,andaquaticecosystemprocessesormechanismsbywhichmanagementactionscanaffecttheconditionofwatershedsandassociatedresources.

Wewilluseasimplescorecardapproachtoassesswatershedconditionclass.Eachofthefourprocesscategoriesisrepre-sentedbyasetofindicators(fig.2,table1).Eachindicatorisevaluatedusingadefinedsetofattributes.Forexample,theAquaticPhysicalProcessescategorycontainsanindicatorforAquaticHabitatCondition.Aquatichabitatconditionisevalu-atedusingthreeattributes:(1)habitatfragmentation,(2)largewoodydebris,and(3)channelshapeandfunction.Indicatorscanhaveasfewasoneattributeorasmanyasfourattributes.Wedesignedtheclassificationtobeassimpleaspossiblebasedonthe“80/20Rule,”whichstatesthatoften80percentof

Watershed Condition Class

AquaticPhysical

Processes

AquaticBiologicalProcesses

Terrestrial Physical

Processes

TerrestrialBiologicalProcesses

Figure1.—The basic watershed condition model.

6 Watershed Condition Classification Technical Guide

Watershed Condition Indicators(12-Indicator Model)

AquaticPhysical

(Weight = 30%)

1. Water Quality

1. Impaired waters (303(d) listed)

2. Water quality problems (not listed)

3. Aquatic Habitat

1. Habitat fragmentation

2. Large woody debris

3. Channel shape and function

2. Water Quantity

1. Flow characteristics

5. Riparian/Wetland Vegetation

1. Vegetation condition

4. Aquatic Biota

1. Life form presence

2. Native species

3. Exotic and/or aquatic invasive species

6. Roads and Trails

1. Open road density

2. Road and trail maintenance

3. Proximity to water

4. Mass wasting

8. Fire Regime or Wildfire

1. Fire Regime Condition Class

or

2. Wildfire Effects

7. Soils

1. Soil productivity

2. Soil erosion

3. Soil contamination

9. Forest Cover

1. Loss of forest cover

10. Rangeland Vegetation

1. Rangeland veg­etation condition

11. Terrestrial Invasive Species

1. Extent and rate of spread

12. Forest Health

1. Insects and disease

2. Ozone

AquaticBiological

(Weight = 30%)

Terrestrial Physical

(Weight = 30%)

TerrestrialBiological

(Weight = 10%)

Figure2.—Core national watershed condition indicators.

Watershed Condition Classification Technical Guide 7

Types of Indicators

Wedefineindicatorsassimplequantifiableorqualitativelydeterminedmeasuresoftheconditionanddynamicsofbroader,morecomplexattributesofecosystemhealth.Weuseindicatorsbecausecomplexecosystemattributesaredifficult,inconvenient,ortooexpensivetomeasure.Indicatorsactassurrogates,representingtheunderlyingecologicalprocessesthatmaintainwatershedfunctionalityandcondition.Thebasicwatershedconditionusesindicatorsthatrepresentexisting,on-the-groundalterationsofwatershedconditions.Wewillrefinetheindicatorsovertimeasbetterdataandanalysistoolsbecomeavailable.

Theindicatorsincludethreebasictypesofattributes:

1. Numeric attributeshaveassociatednumericvalues(e.g.,

roaddensity<1mile/mile2).Quantitativeattributesare

simpletousebuttheyneedtobeproperlyinterpretedand

appropriateforthegeographicalsettingofthewatershed.

2. Descriptive attributesarequalitativevariablessubjectto

somedegreeofinterpretationbyusers(e.g.,“Nativemid

tolateseralvegetationappropriatetothesitespotential

dominatestheplantcommunitiesandisvigorous,healthy,

anddiverseinage,structure,cover,andcompositionon

morethan80percentoftheriparianandwetlandareasinthe

watershed.”).Thesesemiquantitativeattributesaretypically

usedwhenreliablenumericindicatorsorthresholdsare

lackingorwherequantitativedataiseitherunavailableortoo

expensivetoobtainforentirewatersheds.

3. Map-derived attributesareproducedbyteamsofexperts

thatsynthesizeextensivedatatocreateinterpretedmap

products(e.g.,FireRegimeConditionClasses).Mapproducts

Table1.—Description of the 12 national core watershed condition indicators. (See the appendix for the complete rule set.)

Aquatic Physical Indicators

1.WaterQuality Thisindicatoraddressestheexpressedalterationofphysical,chemical,andbiologicalcomponentsofwaterquality.

2.WaterQuantity Thisindicatoraddresseschangestothenaturalflowregimewithrespecttothemagnitude,duration,ortimingofthenaturalstreamflowhydrograph.

3.AquaticHabitat Thisindicatoraddressesaquatichabitatconditionwithrespecttohabitatfragmentation,largewoodydebris,andchannelshapeandfunction.

Aquatic Biological Indicators

4.AquaticBiota Thisindicatoraddressesthedistribution,structure,anddensityofnativeandintroducedaquaticfauna.

5.Riparian/WetlandVegetation Thisindicatoraddressesthefunctionandconditionofriparianvegetationalongstreams,waterbodies,andwetlands.

Terrestrial Physical Indicators

6.RoadsandTrails Thisindicatoraddresseschangestothehydrologicandsedimentregimesbecauseofthedensity,location,distribution,andmaintenanceoftheroadandtrailnetwork.

7.Soils Thisindicatoraddressesalterationtonaturalsoilcondition,includingproductivity,erosion,andchemicalcontamination.

Terrestrial Biological Indicators

8.FireRegimeorWildfire Thisindicatoraddressesthepotentialforalteredhydrologicandsedimentregimesbecauseofdeparturesfromhistoricalrangesofvariabilityinvegetation,fuelcomposition,firefrequency,fireseverity,andfirepattern.

9.ForestCover Thisindicatoraddressesthepotentialforalteredhydrologicandsedimentregimesbecauseofthelossofforestcoveronforestlands.

10.RangelandVegetation Thisindicatoraddresseseffectsonsoilandwaterbecauseofthevegetativehealthofrangelands.

11.TerrestrialInvasiveSpecies Thisindicatoraddressespotentialeffectsonsoil,vegetation,andwaterresourcesbecauseofterrestrialinvasivespecies(includingvertebrates,invertebrates,andplants).

12.ForestHealth Thisindicatoraddressesforestmortalityeffectsonhydrologicandsoilfunctionbecauseofmajorinvasiveandnativeforestinsectanddiseaseoutbreaksandairpollution.

8 Watershed Condition Classification Technical Guide

aregenerallyhighqualityandobjectiveifappliedatthe

appropriatescale.

Weanticipatethatmap-basedandnumericindicatorswilleven-tuallyreplaceotherindicatorsasbetterdatabecomeavailable.

Indicator Limitations and the Need for Professional Judgment

Goodindicatorsetsshouldbecomprehensive,accuratelyreflectwatershedfunctionality,bereadilymeasurable,berepeatable,providedatathatwecanunambiguouslyinterpret,conveyanunderstandingofhowtheecosystemfunctions,andprovideinsightintothecause-and-effectrelationshipsbetweenenvi-ronmentalstressorsandtheresponseoftheecosystem(Mulderetal.1999).Indicatorsets,however,rarelyexhibitallofthesecharacteristics.Ourapplicationofindicatorsinthisguidedoesnotprovidethelevelofdetailexpectedfromsite-specificwatershedanalysisorassessments(USDA/USDI1998),norisitintendedasacomprehensiveevaluationofecologicalcondi-tions.MuchliketheDowJonesIndexgaugesthestrengthofthestockmarket,watershedconditionindicatorsrapidlyassesstherelativehealthofwatershedsatareconnaissancelevel.Wewillneedadditionaldetailedassessmentstovalidateconclu-sions,toidentifyspecificwatershedproblems,andtoarriveattreatmentsolutions.

Assimplesurrogatesforcomplexecologicalprocesses,indica-torsdonotnecessarilyrepresentcause-and-effectrelationships.Indicatorsarederivedfromstudiesthatcorrelatethebehaviorofindicatorswithenvironmentalresponsevariablesofinterest.Forexample,increasingroaddensityhasbeencorrelatedwithincreasingsedimentyieldinmanystudiesnationwide.However,thetruesetofenvironmentalconditionsthatproducesedimentationarecomplex,unmeasured,orunknown.Numer-ousotherfactorsincludingsoils,geology,slope,androadconditionalsoinfluencesedimentyield.Theresultisthatroaddensityisnotaperfectpredictoroftheeffectsonsedimentyield.Thequalityofanindicatorultimatelydependsonthequalityoftheresearchusedtosupportitanditsapplicabilitytodifferentenvironmentalsettings,butnosingleindicatorisaperfectpredictorofanenvironmentalresponse.

Indicatorsworkbestwhentheyareappliedwithinthesetofconditionsunderwhichtheyweredeveloped,andthesame

indicatorwillhavedifferentinterpretationsindifferentecologi-calsettings.Forexample,thenaturallylowvolumesoflargewoodydebrisinmanystreamsofthearidSouthwestwouldrepresentdegradedconditionsintheforestsofwesternOregon.Eventhemap-basedindicatorssuchasFireRegimeConditionClass,whichhavebeendevelopedfortheentireUnitedStates,aresubjecttolocalprofessionalvalidationandinterpretationtoensurethattheyarecorrectlyapplied.Whenusedinappropri-ately,indicatorsandtheirattributescanprovidemisleadingorincorrectconclusions.Numericvaluesshouldnotbethoughtofasabsolutes,butratherasdiagnostictoolstopromotediscus-sionandunderstandingofrelativewatershedconditionwithrespecttotheruleset.As a result, this process relies on local professional expertise and judgment to interpret the indica-tors and assess watershed condition.2

Providing for National Consistency and Local Flexibility

Professionaljudgmentisneededtoproperlyinterprettheindicators,butacertainlevelofconsistencyisneededtocomparewatershedsatthenationallevel.Achievingconsistentevaluationisachallengewhenapplyingprofessionaljudg-mentacrossdiverseecosystems.Toimproveconsistency,theWCCsystemusesspecificattributesalongwithquantitativeandqualitativerulesetstoassesswatershedcondition.Thisstructuredapproach,coupledwithappropriateregionalofficeoversightisdesignedtominimizebiasamongevaluatorsandpromoteconsistentinterpretationofindicators.

Interpretingindicators,however,alsorequireslocalflexibility,becauseonlyafewsimpleindicatorshavenumericrangesofvaluesthatwecanuniformlyapplynationwide.Forexample,thenaturalrangeofwatertemperatureswillhavedifferentval-uesinwarmwaterstreamscomparedwithhighelevationtroutstreams,butaninterpretedthresholdspecifictoeachenviron-mentindicatesimpairment.Inaddition,notallindicatorsapplyinallenvironmentalconditionsandgeophysicalsettings.Forexample,massmovementprocessesinthemountainousWestarevirtuallynonexistentintheLakeStatesoftheMidwest.

Toprovidetheneededflexibility,theWCCsystemallowslimitedadjustmentofcoreindicatorattributesbasedonlocaldataandconditions.Tohelpmaintainconsistency,regionalornationaloversightteamsneedtoapprovetheseadjustments.

2Thisprocessreliesonintuitiveconclusionsandpredictionsthataredependentonananalyst’straining,interpretationoffacts,information,andobservationsandonhisorherpersonalknowledgeofthewatershedbeinganalyzed.Professionaljudgmentinthiscontextisexcercisedbyanationalforest’sinterdiscipli-naryteam.

Watershed Condition Classification Technical Guide 9

Thegoaloftheprocessistousethebestavailableinformationanddatatoassesswatershedconditionandtointerprettherangeofwatershedconditionsindifferentphysiographicset-tingsinacorrectandconceptuallysimilarmannerrelativetotherangeofproperandimpairedfunctionality.

Forestsmayadjustattributesinoneofthreeways:

1. Modify the default values of an attribute.Forexample,

thedefaultrangesinthebasicmodelforroaddensitymay

beinappropriateforcertainphysiographicsettings.Forests

mayadjusttherangeandbreaksbetweengood,fair,andpoor

ratingsiftheyaresupportedbyforestplansorlocalanalysis

anddata.

2. Substitute high-quality attribute data where appropriate.

Forexample,aforestmayhaveextensiveProperlyFunction-

ingConditionsurveydatathatcouldbeusedtorateattributes

associatedwiththeRiparianVegetationConditionindicator.

Alternatively,theAlaskaRegion,maywishtosubstitute

riparianforestageclassstructureastheirindicatorofripar-

ianvegetationcondition.

3. Rate an attribute as Not Applicable.Forexample,aforest

lackingrangelandsandgrazinglandsmayexcluderangeland

vegetationfromtheirassessmentoftheterrestrialphysical

processcategory.ANot Applicable (N/A)ratingcanalso

beusedforindicatorsorattributesnotrelevantwithina

particulargeographicalcontext.Onlytwoindicators(Forest

CoverandRangelandVegetation)andtwoattributes(large

woodydebrisandmasswasting)mayberatedN/Asubject

toRegionalOversightTeamapproval.

Limitedattributeadjustmentsprovidetheflexibilityneededtoaccountforlocaldifferencesinindividualwatershedswhilemaintaininganacceptablelevelofregionalandnationalconsistency.Nationalconsistencyinscoringismaintainedbyretainingaconsistentsetofindicators,averagingattributescoreswithineachindicator,andweight-averagingindicatorscoresbyprocesscategory.NationalconsistencyismostimportantattheprocesscategorylevelbecauseeachforestIDteamevaluatesthesefundamentalecosystemprocesscategoriesinamannerappropriatetotheirgeographicsetting.

Weanticipatethattherewillbeinstances,orlocallyuniquecircumstances,wherethecomputedconditionratingmaynotaccuratelyreflecttrueon-the-groundconditions.Inthesecases,forestscanexercisean“overrideoption”andreplacethecomputedconditionratingwiththeconditionclassjudgedtobecorrect.Typically,theoverrideoptionwouldbeusedto

designateseverelyimpairedwatersheds.Exampleswheretheoverrideoptionmightbeappropriateincludesituationssuchas(1)acidstreamstotallydevoidofbiologicallife,(2)waterqualityimpairmentbecauseofchemicalcontamination,or(3)streamsthataretotallydewateredbydiversions.Inalloftheseexamples,theuplandareasmaybeinexcellentconditionbutthewaterbodyisclearlyimpaired.

IDteamsshouldusetheoverrideoptionjudiciouslyandrarely.ExercisingtheoverrideoptionwillrequirewrittendocumentationandapprovalfromtheRegionalOversightTeam.TheNationalOversightTeamwillreviewuseoftheoverrideoptionannuallytoensurethatitisbeingappliedinanappropriatemanner.

Classifying Individual Indicators

Eachindicatorattributereceivesarating.Theratingsareexpressionsofthe“best-fit”descriptoroftheattributefortheentire6th-levelwatershedbeingclassified.Intheabsenceofestablishednumericcriteriaformostoftheattributes,theboundariesbetweentheattributeconditionratingswereassignedbyresourcespecialistsworkingontheWatershedConditionAdvisoryTeamusingprofessionaljudgmentguidedbytheconceptualconditiondescriptionsbelow.

Condition Rating 1issynonymouswith“GOOD”condition.Itistheexpectedindicatorvalueinawatershedwithhighgeomorphic,hydrologic,andbioticintegrityrelativetonaturalpotentialcondition.Theratingsuggeststhatthewatershedisfunctioningproperlywithrespecttothatattribute.

Condition Rating 2issynonymouswith“FAIR”condition.Itistheexpectedindicatorvalueinawatershedwithmoderategeomorphic,hydrologic,andbioticintegrityrelativetonaturalpotentialcondition.Theratingsuggeststhatthewatershedisfunctioningatriskwithrespecttothatattribute.

Condition Rating 3issynonymouswith“POOR”condition.Itistheexpectedindicatorvalueinawatershedwithlowgeomorphic,hydrologic,andbioticintegrityrelativetonaturalpotentialcondition.Theratingsuggeststhatthewatershedisimpairedorfunctioningatunacceptableriskwithrespecttothatattribute.

Toconceptualizethis,thesuggestedapproachistoidentifytheupperandlowerboundsforeachindicatorattributetodifferenti-atethedesiredconditionsforthatattribute(highintegrityorhighfunctionalityrelativetositepotential)comparedwiththeunac-ceptableorimpairedfunctionalityoftheattributeinabsoluteterms.Conceptually,identifyingtheendpointsshouldbetheeasiesttasktoaccomplishinanyratingscheme.Theremaining

10 Watershed Condition Classification Technical Guide

middledesignationisthenidentifiedbydefaultandmaycon-tainawiderangeofconditions.Ratingsarescaledandevalu-atedinanabsolutesensefromfunctioningproperlytoimpairedfunctionandnotrelativetoamorelimitedrangeofattributeconditionsthatmayoccuronaparticularnationalforest.

Thecompletewatershedconditionrulesetforindicatorsandattributesiscontainedintheappendix.Foreachindicator,weprovideabriefstatementofpurpose,therulesettousetodeter-minetheconditionratingofeachattribute,additionalguidancepertainingtoratingtheindicatorattributes,definitions,abriefrationaleofhowtheindicatorrelatestowatershedcondition,andreferences.Carefulreadingofthe“AdditionalGuidance”sectionforeachindicatorisessentialforappropriateuseoftheruleset.

Theexamplebelowillustratestheprocessofscoringanindi-vidualindicatoronForestServicelands.TheexampleindicatorisRoadsandTrailsCondition.ThehypotheticalwatershedisintheupperMidwest,whichhasnounstablelandformssuscep-tibletomasswasting.Thewatershedisheavilyroaded,witharoaddensityof2.5mi/mi2.Roadsarewellmaintainedbutmorethan25percentarewithin100feetofwater.TheforestIDteamdecidesthatmasswastingisnotanissueinthiswatershedandassignedthefollowingratingstoroadcondition:

3. Theindicatorscoreswithineachecosystemprocesscategory

arethenaveragedtoarriveataprocesscategoryscore.

4. Theoverallwatershedconditionscoreiscomputedasa

weighted3averageofthefourprocesscategoryscores.

5. Thewatershedconditionscoresaretrackedtoonedecimal

pointandreportedasWatershedConditionClasses1,2,or3.

Class1=scoresof1.0to1.6,Class2=scoresfrom1.7to

2.2,andClass3=scoresfrom2.3to3.0.

6. AseparatescoringprocessisconductedforForestService

andnon-ForestServicelandswithinthewatershed.We

willreportresultsforForestServiceandnon-Forest

Servicelandsandawatershedcompositeoverallwatershed

conditionscore(areaweightedaverageofForestServiceand

non-ForestServicelands).

WewillassignconditionratingstoForestServiceownerships,privatelands,andthecompositewatershed.ThecompositescoreratesthewholewatershedandincludesFSandallotherownerships,whicharetypicallyprivateland.TheintentistodifferentiatewatershedconditionsattributabletoForestServicemanagementandproblemsthattheFScansolvefromthosethatareassociatedwithothers.WealsowishtosupporttheSecre-tary’scallforan“alllands”approachtoresourcemanagement.

Becausewefrequentlylackdataabouttheconditionofnon-ForestServicelands,asimplerapproachisappliedtotheseownerships.Wewillassignnon-ForestServicelandsasubjec-tiveratingonawhole-watershedbasis(i.e.,wewillnotscoreindividualindicatorsandattributes).Non-ForestServicelandswillberatedaseitherTHESAMEAS,BETTERTHAN,orPOORERTHANForestServicelandsinthewatershed.IfSAMEASisselected,wewillassignthenon-ForestServicelandsthesamenumericconditionscoreasForestServicelands.Ifnon-ForestServicelandsarenotthesameasForestServicelands,wewilldesignatethenon-ForestServicelandsassimplyClass1,Class2,orClass3basedonthebestavailableknowl-edge.Forestsareencouragedtoratenon-ForestServicelandsequaltoForestServicelandsifthetrueconditionisunknown.Forestsmayworkwithpartnergroupstoclassifynon-ForestServicelands,iftheywish.

NationalforestswillcompletetheclassificationprocessusingtheWatershedClassificationandAssessmentTrackingTool(WCATT),aWeb-basedapplicationdevelopedbythenaturalresourcemanagerprogramstaff.

Roads and trails attributes Rating Explanation

Openroaddensity 3 Poor(impairedfunction)Roadmaintenance 2 Fair(functioningatrisk)Proximitytowater 3 Poor(impairedfunction)Masswasting N/A N/A(thewatershedis

notsusceptibletomasswasting)

Indicator rating 2.7 Poor(impairedfunction)

3Weweightprocesscategoriestoreflecttheirrelativecontributiontowardwatershedconditionfromanationalperspective.Theaquaticphysicalandaquaticbiologicalcategoriesareweightedat30percenteachbecauseoftheirdirectimpacttoaquaticsystems(endpointindicators).Theterrestrialphysicalcategoryisweightedat30percentbecauseroadsaretypicallyoneofthehighestsourcesofimpacttowatershedcondition.Terrestrialbiologicalisweightedat10percentbecausetheseindicatorshaveindirectimpacttowatershedcondition.

Thecompleteclassificationprocessforeachwatershedisdescribedbelow:

1. Foreach6th-levelHUCwatershed,allattributesforeach

ofthe12indicatorsarescoredbytheforestIDteamas

1(Good—FunctioningProperly),2(Fair—Functioningat

Risk),or3(Poor—ImpairedFunction)usingwrittencriteria

andrulesetsandthebestavailabledataandprofessional

judgment.

2. Theattributescoresforeachindicatoraresummedand

averagedtoproduceanindicatorscore.

Watershed Condition Classification Technical Guide 11

Regional and National Oversight

ThisclassificationprocessreliesonWashingtonOfficeandregionalofficeoversighttoprovideforflexibilityandconsis-tencyinapplicationamongnationalforests.TheWashingtonOfficetechnicaloversightrolewillbetheprimaryresponsibil-ityoftheWatershed,Fish,Wildlife,Air,andRarePlantspro-gramstaff,whowillbeassistedbymembersoftheWatershedConditionAdvisoryTeambecauseoftheinterdisciplinarynatureoftheclassificationprocess.Advisoryteammemberswillprovidetechnicalinput,expertise,andadviceregardingtherulesetsaffectingtheirprogramareas.

TheWashingtonOfficewillcoordinateanannualmeetingtodiscusstechnicalclassificationissuesandresolvedisputes.Thiswillinclude,asaminimum,areviewoftheextenttowhichregionspermitteduseof“NotApplicable”andthe“Override”options.

Nationaloversightrolesandresponsibilitiesinclude—

1. Managingthenationalchangeprocessfortheclassification

system.

2. Ensuringconsistencyofclassificationamongtheregions.

3. ProvidingandsupportingdevelopmentofnationalGISdata

productsforuseinclassification.

4. Providingdirectionandresolvingdisputesbetweenregions.

Regionswillprovidethefirstlineofqualitycontrolandqualityassuranceintheclassificationprocess.Regionsareencouragedtoworkcollectivelywiththeirforeststodiscussinterpretationsoftherule-setwordingtoachieveasmuchconsistencyaspracticableamongforestunits.Regionsmaywishtodevelopregionaladditionalguidancesupplementstothisguidethatdocumentlocalapplication,datasources,andinterpretations.ThemembershipofRegionalOfficeOversightTeamsislefttothediscretionoftheregions.

Regionaloversightrolesandresponsibilitiesinclude—

1. Ensuringconsistencyofclassificationamongtheforestsin

theregion.

2. EnsuringthatforestsuseIDteamstoperformclassifications.

3. Approvinguseormodificationtoattributedefaultvalue,

substitutinghigh-qualityattributedataoralternative

wordingforattributes,andtheuseofthe“NotApplicable”

and“Override”options.

4. Coordinatingclassificationwithadjoiningregionsand

nationalforests.

5. ConsultingwiththeWashingtonOfficewhensignificant

modificationsareapproved.

Procedural Guidance

Wespecificallydesignedthiswatershedclassificationap-proachasarapid,coarsefilter,officeassessmentprocesstobecompletedbyaforestIDteamovera2-weektimeperiodusingprofessionaljudgmentrelyingonexistinginformation,maps,andGIScoverage.

Preparation Checklist1. IdentifythecompositionandleadershipoftheforestID

teamthatwillclassifywatershedcondition.Consider

havingsomeonefromtheforestlandandresourceplanning

staffastheteamleader.Theteamshouldincludetechnical

specialistswithexpertiseinthe12conditionindicator

programareas.Typically,aforestIDteamwilldothe

classification,butforestsmayincludedistrictstaffs.

Specialistswithlongtenureandfamiliaritywiththeforest

canproveespeciallyvaluabletotheteambecauseofthe

breadthofexperiencetheyprovide.

2. Designateatechnicalleadforeachofthewatershed

conditionindicators.Forexample,ahydrologistmightlead

water-qualityandwater-quantityassessments.

3. Haveeachspecialistreviewtherulesetandadditionalguid-

anceforhisorherindicatortohelphimorherunderstand

thetypesofdataandinformationthatareusefultoratethe

attributesforthatindicator.

4. Overa1-weekperiod,haveeachspecialistassemblethe

availableinformationinpreparationfortheclassification

process.Thetypesofinformationwillvarybydiscipline

andmayincludeforestinventoryandmonitoringreports,

interpretedmapproducts,orassessmentsdonebyothers.

5. ArrangeforsupportfromforestGISspecialistswhocan

provideanalysissupport(e.g.,roaddensity,androad

proximitytowateranalysis)thatsummarizesdataby6th-

levelHUCs.ObtainthemostcurrentnationalGISdata

12 Watershed Condition Classification Technical Guide

coveragethatisrelevanttotheanalysissuchas303(d)

impairedstreams,FireRegimeConditionClass,andinsect

anddiseasemaps,aswellaslocalGISdatasuchasroads

andtrails,damsanddiversions,activeandabandonedmines,

forestcover,recentlargefires,etc.

6. Haveeachtechnicalspecialistdevelopapreliminaryrating

forhisorherindicatorforeach6th-levelHUCthatcanbe

broughtforwardtotheIDteamfordiscussion.

Classification Process Checklist1. Allowatleast1week(5days)fortheIDteamtocomplete

theclassificationprocess.

2. ConvenetheIDteamanddiscusstherulesetforclassifica-

tionwiththeintentofachievingacommonunderstanding.

Atthistime,theteamshouldalsodiscussandreachagree-

mentonanyindicatorsand/orattributes(forestcover,range-

lands,masswasting,largewoodydebris)thattheymaywish

todesignateas“NotApplicable”totheparticularforest,any

proposedchangestoattributethresholds(e.g.,roaddensity),

orsubstitutionofalternativeattributewordingforsomein-

dicators.Beforetheactualmeeting,discussandobtainap-

provalfromyourRegionalOversightTeam,ifnecessary.

3. DetermineratingsusinganinteractiveIDteamprocess.In-

dividualspecialistsmayoffertheirpreliminaryclassification

ofanindicatorratingscore,buttheteamshouldpoolitscol-

lectiveknowledgetoarriveatthefinalrating.Theprocess

willgoslowlyforthefirstfewwatershedsasindividualsbe-

gintogainacommonunderstandingoftheratingapproach,

anditmaytakeseveralhourstoclassifythefirstwatershed.

Considerbeginningwithawatershedknowntobeingood

conditionandthenrateoneknowntobeinpoorconditionto

helpprovideperspectiveontherangeofexistingconditions.

Theprocesswillspeedupnoticeablyafterseveraliterations.

4. UseTomBrown’snationalwatershedrisk-ratingmaps

(BrownandFroemke2010)astheforest’sbeginningpoint

forclassifyingwatershedcondition.Thenationalrating

willprovideperspectiveregardingthespatialdistribution

ofwatershedconditionandillustratehowthelocalforest

ratingsfitwithinthecontextofnationalratings.Remember

thatBrownandFroemke’sworkassessesriskandisbased

onbroad-scale5th-levelHUCsusingnationallyconsistent

coarse-scaledatathatarenotparticularlyapplicabletoforest

managementactivitiessotheymaynotmatchwellwithyour

localconditions.

5. UsetheWatershedConditionClassificationTool(WCATT)

torecordratingsandcapturenotes.DisplaytheWCATT

formonalargescreen.Asecondlargescreendisplaymay

beusefultodisplayotherrelevantGISdatalayers.

Annual and Periodic Reassessments1. Forestswillneedtoupdatewatershedconditionclassifications

eachyeartotrackchangesinwatershedconditionclassfor

performanceaccountability.Concentrateonreassessing

thosewatershedsthatareknownorsuspectedtohavechanged

significantlyfromthepreviousyear,focusingon—

a. Prioritywatershedswhereimprovementactivitieshavebeenimplemented.

b. Watershedsthathaveexperiencedlargefiressincethepreviousyear.

c. Watershedsthathaveexperiencedextensivenaturaldisturbance.Tofacilitateannualupdates,theWCATThasbeendesignedtorollforwardthepreviousyear’sclassificationdataintothecurrentyearandforestswillneedtomodifyonlythosewatershedsthathavechanged.

2. Conductamorerigorousclassificationofallwatershedsevery5years,orsoonerifconditionswarrant.Inallcases,useanIDteamtoperformannualandperiodicreassessments.

Watershed Condition Classification Technical Guide 13

References

Bailey,R.G.1995.DescriptionoftheecoregionsoftheUnitedStates.2nded.,rev.Misc.Pub.No.1391.Washington,DC:U.S.DepartmentofAgriculture,ForestService.77p.http://www.fs.fed.us/land/ecosysmgmt/ecoreg1_home.html.(24March2011).

Brown,T.C.;Froemke,P.2010.Riskofimpairedconditionofwatershedscontainingnationalforestlands.Gen.Tech.Rep.RMRS-GTR-251.FortCollins,CO:U.S.DepartmentofAgri-culture,ForestService,RockyMountainResearchStation.57p.

Heller,D.2004.Aparadigmshiftinwatershedrestoration.ForumforResearchandExtensioninNaturalResources(FORREX),StreamlineWatershedManagementBulletin.8(1):21–23.http://www.forrex.org/streamline/ISS28/streamline_vol8_no1_art7.pdf.(25March2011).

Karr,J.R.;Chu,L.W.1999.Restoringlifeinrunningrivers:betterbiologicalmonitoring.Washington,DC:IslandPress.206p.

Lackey,R.T.2001.Values,policy,andecosystemhealth.Bioscience.51:437–443.

Mulder,B.;Noon,B.R.;Spies,T.A.,etal.1999.ThestrategyanddesignoftheeffectivenessmonitoringprogramfortheNorthwestForestPlan.Gen.Tech.Rep.PNW-GTR-437.Washington,DC:U.S.DepartmentofAgriculture,ForestService.

NationalResearchCouncil.1999.NewstrategiesforAmerica’swatersheds.CommitteeonWatershedManagement.Washing-ton,DC:NationalAcademyPress.328p.

Newbold,S.C.2002.Integratedmodelingforwatershedman-agement:multipleobjectivesandspatialeffects.JournaloftheAmericanWaterResourcesAssociation.38(2):341–353.

Ogg,C.W.;Keith,G.A.2002.NewFederalsupportforprioritywatershedmanagementneeds.JournaloftheAmericanWaterResourcesAssociation.38(2):577–586.

Regier,H.A.1993.Thenotionofnaturalandculturalintegrity.In:Woodley,S.J.;Kay,J.J.;Francis,G.,eds.Ecologicalintegrityandthemanagementofecosystems.DelrayBeach,FL:St.LuciePress:3–18.

Reid,L.M.;Ziemer,R.R.;Furniss,M.J.1996.Watershedanal-ysisonFederallandsofthePacificNorthwest.HumboldtInter-

agencyWatershedAnalysisCenterWorkshop.McKinleyville,CA.http://www.fs.fed.us/psw/rsl/projects/water/1WhatisWA.htm.(23August2010).

Smith,R.D.;Klimas,C.V.;Kleiss,B.A.2005.Awatershedassessmenttoolforevaluatingecologicalcondition,proposedimpacts,andrestorationpotentialatmultiplescales.SWWRPTech.NotesCollection.ERDCTNSWWRP-05-3.Vicksburg,MS:U.S.ArmyEngineerResearchandDevelopmentCenter.

Suter,G.W.1993.Critiqueofecosystemhealthconceptsandindexes.EnvironmentalToxicologyandChemistry.12:1533–1539.

U.S.DepartmentofAgriculture(USDA).2010.StrategicplanFY2010–2015.Washington,DC:U.S.DepartmentofAgricul-ture.50p.http://www.ocfo.usda.gov/usdasp/sp2010/sp2010.pdf.(4August2010).

U.S.DepartmentofAgriculture(USDA).2004.Watershedprotectionandmanagement.FSM2520.Washington,DC:U.S.DepartmentofAgriculture,ForestService.44p.

U.S.DepartmentofAgriculture(USDA),ForestService.2007(June15).Anevaluationofwatershedconditionapproachespotentiallysuitableforcharacterizingnationalwatershedcondition.WatershedConditionCoreTeam.Washington,DC:Watershed,Fish,Wildlife,Air,andRarePlantsProgram.22p.

U.S.DepartmentofAgriculture/U.S.DepartmentoftheInterior(DOI).1998.Aframeworkforanalyzingthehydrologiccondi-tionofwatersheds.BLMTech.Note405.Washington,DC:U.S.DepartmentofAgriculture,ForestService;U.S.Depart-mentoftheInterior,BureauofLandManagement.37p.

U.S.OfficeofManagementandBudget(OMB).2006.ForestServicewatershedprogramassessment.Washington,DC:U.S.OfficeofManagementandBudget.http://www.whitehouse.gov/omb/expectmore/summary/10003029.2006.html.(4August2010).

Williams,J.E.;Wood,C.A.;Dombeck,M.P.,eds.1997.Watershedrestoration:principlesandpractices.Bethesda,MD:AmericanFisheriesSociety.

Yount,J.D.;Niemi,G.J.1990.Recoveryofloticcommunitiesandecosystemsfromdisturbance—anarrativecasestudy.EnvironmentalManagement.14:547–570.

14 Watershed Condition Classification Technical Guide

Appendix. Rule Set for Watershed Condition Indicators and Attributes

1. Water Quality Condition

PurposeThisindicatoraddressestheexpressedalterationofphysical,biological,orchemicalimpactstowaterquality.

Condition Rating Rule Set1. Water Quality

Condition Indicator

Minimaltonoimpairmenttobeneficialusesofthewaterbodiesinthewatershed.

Minorimpairmenttobeneficialusesofthewaterbodiesinthewatershed.

Significantimpairmenttobeneficialusesofthewaterbodiesinthewatershed.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Impaired waters (303(d) listed)

NoState-listedimpairedorthreatenedwaterbodies.

Lessthan10percentofthestreammilesorlakeareaarelistedonthe303(d)or305(b)listsandarenotsupportingbeneficialuses.

Morethan10percentofthestreammilesorlakeareasarewaterqualitylimitedandarenotfullysupportingbeneficialusesasidentifiedbyaStatewaterqualityagencyintegratedreport(303(d)&305(b)).

Water quality problems (not listed)

Thewatershedhasminorornowaterqualityproblems.

Forexample,nodocumentedevidenceofexcessivesediment,nutrients,chemicalpollutionorotherwaterqualityissuesabovenaturalorbackgroundlevels;noconsump-tionadvisoriesorcontaminationfromabandonedoractivemines;littleornoevidenceofacidification,toxicity,oreutrophicationbecauseofatmos-phericdeposition(see“AdditionalGuidance”relatedtominesandatmosphericdeposition).

Thewatershedhasmoderatewaterqualityproblems.

Forexample,consumptionadvisoriesinlocalizedareas;minorcontamina-tionfromactiveorabandonedmines;localizedincidenceofacceleratedsediment,nutrients,chemicals,orinfrequent,documentedincidentsofcontaminationofpublicdrinkingwatersources.Moderateevidenceofacidification,eutrophication,ortoxic-itybecauseofatmosphericdeposition(see“AdditionalGuidance”elatedtominesandatmosphericdeposition).

Thewatershedhasextensivewaterqualityproblems.

Forexample,consumptionadviso-riesoverextendedareas;exces-sivesediment,nutrients,chemicals;extensivecontaminationfromactiveorabandonedmines;orfrequentincidentsofcontaminationofpublicdrinkingwatersources.Strongevi-denceofacidification,eutrophication,ortoxicitybecauseofatmosphericdeposition(see“AdditionalGuidance”relatedtominesandatmosphericdeposition).

Additional Guidance1. Waterqualityshouldaddressbothsurfaceandgroundwater.

2. Considerthemainstreamsystemsasindicativeofthewhole

drainagesystemwaterquality,(i.e.,thecompositerepresen-

tativeoftheconditionofallthestreamsinthewatershed).

3. Considerchronicwaterqualitydeteriorationandshort-term

effectsinlightofoverallsustainedeffectstobeneficialuses

(i.e.,bothcouldbeirreversibleorirretrievable,butarenot

alwaysso).

4. Considermonitoringandinventoryinformationavailable

frominternalandexternalsources.

5. BecauseStatewaterqualityagencyintegratedreports

(303(d)and305(b))aresubmittedonlyevery2years,use

thelatestandbestavailableinformationaboutthestatusof

impairedwaters.

6. Atmosphericdepositioncanaffectwatershedsbycausing

acidification(sulfurandnitrogen),eutrophication(nitrogen),

ortoxicity(mercury).Wecanusewaterchemistryorcritical

loadstoclassifyconditions.Anumberofsourcesofwater

Watershed Condition Classification Technical Guide 15

chemistrydataareavailable(EPA2006,2009)andhave

beencompiledintoanationaldatabase(USDAForestSer-

vice2009).Themostcurrentguidanceonusingchemistry

andcriticalloadsforclassificationisavailableathttp://

www.fs.fed.us/air.

a. Forareaswhereacidificationisthemajorconcern,usethefollowingguidanceforclassification:

i. ConditionRating1.Allwatersamplesitesfromthemostsensitivewaterbodyinthewatershed(oranearbywatershedwithsimilarlithology)showanacidneutralizingcapacity(ANC)of50micro-equivalentsperliter(ueq/L)orgreater.

ii. ConditionRating2.Oneormorewatersamplesitesfromthemostsensitivewaterbodyinthewatershed(oranearbywatershedwithsimilarlithology)showanANCofgreaterthan20ueq/Landlessthan50ueq/L.

iii. ConditionRating3.Oneormorewatersamplesitesfromthemostsensitivewaterbodyinthewatershed(oranearbywatershedwithsimilarlithology)showanANCof20ueq/Lorless.

iv. Waterbodiesthatarenaturallyacidic(DOC>5mg/L)orlowinbufferingcapacitybecauseoftheinfluenceofwetlandsorlocalgeologyshouldbeassignedConditionRating1.

v. WhereANCdataislacking,considerratingtheattributeusingnationaldepositionmapsandlithol-ogytofindsimilarwatershedswhereANCdataisavailable.

b. Inareaswhereeutrophication(nitrogen)istheprimaryproblem,appropriateclassificationthresh-oldssetbytheU.S.EnvironmentalProtectionAgency(EPA)(2010)foreachregioncanbefoundatwww.fs.fed.us/air.

c. Whereaquaticcriticalloadsforsulfurornitrogenareavailable(suchasSullivanetal.2007),comparecurrentdepositionwiththecriticalloadandclassifyasfollows:

i. ConditionRating1.Sulfurand/ornitrogendeposi-tionismorethan10percentbelowtheaquaticcriticalload.

ii. ConditionRating2.Depositionis0–10percentbelowtheaquaticcriticalload.

iii. ConditionRating3.Depositionisabovetheaquaticcriticalload.

d. Forratingwaterqualityeffectsfromabandonedandactivemines,usethefollowingguidanceforclassifica-tion:

i. ConditionRating1.Abandonedandactivemineswithnoassociatedevidenceofwaterqualitycontamination.

ii. ConditionRating2.Abandonedoractiveminesthathavedocumentedevidenceofsomeadverseeffectstosurfaceorgroundwaterquality.

iii. ConditionRating3.Abandonedoractiveminesthathavebeendeterminedtobeadverselyaffectingsurfaceorgroundwaterasaresultofwaterqualitysampling.

Definitionsabandoned mines.Facilities,equipment,material,andassoci-atedsurfacedisturbanceresultingfrompastmineralexplorationordevelopment,forwhichthereexistsnocurrentauthorizationandnoevidenceofcurrentowner/operator.

acid neutralizing capacity.Ameasureofawaterbody’sabil-itytobufferacidcompounds,definedasthedifferencebetweencationsofstrongbasesandanionsofstrongacids.

aquatic organism consumption advisories.AdvisoriesissuedbytheEPAorbyStatenaturalresourceorotheragenciesthatadvisethepublictolimitoravoidconsumptionofcertainfish,shellfish,mussels,crayfish,orotheraquaticorganismsbecauseofpollution.Theseadvisoriesinformthepublicthathighconcentrationsofchemicalcontaminantshavebeenfoundinlocalfishandaquaticspeciesandincluderecommendationstolimitoravoidconsumingcertainfishandwildlifespeciesfromspecificwaterbodies.

critical load. Theamountofdepositionofanatmosphericpol-lutantbelowwhichnoharmfulecologicaleffectsoccur.Wecancalculatecriticalloadsforbothacidityandnutrientnitrogeninterrestrialandaquaticsystems.

designated beneficial uses.Thedesirableusesthatwaterqualityshouldsupport.Beneficialusesincludedrinkingwatersupply,primarycontactrecreation(suchasswimming),andaquaticlifesupport.Eachdesignatedusehasauniquesetofwaterqualityrequirementsorcriteriathatmustbemetfortheusetobesupported.Awaterbodymayhavemultiplebeneficial

16 Watershed Condition Classification Technical Guide

uses.DesignatedbeneficialusesareidentifiedbyeachStatewaterqualitymanagementagency.

eutrophication.Increasedgrowthofbiotaandarateofproductivitythatisacceleratedovertheratethatwouldhaveoccurrednaturally.

impaired or threatened water body. Anywaterbodythatislistedaccordingtosection303(d)oftheCleanWaterAct.The303(d)listisacomprehensivepublicrecordofallimpairedorthreatenedwaterbodies,regardlessofthecauseorsourceoftheimpairmentorthreat.Awaterbodyisconsideredimpairedwhenitdoesnotattainthewaterqualitystandardsneededtosupportitsdesignateduses.Standardsmaybeviolatedbecauseofanindividualpollutant,multiplepollutants,thermalpollution,oranunknowncauseofimpairment.Awaterbodyisconsideredthreatenedifitcurrentlyattainswaterqualitystandards,butispredictedtoviolatestandardsbythetimethenext303(d)listissubmittedtoEPA.ThisdeterminationismadebyindividualStatewaterqualitymanagementagencies.

lithology.Thegrossphysicalcharacterofarockorrockformationdescribedintermsofitsstructure,color,mineralcomposition,grainsize,andarrangementofitscomponentparts;allthosevisiblefeaturesthatintheaggregateimpartindividualitytoarockformation.

Rationale for IndicatorNonpointsourcepollution,definedaswaterpollutionthatcomesfrommanydifferentsourcesinawatershed,isthelead-ingremainingcauseofwaterqualityproblemsintheUnitedStates.Pollutedrunofffromagriculture,silviculturalactivities,andatmosphericdepositionareamongtheleadingcausesofnonpointsourcepollutionproblems(EPA2007).Becausenonpointsourcepollutantsareprimarilyderivedfromrunoffgeneratedfromwatershedsurfaces,watershedconditionandwaterqualityarecloselylinked.Theeffectsofnonpointsource

pollutantsonspecificwatersvaryandmaynotalwaysbefullyassessed.Wedoknow,however,thatthesepollutantshaveharmfuleffectsondrinkingwatersupplies,recreation,fisheries,andwildlife.InarecentreportbyEPA(2005),45percentofthewaterbodiesassessedbyStatewaterqualityagencieswerereportedasimpairedornotcleanenoughtosupporttheirdesignateduses,suchasfishingandswimming.

Indicator ReferencesSullivan,T.J.;Cosby,B.J.;Snyder,K.U.,etal2007.Model-basedassessmentoftheeffectsofacidicdepositiononsensitivewatershedresourcesinthenationalforestsofNorthCarolina,Tennessee,andSouthCarolina.http://www.esenvironmental.com/PDF/north_carolina_modeling.pdf.(24March2011).

U.S.DepartmentofAgriculture(USDA),ForestService.2009.NRISAirModule.http://www.fs.fed.us/air/.(ForestServiceIntranet;accessibleonlybyagencyemployees.)

U.S.EnvironmentalProtectionAgency(EPA).2006.Nationalstreamassessment,wadeablestreamsassessment:acol-laborativesurveyoftheNation’sstreams.EPA841-B-06-002.Washington,DC:EPA.http://water.epa.gov/type/rsl/monitoring/streamsurvey/index.cfm.(24March2011).

U.S.EnvironmentalProtectionAgency(EPA).2007(October).Nationalwaterqualityinventory:reporttoCongress.2002Re-portingCycle.Doc.No.EPA-841-R-07-001.Washington,DC:EPA.http://www.epa.gov/owow/305b/2002report/re-port2002305b.pdf.(24March2011).

U.S.EnvironmentalProtectionAgency(EPA).2010.Nationallakesassessment:acollaborativesurveyoftheNation’slakes. EPA841-R-09-001.Washington,DC:EPA,OfficeofWaterandOfficeofResearchandDevelopment.http://water.epa.gov/type/lakes/lakessurvey_index.cfm.(24March2011).

Watershed Condition Classification Technical Guide 17

2. Water Quantity Condition

PurposeThisindicatoraddresseschangestothenaturalflowregimewithrespecttothemagnitude,duration,ortimingofnaturalstreamflowhydrographs.

Condition Rating Rule Set2. Water

Quantity Condition Indicator

Streamhydrographshavenoorminordeparturefromnaturalconditions.

Streamhydrographshavemoderaterecognizeddeparturesfromnaturalconditionspartoftheyear.

Themagnitude,duration,and/ortimingofannualextremeflows(lowand/orhigh)significantlydepartfromthenaturalhydrograph.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Flow characteristics

Thewatershedlackssignificantman-madereservoirs,dams,ordiversionfacilities.Thewatershedhasprimarilyfree-flowingriversandstreams,unmodifiedlakes,andnoorlimitedgroundwaterwithdrawals.Streamhydrographshavenoorminoralterationsfromnatural(unalteredbyanthropogenicactions)conditions.

Thewatershedcontainsdamsanddiversionfacilitiesthatareoperatedtopartiallymimicnaturalhydrographs.Adeparturefromanaturalhydro-graphoccursduringperiodsotherthanextremeflows(lowsorhighs).Peaksandbaseflowsaremaintainedbutchangestothetiming,rateofchange,and/ordurationofmid-rangedischargesoccur.

Damsanddiversionfacilitiesareoperatedsothattheyfailtomimicnaturalhydrographs.Themagnitude,duration,and/ortimingofannualex-tremeflows(loworhigh)significantlydepartfromthenaturalhydrograph.Thetimingandtherateofchangeinflowsoftendonotcorrelatewithexpectedseasonalchanges.

Additional Guidance1. Compareexistingconditionswithhistoricconditionsand

referenceconditions.Thenaturalhydrographbaselineis

streamflowsunalteredbyanthropogenicactions.Emphasisis

onthepermanent,long-termeffectsofwaterdiversionsand

watercontrolfeaturesratherthanonflowchangescausedby

vegetationmanagement.

2. Considerboththemainstreamandtributarieswhenevaluat-

ingchangestoflowhydrology.Inmostcases,dependingon

theirextentandmagnitude,cumulativechangesobservable

inthemainstreamstreamwillreflectflowchangesto

tributaries.

3. Concentrateevaluationoneffectstoperennial,mainstream

streamsratherthanheadwatertributariesorintermittent

flows,exceptinaridorsemiaridregionswhereintermit-

tentorinterruptedflowsareimportantcomponentsofthe

hydrograph.

4. Theeffectonwaterquantityconditionshouldbesignificant

enoughsothatitresultsinmeasurablechangestothehydro-

graph.Forexample,wateryieldchangesresultingfromveg-

etationmanagementwouldgenerallynotbeincludedunless

thechangewasextensiveandprolonged(e.g.,extensive

deforestation,urbanization,wildfire,dams,diversions,

disease,insects,orotherdisturbancesthatsignificantlyand

persistentlyalterrunoff).

5. Theextentofgroundwaterpumpingwouldgenerallyneedto

bedevelopedforlarge-scaleindustrialorlargemunicipality

usetomeasurablyinfluencestreamflow.Ingeneral,house-

holdgroundwaterusefordomesticpurposeswillnothave

asignificantinfluenceonwaterquantityunlessawatershed

wasdevelopedtosuchanextentthatitwasclosedtoaddi-

tionalwelldevelopmentsbyStatewaterresourceauthorities.

6. Considertheeffectsoftransbasindiversionswithrespectto

boththedonorandreceivingstreams.

Definitionsnatural hydrograph. Ahydrographrepresentingthenaturalseasonalflowsofariverwithoutthemoderatinginfluenceofhuman-createdfeatures(e.g.,damsandcanals)ormanagementactions.

Rationale for IndicatorWatershedconditionhaslargeroletoplayinthemagnitude,frequency,andtimingofrunofffromawatershed.Thequantityandtimingofstreamflowarecriticalcomponentsofwater

18 Watershed Condition Classification Technical Guide

supply,waterquality,andtheecologicalintegrityofriversystems(Hilletal.1991).Theeffectsofhumanalterationonthenaturalflowregimesofriversandecologicalprocessesarenowreasonablywellunderstood(Poffetal.1997).Modifyingnaturalhydrologicprocessesdisruptsthedynamicequilibriumbetweenthemovementofwaterandthemovementofsedimentthatexistsinfree-flowingrivers(DunneandLeopold1978).Thisdisruptionaltersphysicalhabitatcharacteristics,includingwatertemperature,oxygencontent,waterchemistry,andsubstratecomposition,andadverselychangesthecomposi-tion,structure,orfunctionofaquatic,riparian,andwetlandecosystems(Bainetal.1988).Theresultisthatmanyriversnolongersupportsociallyvaluednativespeciesorsustainhealthyecosystems(NRC1992).

Indicator ReferencesBain,M.B.;Finn,J.T.;Booke,H.E.1988.Streamflowregula-tionandfishcommunitystructure.Ecology.69:382–392.

Dunne,T.;Leopold,L.B.1978.Waterinenvironmentalplan-ning.SanFrancisco:W.H.Freeman.818p.

Hill,M.T.;Platts,W.S.;Beschta,R.L.1991.Ecologicalandgeomorphologicalconceptsforinstreamandout-of-channelflowrequirements.Rivers.2:198–210.

NationalResearchCouncil(NRC).1992.Restorationofaquaticsystems:science,technology,andpublicpolicy.Washington,DC:NationalAcademyPress.576p.

Poff,N.L.;Allan,J.D.;Bain,M.B.,etal.1997.Thenaturalflowregime:aparadigmforriverconservationandrestoration.BioScience.47(11):769–784.

Watershed Condition Classification Technical Guide 19

3. Aquatic Habitat Condition

PurposeThisindicatoraddressesaquatichabitatconditionwithrespecttohabitatfragmentation,largewoodydebris,andchannelshapeandfunction.

Condition Rating Rule Set3. Aquatic

Habitat Condition Indicator

Thewatershedsupportslargecontinuousblocksofhigh-qualityaquatichabitatandhigh-qualitystreamchannelconditions.

Thewatershedsupportsmediumtosmallblocksofcontiguoushabitat.Somehigh-qualityaquatichabitatisavailable,butstreamchannelconditionsshowsignsofbeingdegraded.

Thewatershedsupportssmallamountsofcontinuoushigh-qualityaquatichabitat.Moststreamchannelconditionsshowevidenceofbeingdegradedbydisturbance.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Habitat fragmentation (including aquatic organism passage)

Habitatfragmentationisnotaseriousconcern(morethan95percentofhistoricaquatichabitatsarestillcon-nected).

Aquatichabitatfragmentationisincreasingbecauseoftemperature,aquaticorganismpassageblockages,ordewatering(only25to95percentofthehistoricaquatichabitatsarestillconnected).

Aquatichabitatfragmentationbe-causeoftemperature,blockages,ordewateringisaseriousconcern(lessthan25percentofthehistoricaquatichabitatsstillconnected).

Large woody debris

Inaquaticandripariansystemsthatevolvedwithwoodnearthestreams,largewoodydebrisispresentandcontinuestoberecruitedintothesystematnearnaturalrates.

Inaquaticandripariansystemsthatevolvedwithwood,largewoodydebrisispresentbutisrecruitedintothesystematlessthannaturalratesbecauseofriparianmanagementactivities.

Inasystemthatshouldcontainlargewoodasanecosystemcomponent,woodislackingresultinginpoorriparianoraquatichabitatconditionsincludingbankdestabilization,inad-equatepoolformation,andmicrocli-matemaintenance.

Channel shape and function

Channelwidth-to-depthratiosexhibittherangeofconditionsexpectedintheabsenceofhumaninfluence.Lessthan5percentofthestreamchannelsshowsignsofwidening.Channelsareverticallystable,withisolatedloca-tionsofaggradationordegradation,whichwouldbeexpectedinnear-naturalconditions.Thedistributionofchannelswithfloodplainconnectivityisclosetothatfoundinreferencewa-tershedsofsimilarsizeandgeology.

Channelwidth-to-depthandverticalstabilityaremaintainedexceptwhereriparianvegetationhasbeendis-turbed.Between5and25percentofthestreamchannelhaveseenanin-creaseinwidth-to-depthratios.Chan-neldegradationand/oraggradationareevidentbutlimitedtorelativelysmallsectionsofthechannelnetwork.Thereisevidenceofdowncuttingtotheextentthatsomestreamchan-nelsarenolongerconnectedtotheirfloodplain.

Morethan25percentofchannelshavewidth-to-depthratiosgreaterthanexpectedundernear-naturalconditions.Thesizeandextentofgulliedsectionsofchannelsareextensive,currentlyincreasing,orhaveincreasedrecently.Manystreambanksshowsignsofactiveerosionabovethatwhichisexpectednaturally.Channeldegradationand/oraggradationareevidentandwide-spreadbecauseofunstablestream-bedsandbanks.Many(morethan50percent)ofthestreamchannelsaredisconnectedfromtheirfloodplainorarebraidedchannelsbecauseofincreasedsedimentloads.

Additional Guidance1. Ifforestplanaquatichabitatdirectionexistsforhabitat

fragmentation,largewood,orchannelshapeandfunction,

usethelocalthresholdsderivedfromforestplanstandards

andguidelinestodeterminetheappropriateratingforthe

attributes.

2. Thefocusofthisevaluationsshouldbeonfishbearing

channelslowerinthewatershedthataretypicallyresponse

reaches(<3percentgradient).Considerthelengthofthese

reachesinthewatershed,andestimatethelengthofchannel

thatmeetsthecriteriafortheclass.

3. Largewoodydebris.RatethisattributeNotApplicable

(N/A)iftheaquaticandripariansystemsinthewatershed

20 Watershed Condition Classification Technical Guide

evolvedwithoutwoodandifthepresenceofwoodisnotan

importantcomponentoftheaquaticecosystem.Theuseof

N/Awilllikelybelimitedtowesternrangelandwatersheds.

4. Inaquatichabitatslackingaquaticbiotaand/orpermanent

habitat(e.g.,someSouthwestdesertstreams),evaluate

conditionswithrespecttowhatyouwouldexpectedtobe

presentundernaturalconditions,orabsenthuman-induced

impacts.

Definitionsaquatic habitat fragmentation. Habitatfragmentationoccurswhenalargeregionofhabitathasbeendegradedorfragmentedintoacollectionofsmallerpatchesofnonconnectedhabitat.Majorcausesofaquatichabitatfragmentationaredams,diver-sions,mines,roads,inadequateculverts,andincreasedstreamtemperaturesthatpreventfishfrommovingfreelythroughoutanaquaticsystem.

floodplain connectivity.Inchannelswithexistingorhistoricfloodplains,floodplainconnectivityreferstotheabilityofflowsgreaterthanbankfulltooverflowontothevegetatedfloodplainwithoutacceleratedimpacttostreambanks.Flood-plainconnectivitymaybelostthroughtheconstructionoflevees,orthroughthedowncuttingofchannelsbecauseofimproperroadlocationandconstruction,overgrazing,storagedams,orincreasedfloworsediment.Incisedchannelslackfloodplainconnectivity.

response channel reaches.Lowgradient(ingeneral,lessthan3percent)transport-limitedchannelsinwhichsignificantmorphologicadjustmentoccursinresponsetoincreasedsedi-mentsupplyasdefinedbyMontgomeryandBuffington(1993).ResponsechannelsgenerallycorrespondtoRosgenC,D,E,andFchanneltypes(Rosgen1996).Responsereachesareevaluatedbecausetheyarethemostsusceptibletochangefromdisturbance.

Rationale for IndicatorWatershedsingoodconditiontendtoretainmostoftheirnatu-ralheterogeneityandcomplexitysuchaspreservingthelateral,

longitudinal,andverticalconnectionsbetweensystemcompo-nentsaswellasthenaturalspatialandtemporalvariabilityofthesecomponents(Naimanetal.1992).Floodplainconnectivitydemonstratesmaintenanceoftheverticalcomponentofstreamchannelsandprovidesforoff-channelhabitatamongotherfeatures.Habitatfragmentationevaluatesthelongitudinalcom-ponentofhealthysystems.Aquatichabitatfragmentationbyfishpassageblockages,dewatering,ortemperatureincreases,alongwithsimplificationfromactivitiesincludingchanneliza-tion,channelbedsedimentation,woodydebrisremoval,andflowregulation,resultsinlossofdiversitywithinandamongnativefishspecies(Leeetal.1997).Maintainingheterogeneousandcomplexaquaticorganismhabitatatmultiplescalesisrecognizedasanimportantinfluenceonspeciesdiversityandecosystemstability(Sedelletal.1990).

Indicator ReferencesLee,D.C.,etal.1997.AnassessmentofecosystemcomponentsintheInteriorColumbiaBasinandportionsoftheKlamathandGreatBasin.Broadscaleassessmentofaquaticspeciesandhabitats.Gen.Tech.Rep.PNW-GTR-405.Portland,OR:U.S.DepartmentofAgriculture,ForestService.Vol.3.

Montgomery,D.R.;Buffington,J.M.1993.Channelclassifica-tion,predictionofchannelresponse,andassessmentofchannelcondition.Rep.TFW-SH10-93-002.PreparedfortheSHAMWCommitteeofWashingtonStateTimber/Fish/WildlifeAgree-ment.Seattle,WA:UniversityofWashington.84p.

Naiman,R.J.;Beechie,T.J.;Benda,L.E.,etal.1992.Fun-damentalelementsofecologicallyhealthywatershedsinthePacificNorthwestcoastalecoregion.In:Naiman,R.D.,ed.Watershedmanagement:balancingsustainabilityandenviron-mentalchange.NewYork:Springer-Verlag:127–188.

Rosgen,D.L.1996.Appliedrivermorphology.PagosaSprings,CO:WildlandHydrology.390p.

Sedell,J.R.;Reeves,G.H.;Hauer,F.R.,etal.1990.Roleofrefugiainrecoveryfromdisturbances:modernfragmentedanddisconnectedriversystems.EnvironmentalManagement.14(5):711–724.

Watershed Condition Classification Technical Guide 21

4. Aquatic Biota Condition

PurposeThisindicatoraddressesthedistribution,structure,anddensityofnativeandintroducedaquaticfauna.

Condition Rating Rule Set4. Aquatic Biota

Condition Indicator

Allnativeaquaticcommunitiesandlifehistoriesappropriatetothesiteandwatershedarepresentandself-maintaining.

Thewatershedisastrongholdforoneormorenativeaquaticcommunitieswhencomparedtoothersub-basinswithinthenativerange.Somelifehistoriesmayhavebeenlostorrangehasbeenreducedwithinthewatershed.

Thewatershedmaysupportsmall,wildlyscatteredpopulationsofnativeaquaticspecies.Exoticand/oraquaticinvasivespeciesarepervasive.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Life form presence

Morethan90percentofexpectedaquaticlifeformsandcommunitiesarepresentbasedonthepotentialnaturalcommunitiespresent.

From70to90percentofexpectedaquaticlifeformsandcommunitiesarepresentbasedonthepotentialnaturalcommunitiespresent.

Lessthan70percentofexpectedaquaticlifeformsandcommunitiesarepresentbasedonthepotentialnaturalcommunitiespresent.

Native species Mostnativeaquaticspeciesandlifehistoriesthatwouldbeexpectedbasedonpotentialnaturalcommuni-tiesarepresentandself-maintaining.Limitedintermixingofnativespeciesgeneticswithoutsidesourceshasoc-curred,whichcanhappenwhenmov-ingaquaticspeciesfromoneaquatichabitattoanother.

Residualand,attimesisolated,na-tiveendemicspeciesthatwouldbeexpectedbasedonpotentialnaturalcommunitiesmaybelocatedinspe-cificaquatichabitats.Somenonnativespeciesmaybepresentbutnativespeciesareself-sustainingwherefound.

Exoticand/oraquaticinvasivespe-ciesarepresentandhavemostlyre-placednativeaquaticspecies.Legacymanagementeffectstohabitatfromchemicals,sedimentorotherpollu-tionmaylimittheknowledgeavailableonendemicnativespecies.Aquatichabitatisdisconnectedbypassageorflowbarriers.

Exotic and/or aquatic invasive species

Exoticand/oraquaticinvasivespe-ciesmaybepresentbuttheyhavenotgreatlyalteredconditionofnativespecies(lessthan25percentofthehistoricaquatic-life-bearinghabitatshaveexoticand/oraquaticinvasivespeciespresent,spreadofexoticsand/oraquaticinvasivespecieshavebeenminimaloverthepastdecade).

Exoticand/oraquaticinvasivespe-ciesaregenerallypresentandhaveloweredthehealthandsustainabilityofnativespecies(between25and50percentofthehistoricnativeaquatic-life-bearinghabitatshaveexoticand/oraquaticinvasivespeciespresentand/ortherehasbeenanexpansionofexoticand/oraquaticinvasivespe-ciesoverthepastdecade).

Exoticand/oraquaticinvasivespe-ciesarepresentandhavegreatlylow-eredtheconditionofnativeaquaticspecies(morethan50percentofthehistoricnative-fish-bearingstreamshaveexoticand/oraquaticinvasivespeciespresentand/ortherehasbeenanexpansionofnonnativeex-oticand/oraquaticinvasivespeciesoverthepastdecade.

Additional Guidance1. Lifeformpresence.Avoidfocusonsinglespecies;focuson

communities.

2. Exoticand/oraquaticinvasivespecies.Thepresenceofex-

oticand/oraquaticinvasivespeciesorcommunitiesisused

asanindicatorofalteredorimpairedconditions.Although

exoticand/oraquaticinvasivespeciescansignificantlyaf-

fectnativeaquaticfaunalintegrity,intraspeciesinteractions

arenotconsideredforthisassessment.Forthisassessment,

thewidespreadpresenceofexoticand/oraquaticinvasive

speciesindicatespoorconditions.Forexample,ifyounote

thepresenceofbluegillinanareathathistoricallysupported

nativerainbowtrout,andyoufindinyourrecordsthatwater

temperaturesandflowconditionsarenowfavoringbluegill

andarenotprovidingsuitablehabitatconditionsfortrout,

yourconclusionisthatthehabitatisinpoorconditionand

thepresenceofbluegillisanindicatorofthiscondition.

Definitionsaquatic invasive. Nonnativespeciesthatarealsoconsideredinvasive.

exotic species.Nonnativespeciesthatarenotconsideredinvasive.

native fauna.Anyfaunalspeciesnativetoawatershed.

22 Watershed Condition Classification Technical Guide

Rationale for IndicatorNativefishandothernativeaquaticbiotahavebeenadverselyaffectedbylandandwatersheddevelopment,habitatloss,directhumanharvest,andincreasedcompetitionfromintroducedexoticand/oraquaticinvasivespecies.Introducedspeciesandstocksaremajorthreatstonativefishesandaquaticbiotabywayofpredation,competition,introductionofdiseasesandparasitesforwhichnativespecieslackresistance,environmentalmodification,inhibitionofreproduction,andhybridization(Moyleetal.1986,Nehlsenetal.1991).Non-nativeintroductionsofspeciesfrequentlyhaveeffectsthatcascadethroughentireecosystemsandcompromiseecologicalstructureandfunctioninunforeseenways(WinterandHughes1995).Althoughintroductionshaveincreasedfishingoppor-tunities,theecologicalconsequenceshavebeenhighandthedramaticexpansionofnonnativespecieshasleftmanysystemscompromised(AngermeierandKarr1994).

Indicator ReferencesAngermeier,P.L.;Karr,J.R.1994.Biologicalintegrityversusbiologicaldiversityaspolicydirectives:protectingbioticresources.BioScience.44(10):690–697.

Moyle,P.B.;Li,H.W.;Barton,B.A.1986.TheFrankensteineffect:impactofintroducedfishesonnativefishesinNorthAmerica.In:Stroud,R.H.,ed.Fishcultureinfisheriesmanage-ment.Bethesda,MD:AmericanFisheriesSociety:415–426.

Nehlsen,W.;Williams,J.E.;Lichatowich,J.A.1991.Pacificsalmonatthecrossroads:stocksatriskfromCalifornia,Oregon,Idaho,andWashington.Fisheries.16:4–21.

Winter,B.D.;Hughes,R.M.1995.AFSdraftpositiononbiodiversity.Fisheries.20(4):20–25.

Watershed Condition Classification Technical Guide 23

5. Riparian/Wetland Vegetation Condition

PurposeThisindicatoraddressesthefunctionandconditionofnativeriparianvegetationalongstreams,waterbodies,andwetlands.

Condition Rating Rule Set

5. Riparian/Wetland Vegetation Condition Indicator

Nativevegetationisfunctioningproperlythroughoutthestreamcorridororalongwetlandsandwaterbodies.

Disturbancepartiallycompromisestheproperlyfunctioningconditionofnativevegetationattributesinstreamcorridorareasoralongwetlandsandwaterbodies.

Alargepercentofnativevegetationattributesalongstreamcorridors,wetlands,andwaterbodiesisnotfunctioningproperly.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Vegetation condition

Nativemidtolateseralvegetationappropriatetothesite’spotentialdominatestheplantcommunitiesandisvigorous,healthy,anddiverseinage,structure,cover,andcom-positiononmorethan80percentoftheriparian/wetlandareasinthewatershed.Sufficientreproductionofnativespeciesappropriatetothesiteisoccurringtoensuresustainability.Mesicherbaceousplantcommunitiesoccupymostoftheirsitepotential.Vegetationisinadynamicequilibriumappropriatetothestreamorwetlandsystem.

Nativevegetationdemonstratesamoderatelossofvigor,reproduc-tion,andgrowth,oritchangesincomposition,especiallyinareasmostsusceptibletohumanimpact.Areasdisplayinglighttomoderateimpacttostructure,reproduction,composition,andcovermayoccupy25to80per-centoftheoverallriparianareawithonlyafewareasdisplayingsignificantimpacts.Upto25percentofthespeciescoverorcompositionoccursfromearlyseralspeciesand/orthereexistsomelocalizedbutrelativelysmallareaswhereearlyseralvegeta-tiondominates,butthecommunitiesacrossthewatershedarestilldomi-natedbymidtolateseralvegetation.Xericherbaceouscommunitiesexistwherewaterrelationshipshavebeenalteredbuttheyarerelativelysmallandlocalized,generallyarenotcon-tinuousacrosslargeareas,anddonotdominateacrossthewatershed.

Nativevegetationisvigorous,healthy,anddiverseinage,structure,cover,andcompositiononlessthan25percentoftheriparian/wetlandareasinthewatershed.Nativevegeta-tiondemonstratesanoticeablelossofvigor,reproduction,growth,andchangesincompositionascomparedwiththesite’spotentialcommunitiesthroughoutareasmostsusceptibletohumanimpact.Intheseareas,coverandcompositionarestronglyreflec-tiveofearlyseralspeciesdominancealthoughlate-andmid-seralspecieswillbepresent,especiallyinpockets.Mesic-dependentherbaceousveg-etationislimitedinextentwithmanylowerterracesdominatedbyxericspeciesmostcommonlyassociatedwithuplands.Reproductionofmidandlateseralspeciesisverylimited.Formuchofthearea,thewatertableisdisconnectedfromtheriparianareaandthevegetationreflectsthislossofavailablesoilwater.

Additional Guidance1. Usethefollowingriparian/wetlandvegetationattributeques-

tionstohelpyouevaluatetheexistingconditionofriparian/

wetlandvegetationinthewatershed(Prichardetal.1988).

Inallcases,evaluatethesiterelativetothesite’spotential

naturalvegetation:

a. Isthereadiverseage-classdistributionofnativeriparian/wetlandvegetation(recruitmentformainte-nanceandrecovery)?

b. Isthereadiversecompositionofnativeriparian/wetlandvegetation(formaintenanceandrecovery)?

c. Arenativespeciespresentthatindicatemaintenanceofriparian/wetlandsoilmoisturecharacteristicsandconnectivitybetweentheriparian/wetlandvegeta-tionandthewatertabletypicalofriparian/wetlandsystemsinthearea?

d. Isstreambanknativevegetationcomposedofthoseplantsorplantcommunitiesthathaverootmassescapableofwithstandinghighstreamflowevents?

e. Doesnativeriparian/wetlandvegetativeadequatelycoverandprotectbanksanddissipateenergyduringhighflows?

f. Donativeriparian/wetlandplantsexhibithighvigor?

24 Watershed Condition Classification Technical Guide

g. Arenativeplantcommunitiesanadequatesourceofcoarseand/orlargewoodymaterial(formaintenanceandrecovery)?

2. Ifforestplanriparianmanagementdirectionexistsfor

riparian/wetlandvegetation,usethelocalthresholdsderived

fromforestplanstandardsandguidelinestodeterminethe

appropriateratingforthisattribute.Forexample,ripar-

iantimberstandconditionsmaybeappropriateinsome

ecosystemsasameasureofriparianvegetationcondition

butriparian/wetlandherbaceousvegetationconditionsare

appropriateforothersystems.

3. WheretheBureauofLandManagement’sProperFunction-

ingConditionassessmentshavebeencompleted(Prichard

etal.1994),ratetheproperlyfunctioningconditioncategory

asConditionClass1,thefunctionalatriskcategoryasCondi-

tionClass2,andthenonfunctionalcategoryasCondition

Class3basedonthepercentofriparianareasineach

category.

Definitionsfunctional at risk (functioning at risk).Riparian/wetlandareasthatareinfunctionalcondition,butoneormoreexistingsoil,water,orvegetationattributesmakesthemsusceptibletodegradation.

functioning properly.Riparian/wetlandhealth(functioningcondition),animportantcomponentofwatershedcondition,referstotheecologicalstatusofvegetation,geomorphic,andhydrologicdevelopment,alongwiththedegreeofstructuralintegrityexhibitedbytheriparian/wetlandarea.Riparian/wetlandareasthatarefunctioningproperlyexistwhenadequatevegetation,landform,orlargewoodydebrisispresenttodis-sipatestreamenergyassociatedwithhighwaterflow,therebyreducingerosionandimprovingwaterquality;filtersediment,capturebedload,andaidfloodplaindevelopment;improveflood-waterretentionandground-waterrecharge;developrootmassesthatstabilizestreambanksagainstcuttingaction;developdiversepondingandchannelcharacteristicstoprovidethehabitatandthewaterdepth,duration,andtemperaturenecessaryforfishproduction,waterfowlbreeding,andotheruses;andsupportgreaterbiodiversity.

nonfunctional (impaired).Riparian/wetlandareasthatclearlyarenotprovidingadequatevegetation,landform,orlargewoodydebristodissipatestreamenergyassociatedwithhighflows,andthusarenotreducingerosion,improvingwaterquality,etc.

riparian zone, riparian area, stream corridor.Theinterfacebetweenlandandthebanksofastream,river,orotherbodyofwater.Weusethetermriparianinitsbroadestsensetoincludeareasadjacenttoastream,river,orlake,recognizingthatadiversemixtureofdifferentdefinitionsexistsacrosstheUnitedStates.Plantcommunitiesalongthesewatermarginsarecalledriparianvegetationandarecharacterizedbyhydrophyticplants.

wetlands.Thoseareasthatareinundatedorsaturatedbysurfaceorgroundwateratafrequencyanddurationsufficienttosupport,andthatundernormalcircumstancesdosupport,aprevalenceofvegetationtypicallyadaptedforlifeinsaturatedsoilconditions.Ingeneral,wetlandsincludeswamps,marshes,bogs,andsimilarareas.

Rationale for IndicatorRiparianandwetlandareasaretheinterfacebetweenter-restrialandaquaticecosystemsandareanintegralpartofthewatersheds.Consequently,thehealthoftheseareasiscloselyinterrelatedtotheconditionofthesurroundingwatershed(DebanoandSchmidt1989,HornbeckandKochenderfer2000).Thehealthofripariancorridorsisdependentonthestorageandmovementofsedimentthroughthechannelsystemandalsoonthemovementofsedimentandwaterfromsurroundinghillslopesintothechannelsystem.Human-inducedandnaturaldisturbancescanaltertheseprocesseseitherindirectlytothewatershedordirectlytoriparianareasthemselvesbylivestockgrazing,roadconstruction,mining,irrigationdiversion,channelmodification,flooding,wildfire,andsimilardisturbances(Bakeretal.2004,NRC2002).Onegoodmeasureofriparian/wetlandhealthistheecologicalconditionofriparianvegetationrelativetoreferenceconditions.

Indicator ReferencesBaker,M.B.;Ffolliott,P.F.;DeBano,L.F.;Neary,D.G.,eds.2004.RiparianareasoftheSouthwesternUnitedStates:hydrol-ogy,ecologyandmanagement.BocaRaton,FL:CRCPress.

DeBano,L.F.;Schmidt,L.J.1989.Improvingriparianareasthroughwatershedmanagement.Gen.Tech.Rep.RM-182.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainForestandRangeExperimentStation.

Hornbeck,J.W.;Kochenderfer,J.N.2000.Linkagesbetweenforestsandstreams:aperspectiveintime.In:Verry,E.S.;Hornbeck,J.W.;Dolloff,C.A.,eds.RiparianmanagementinforestsofthecontinentalEasternUnitedStates.BocaRaton,FL:LewisPublishersandCRCPress:89–98.

Watershed Condition Classification Technical Guide 25

NationalResearchCouncil(NRC).2002.Riparianareas:functionsandstrategiesformanagement.Washington,DC:NationalAcademyofScience.

Prichard,D.;Anderson,J.;Correll,C.,etal.1998.Auserguidetoassessingproperfunctioningconditionandthesupportingscienceforloticareas.TR1737-9.BLM/RS/ST-98/001+1737.Denver,CO:U.S.DepartmentoftheInterior,BureauofLandManagement,NationalAppliedResourceSciencesCenter.126p.

Prichard,D.;Bridges,C.;Krapf,R.,etal.1994.Riparianareamanagement:processforassessingproperfunctioningcondi-tionforlenticriparian-wetlandareas.TR1737-11.BLM/SC/ST-94/008+1737.Denver,CO:U.S.DepartmentoftheInterior,BureauofLandManagement,DenverServiceCenter.136p.

26 Watershed Condition Classification Technical Guide

6. Roads and Trails Condition

PurposeThisindicatoraddresseschangestothehydrologicandsedimentregimesduetothedensity,location,distribution,andmaintenanceoftheroadandtrailnetwork.

Condition Rating Rule Set6. Roads

and Trails Condition Indicator

Thedensityanddistributionofroadsandlinearfeatureswithinthewatershedindicatethatthehydrologicregimeissubstantiallyintactandunaltered.

Thedensityanddistributionofroadsandlinearfeatureswithinthewatershedindicatesthatthereisamoderateprobabilitythatthehydrologicregimeissubstantiallyaltered.

Thedensityanddistributionofroadsandlinearfeatureswithinthewatershedindicatesthatthereisahigherprobabilitythatthehydrologicregime(timing,magnitude,duration,andspatialdistributionofrunoffflows)issubstantiallyaltered.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Open road density

Defaultroad/traildensity:lessthan1mi/mi2,oralocallydeterminedthresholdforgoodconditionssup-portedbyforestplansoranalysisanddata.

Defaultroad/traildensity:From1to2.4mi/mi2,oralocallydeterminedthresholdforfairconditionssupportedbyforestplansoranalysisanddata.

Defaultroad/traildensity:morethan2.4mi/mi2,oralocallydeterminedthresholdforpoorconditionssup-portedbyforestplansoranalysisanddata.

Road and trail maintenance

BestManagementPractices(BMPs)forthemaintenanceofdesigneddrainagefeaturesareappliedtomorethan75percentoftheroads,trails,andwatercrossingsinthewatershed.

BMPsforthemaintenanceofde-signeddrainagefeaturesareappliedto50to75percentoftheroads,trails,andwatercrossingsinthewatershed.

BMPsforthemaintenanceofde-signeddrainagefeaturesareappliedtolessthan50percentoftheroads,trails,andwatercrossingsinthewatershed.

Proximity to water

Nomorethan10percentofroad/traillengthislocatedwithin300feetofstreamsandwaterbodiesorhydro-logicallyconnectedtothem.

Between10and25percentofroad/traillengthislocatedwithin300feetofstreamsandwaterbodiesorhydro-logicallyconnectedtothem.

Morethan25percentofroad/traillengthislocatedwithin300feetofstreamsandwaterbodiesorhydro-logicallyconnectedtothem.

Mass wasting Veryfewroadsareonunstablelandformsorrocktypessubjecttomasswastingwithlittleevidenceofactivemovementorevidenceofroaddamage.Thereisnodangeroflargequantitiesofdebrisbeingdeliveredtothestreamchannelbecauseofmasswasting.

Afewroadsareonunstableland-formsorrocktypessubjecttomasswastingwithmoderateevidenceofactivemovementorroaddamage.Thereissomedangeroflargequanti-tiesofdebrisbeingdeliveredtothestreamchannel,althoughthisisnotaprimaryconcerninthiswatershed.

Mostroadsareonunstableland-formsorrocktypessubjecttomasswastingwithextensiveevidenceofactivemovementorroaddamage.Masswastingthatcoulddeliverlargequantitiesofdebristothestreamchannelisaprimaryconcerninthiswatershed.

Additional Guidance1. Forthepurposesofthisreconnaissance-levelassessment,

theterm“road”isbroadlydefinedtoincluderoadsand

alllinealfeaturesonthelandscapethattypicallyinfluence

watershedprocessesandconditionsinamannersimilarto

roads.Roads,therefore,includeForestServicesystemroads

(pavedornonpaved)andanytemporaryroads(skidtrails,

legacyroads)notclosedordecommissioned,including

privateroadsinthesecategories.Otherlinearfeaturesthat

mightbeincludedbasedontheirprevalenceorimpactin

alocalareaaremotorized(off-roadvehicle,all-terrain

vehicle)andnonmotorized(recreational)trailsandlinear

features,suchasrailroads.Properlyclosedroadsshould

behydrologicallydisconnectedfromthestreamnetwork.

Ifroadshaveaclosureorderbutarestillcontributingto

hydrologicaldamagetheyshouldbeconsideredopenforthe

purposesofroaddensitycalculations.

2. Openroaddensity.Althoughdefaultroaddensityguidelines

(USFWS1998)forgood,fair,andpoorconditionsare

provided,forestsmaydeviatefromthedefaultvaluesbased

onlocalanalysisand/orforestplanstandardsandguidelines.

Forexample,existinglocalorregionalplanningprocesses,

publications,orotheranalysesmayhaveestablished

thresholdsthataremorepertinenttolocalconditions.The

Watershed Condition Classification Technical Guide 27

selecteddefaultroaddensityguidelineswerederivedfrom

U.S.FishandWildlifeServiceguidancethatcoveredalarge

geographicalareaoftheWesternUnitedStates.

3. Masswasting.Massmovementisratedonlywithrespectto

theextentandeffectitisassociatedwithroadsandeffects

toaquaticresources.Areasthatareinherentlyunstableorat

riskfrommassmovementarenotrated.

4. Masswasting.Geographicalareaswheremasswastingis

notasignificantprocess,mayberatedasN/A.Typically,

thisdesignationwouldbeappliedoverabroadgeographic

areasuchasanentirenationalforest.Coordinationwiththe

RegionalOversightTeamissuggestedtoensureconsistency

amongadjacentunits.

Definitionshydrologically connected. Anyroadsegmentthat,duringahighrunoffevent,hasacontinuoussurfaceflowpathbetweentheroadprismandanaturalstreamchannelisahydrologicallyconnectedroadsegment.Theproximityofroadstostreamsisasurrogateforhydrologicconnectivity.

mass wasting. Thegeomorphicprocessbywhichsoil,regolith,androckmovedownslopeundertheforceofgravity.Masswastingmayalsobeknownasslopemovementormassmove-ment.Itencompassesabroadrangeofgravity-drivenrock,soil,orsedimentmovements,includingweatheringprocesses.Typesofmasswastingincludecreep,slides,flows,topples,andfalls,andtheyaredifferentiatedbyhowthesoil,regolith,orrockmovesdownslopeasawhole.

unstable landforms, geologic types, and landslide prone areas. Areasdeterminedunstablebyindividualnationalforestsusingexitingsoilresourceinventories,terrestrialecologicalunitinventories,geologicinventories,ormaps.

Rationale for IndicatorRoadsaffectwatershedconditionbecausemoresedimentiscontributedtostreamsfromroadsandroadconstructionthananyotherlandmanagementactivity.Roadsdirectlyalternatu-ralsedimentandhydrologicregimesbychangingstreamflowpatternsandamounts,sedimentloading,transport,deposition,channelmorphologyandstability,andwaterqualityandripar-ianconditionswithinawatershed(Copsteadetal.1997,DunneandLeopold1978,GibbonsandSalo1973).Roadmaintenancecanalsoincreasesedimentroutingtostreamsbycreatingareaspronetosurfacerunoff,alteringslopestabilityincut-and-fillareas,removingvegetation,andalteringdrainagepatterns

(BurroughsandKing1989,LuceandBlack2001,Megahan1978,ReidandDunne1984).Roaddensityisknowntoplayadominantroleinhuman-inducedaugmentationofsedimentsupplybyerosionandmasswastinginuplandforestedland-scapesinthePacificNorthwest(Cederholmetal.1981,Furnissetal.1991),anditisreasonabletoassumethatsimilarrelation-shipsexistelsewhere.Road-relatedmasssoilmovementscancontinuefordecadesafterroadshavebeenconstructed,andlong-termslopefailuresfrequentlyoccurafterroadconstruc-tionandtimberharvest(MegahanandBohn1989).

Indicator ReferencesBurroughs,E.R.,Jr.;King,J.G.1989.Reductionofsoilerosiononforestroads.Gen.Tech.Rep.INT-264.U.S.DepartmentofAgriculture,ForestService,IntermountainResearchStation.Ogden,UT.21p.

Cederholm,C.J.;Reid,L.M.;Salo,E.O.1981.CumulativeeffectsofloggingroadsedimentonsalmonidpopulationsoftheClearwaterRiver,JeffersonCounty,Washington.In:Proceed-ings:Conferenceonsalmonspawninggravel:arenewableresourceinthePacificNorthwest?Report19.Pullman,WA:WashingtonStateUniversity,WaterResearchCenter:38–74.

Copstead,R.;Moore,K.;Ledwith,T.;Furniss,M.1997.Water/roadinteraction:anannotatedbibliography.Water/RoadInteractionTechnologySeries.Pub.97771816P.Washington,DC:U.S.DepartmentofAgriculture,ForestService,Technol-ogyandDevelopmentCenter.162p.

Dunne,T.;Leopold,L.B.1978.Waterinenvironmentalplan-ning.NewYork:W.H.Freeman.818p.

Furniss,M.J.;Roelofs,T.D.;Yee,C.S.1991.Roadconstructionandmaintenance.In:Meehan,W.R.,ed.Influencesofforestandrangelandmanagement.SpecialPublication19.Bethesda,MD:AmericanFisheriesSociety:297–324.

Gibbons,D.R.;Salo,E.O.1973.AnannotatedbibliographyoftheeffectsofloggingonfishoftheWesternUnitedStatesandCanada.Gen.Tech.Rep.PNW-10.Portland,OR:U.S.Depart-mentofAgriculture,ForestService,PacificNorthwestForestandRangeExperimentStation.145p.

Luce,C.H.;Black,T.A.2001.Effectsoftrafficandditchmaintenanceonforestroadsedimentproduction.In:Proceed-ings:seventhFederalinteragencysedimentationconference:V67–V74.

Megahan,W.F.1978.ErosionprocessesonsteepgraniticroadfillsincentralIdaho.SoilSocietyofAmericaJournal.43(2):350–357.

28 Watershed Condition Classification Technical Guide

Megahan,W.F.;Bohn,C.C.1989.Progressive,long-termslopefailurefollowingroadconstructionandloggingonnoncohe-sive,graniticsoilsoftheIdahoBatholith.In:Woessner,W.W.;Potts,D.F.,eds.Proceedings:Symposiumonheadwatershydrology,AmericanWaterResourcesAssociation:501–510.

Reid,L.M.;Dunne,T.1984.Sedimentproductionfromforestroadsurfaces.WaterResourcesResearch.20:1753–1761.

U.S.FishandWildlifeService(USFWS).2000.AframeworktoassistinmakingEndangeredSpeciesActdeterminationsofeffectforindividualorgroupedactionsatthebulltroutsubpopulationwatershedscale.In:Appendix9oftheInteriorColumbiaBasinEcosystemManagementProject,SupplementalDraftEnvironmentalImpactStatement.Boise,ID.USDAForestServiceandBureauofLandManagement.http://www.icbemp.gov/pdfs/sdeis/Volume2/Appendix9.pdf.(24March2011).

Watershed Condition Classification Technical Guide 29

7. Soils Condition

PurposeThisindicatoraddressesalterationtonaturalsoilcondition,includingproductivity,erosion,andchemicalcontamination.

Condition Rating Rule Set

7. Soils Condition Indicator

Minorornoalterationtoreferencesoilcondition,includingerosion,productivity,andchemicalcharacteristicsisevident.

Moderateamountofalterationtoreferencesoilconditionisevident.Overallsoildisturbanceischaracterizedasmoderate.

Significantalterationtoreferencesoilconditionisevident.Overallsoildisturbanceischaracterizedasextensive.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Soil productivity Soilnutrientandhydrologiccyclingprocessesarefunctioningatnearsite-potentiallevels,andtheabilityofthesoiltomaintainresourcevaluesandsustainoutputsishighinthemajorityofthewatershed.

Soilnutrientandhydrologiccyclingprocessesareimpairedandtheabilityofthesoiltomaintainresourcevaluesandsustainoutputsiscompromisedin5to25percentofthewatershed.

Soilnutrientandhydrologiccyclingprocessesareimpairedandtheabilityofthesoiltomaintainresourcevaluesandsustainoutputsiscompromisedinmorethan25percentofthewa-tershed.

Soil erosion Evidenceofacceleratedsurfaceerosionisgenerallyabsentoverthemajorityofthewatershed.

Evidenceofacceleratedsurfaceero-sionoccursoverlessthan10percentofthewatershed,orrillsandgulliesarepresentbutaregenerallysmall,disconnected,poorlydefined,andnotconnectedintoanypattern.

Evidenceofacceleratedsurfaceerosionoccursovermorethan10percentofthewatershed,orrillsandgulliesareactivelyexpanding,well-defined,continuous,andconnectedinadefinitepattern.

Soil contamination

Nosubstantialareasofsoilcontami-nationinthewatershedexist.Whenatmosphericdepositionisasourceofcontamination,sulfurand/ornitrogendepositionismorethan10percentbelowtheterrestrialcriticalload.

Limitedareasofsoilcontaminationmaybepresent,buttheydonothaveasubstantialeffectonoverallsoilquality.Whenatmosphericdepositionisasourceofcontamination,sulfurand/ornitrogendepositionis0to10percentbelowtheterrestrialcriticalload.

Extensiveareasofsoilcontaminationmaybepresent.Whenatmosphericdepositionisasourceofcontamina-tion,sulfurand/ornitrogendepositionisabovetheterrestrialcriticalload.

Additional Guidance1. Ifforestorregionaldirectionexistsforsoilqualityorsoil

management,theselocalthresholdsmaybeusedtodeter-

minetheappropriateratingforsoilattributes.

2. Soilnutrientandhydrologiccyclingprocessesareevaluated

usingavailablerelevantsoilpropertiessuchascompaction,

porosity,infiltration,bulkdensity,organicmatter,soilcover,

microbialactivity,orotherappropriateindicators.

3. Soilerosionshouldnotdoublecountroad-relatederosion

effectsthatareconsideredintheroadsandtrailscondition

indicator.

4. Atmosphericdeposition.Comparecurrentdepositionwith

eithersite-specificterrestrialcriticalloadsforacidityand/or

nutrientnitrogen(Geiseretal.2010,Pardoetal.inreview),

orwiththebestavailablecriticalloadscalculatedforsimilar

sitesintheregion.Whereacidificationistheprimary

concernandsite-specificcriticalloadsareabsent,usethe

riskassessmentmapofexceedenceofcriticalloads(based

onMcNultyetal.2007)toclassifythewatershed.Current

information(includingdirectionstoGeographicInformation

System(GIS)coverage)forsite-specific,regional,and

nationalscalecriticalloadsisavailableathttp://www.fs.fed.

us/air.

Definitionscritical load. Theamountofdepositionofanatmosphericpol-lutantbelowwhichnoharmfulecologicaleffectsoccur.Wecancalculatecriticalloadsforbothacidityandnutrientnitrogeninterrestrialandaquaticsystems.

30 Watershed Condition Classification Technical Guide

reference soil condition. Theconditionofthesoilwithwhichfunctionalcapacityiscompared.Usingindicators,soilqualityisusuallyassessedbycomparingamanagementsystemwithareferencecondition.Thereferenceconditionmayberepre-sentedwith(1)baselinemeasurementstakenpreviouslyatthesamelocation;(2)establishedandachievableindicatorvaluessuchassalinitylevelsrelatedtosalttoleranceofcrops;or(3)measurementsfromthesameorsimilarsoilunderthereferencestateorinherentorattainableconditions(Tugeletal.2008).

soil condition. Adescriptionofsoilphysical,chemicalandbiologicalpropertiesthataffectsoilecosystemservices,includ-ingproductivity,hydrologicfunction,stability,andresilience.

Rationale for IndicatorDeterminingnaturalsoilconditionincludesevaluatingero-sion,nutrients,productivity,andthephysical,chemical,andbiologicalcharacteristicsofthesoil(USDAForestService2009).Soilconditionisrelatedtowatershedconditionbecauseofsignificantwatersupplybenefitsassociatedwithdevelopingforestsoilsthatpromoteinfiltrationandhigh-qualitywater.Forestsoils,withlitterlayers,highorganiccontent,andlargemacroporefraction,promoterapidinfiltrationandminimizeerosiveoverlandflow(Ice2009).Inotherecosystems,soilsuppliesair,water,nutrients,andmechanicalsupportforthesustenanceofplants.Italsoreceivesandprocessesrainfallandcontrolshowmuchofthatrainfallbecomessurfacerunoff,howmuchisstoredforslow,sustaineddeliverytostreamchannels,andhowmuchisstoredandusedforsoilprocesses(Nearyetal.2005).Managementactivities,suchasintensivegrazing,logging,recreationalactivity,andotherdisturbances,canleadtoreducedsoilstructure,soilcompaction,anddam-agetoorlossofvegetativecover.Theseactivitiescontributetoincreasedsurfacerunoffresultinginsoilerosion,lossofnutrients,andadecreaseinsoilproductivity(MeehanandPlatts1978).Thesoilcontaminationattributeaddressesvarioussourcesofcontaminants,includingabandonedmines,illegaldumping,druglabs,spills,atmosphericdeposition,andothers.Foratmosphericsources,thecriticalloadstandardaddressestheimpactofairpollution(sulfurandnitrogen)depositiononforestsoils.Sulfurand/ornitrogendepositionestimatesabove

thecriticalloadforsoilindicatethepotentialforsignificantharmfuleffectstotheforestecosystemthroughtheacceleratedlossofbasecations,adecreaseinsoilpH,anincreasedriskofbiologicallytoxiclevelsofaluminumreleasedfromthesoils,ornitrogeninexcessofanddetrimentaltobiologicaldemand.

Indicator ReferencesGeiser,L.G.;Jovan,S.E.;Glavich,D.A.;Porter,M.K.2010.Lichen-basedcriticalloadsforatmosphericdepositioninWesternOregonandWashingtonforests,USA.EnvironmentalPollution.158:2412–2421.

Ice,G.G.2009.CommentsonusingforestrytosecureAmerica’swatersupply.JournalofForestry.107(3):150.

McNulty,S.G.;Cohen,E.C.;MooreMyers,J.A.,etal.2007.EstimatesofcriticalacidloadsandexceedancesforforestsoilsacrosstheconterminousUnitedStates.EnvironmentalPollu-tion.149:281–292.

Meehan,W.P.;Platts,W.S.1978.Livestockgrazingandtheaquaticenvironment.JournalofSoilandWaterConservation.33(6):274–278.

Neary,D.G.;Ryan,K.C.;DeBano,L.F.,eds.2005.Wildlandfireinecosystems:effectsoffireonsoilsandwater.Gen.Tech.Rep.RMRS-GTR-42-vol.4.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation.250p.

Pardo,L.H.;Geiser,L.H.;Goodale,C.L.,etal.Inreview.As-sessmentofeffectsofNdepositionandempiricalcriticalloadsfornitrogenforecoregionsoftheUnitedStates.Gen.Tech.Rep.Washington,DC:U.S.DepartmentofAgriculture,ForestService.200p.

Tugel,A.J.;Skye,A.W.;Herrick,J.E.2008.Soilchangeguide:proceduresforsoilsurveyandresourceinventory.Lincoln,NE:U.S.DepartmentofAgriculture,NaturalResourcesConserva-tionService,NationalSoilSurveyCenter.Ver.1.1.

U.S.DepartmentofAgriculture(USDA),ForestService.2009.Soilmanagementmanual.FSM2550.Washington,DC:U.S.DepartmentofAgriculture,ForestService.9p.

Watershed Condition Classification Technical Guide 31

8. Fire Regime or Wildfire Condition

PurposeThisindicatoraddressesthepotentialforalteredhydrologicandsedimentregimesbecauseofdeparturesfromhistoricalrangesofvariabilityinvegetation,fuelcomposition,firefrequency,fireseverity,andfirepattern.

Condition Rating Rule Set8. Fire Regime

or Wildfire Condition Indicator

Lowlikelihoodoflosingdefiningecosystemcomponentsbecauseofthepresenceorabsenceoffire.

Moderatelikelihoodoflosingdefiningecosystemcomponentsbecauseofthepresenceorabsenceoffire.

Highlikelihoodoflosingdefiningecosystemcomponentsbecauseofthepresenceorabsenceoffire.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Fire Regime Condition Class

FireRegimeConditionClass(FRCC)1—Apredominatepercent-ageofthewatershediswithinthenatural(historical)rangeofvariability(“referencefireregime”)ofvegetationcharacteristics;fuelcomposition;firefrequency,severity,andpattern;andotherassociateddisturbances.Thevegetativespeciesandcovertypesarewelladaptedtothefireregimeandoffergoodprotectiontosoilandwaterresources.

FRCC2—Apredominatepercentageofthewatershedhasamoderatede-parturefromthereferencefireregimeofvegetationcharacteristics;fuelcomposition;firefrequency,severity,andpattern;andotherassociateddisturbances.Thevegetativespe-ciesandcovertypesaresomewhataffectedbytheabnormalfireregimeandthisresultsinlessprotectiontosoilandwaterresourceswhenfireoccurs.

FRCC3—Apredominatepercentageofthewatershedhasahighdepar-turefromthereferencefireregimeofvegetationcharacteristics;fuelcomposition;firefrequency,severity,andpattern;andotherassociateddisturbances.Thevegetativespeciesandcovertypesareaffectedbythefireregimeandthisresultsinperiodsoffuelaccumulationwithinfrequentintensefireswithhighseveritythataremorelikelytoleadtovegetationmortality,lossofsoilorganicmatter,andpoorprotectiontosoilandwaterresources.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Wildfire Effects Followingasignificantwildfire,ef-fectsaresuchthatsoilandgroundcoverconditionsintheburnedareaareexpectedtorecoverwithin1to2yearstolevelsthatprovidewatershedprotectionappropriateforthelocationandecotype.

Followingasignificantwildfire,soilandgroundcoverconditionsarecausingsomepost-firerunoffanderosionconcernsbutarenotsufficienttojeopardizelong-termwatershedconditionintegrity.Thisconditionmaypersistfor2to5yearsafterawildfire.

Followingasignificantwildfire,soilandgroundcoverconditionsarecausingconsiderablepost-firerunoff,erosion,andfloodingthreatstowater-shedconditionintegritylastingformorethan5years.

Additional Guidance1. TheFireRegimeorWildfireConditionIndicatorisunique

inthatitisaneither/orpropositioninwhicheitherFire

RegimeConditionorWildfireEffectsisrated.Inmost

cases,wewillratetheFireRegimeattribute.Followinga

significantwildfire,however,theWildfireEffectsattribute

isratedandtheFireRegimeattributeisratedN/A.Thisis

theonlyindicatorthatoperatesinthiseither/ormanner.

2. WildfireEffects.Wewillratewatershedsexperiencinga

significantwildfire(onethateffectivelychangestheFRCC

usingtheWildfireEffectsattributeuntilthewatershedfully

recoversfromanyadversewildfireeffects(i.e.,recovers

fromaratingof2or3),andduringthistimewewillrate

theFRCCattributeasN/A.Forestsshouldswitchtothe

WildfireEffectsattributeifmorethan50percentofthe

watershedisaffectedbyasignificantwildfire.Iflessthan

50percentofthewatershedisaffectedbyasignificant

wildfire,switchingtothisattributemaystillbeappropriate

andshouldbedeterminedbytheforestonacase-by-case

basis.Inthewakeofasignificantwildfire,onlytheWildfire

Effectsattributecorrectlycharacterizesthestateofthe

watershedwithrespecttowatershedcondition.Forexample,

followingaseverewildfire,awatershedpreviouslyin

32 Watershed Condition Classification Technical Guide

FRCC3(Poor)revertstoFRCC1(Good)becauseithasbeen

returnedtoitsnaturalreferenceconditionandtheWildfire

Effectsattributewillnowberatedas3(Poor)duetopost-

fireconditions.Averagingthetwoattributeswillresultinan

incorrectcharacterizationofwatershedcondition.Toavoid

this,wewillratewatershedconditionbasedontheWildfire

Effectsattributeduringtheentirewatershedrecoveryperiod.

3. FireRegimeConditionClass.Inwatershedsthatclearly

havemorethanoneFRCC,usetheformulabelowtodeter-

minetheCategory.

Methodology:

a. Foreach6th-levelhydrologicunitcode(HUC)watershed,determinethepercentageofthetotalwatershedareawithineachoftheFireRegimeConditionClasses(FRCC1,FRCC2,andFRCC3).UseGISoverlaysifpossible.

b. FRCC1isassignedacategoryscoreof1,FRCC2isassignedacategoryscoreof2,andFRCC3isassignedacategoryscoreof3.

c. Calculatetheweightedaveragefireregimeconditionclass(FRCC

wtavg)usingtheformulabelow:

where:

FRCC1=acresofwatershedwithinFireRegimeConditionClass1,

FRCC2=acresofwatershedwithinFireRegimeConditionClass2,

FRCC3=acresofwatershedwithinFireRegimeConditionClass3.

Categorizefireregimeconditionusingthefollowingcalcu-latedweightedaverageFRCCranges:

Category1—1.0to1.66.

Category2—1.67to2.33.

Category3—2.33to3.0.

4. FireRegimeConditionClass.Althoughtheuseofnational

FRCCmapproductsisencouraged,forestsmayrefine

FRCCasappropriatetofittheirlocalsituations.

a. Example1.ForestsintheSouthernRegionmaywishtousetheFireFrequency-SeverityConditionClass

andomittheSuccessionClassConditionClassintheirdeterminationofWatershedConditionratingssincethisseemsmoreappropriatefortheseecosystems.

b. Example2.ForestsintheSouthwestmaywishtouseIntegratedForestResourceManagementSystem(INFORMS)datainsteadofthenationalLandscapeFireandResourceManagementPlanningTools(LANDFIRE)datasinceitprovidesabetterestimateoflocalconditions.

DocumentandcoordinatemodificationswithyourRegionalOversightTeam.

DefinitionsFire Regime Condition Class (FRCC). Fireregimecondi-tionclassesmeasurethedegreeofdeparturefromreferenceconditions,possiblyresultinginchangestokeyecosystemcomponents,suchasvegetationcharacteristics(speciescompo-sition,structuralstage,standage,canopyclosure,andmosaicpattern);fuelcomposition;firefrequency,severity,andpattern;andotherassociateddisturbances,suchasinsectanddiseasemortality,grazing,anddrought.Possiblecausesofthisdepar-tureinclude(butarenotlimitedto)firesuppression,timberharvesting,livestockgrazing,introductionandestablishmentofexoticplantspecies,andintroducedinsectsanddisease.FRCCisstrictlyameasureofecologicaltrends.

Thethreefireregimeconditionclassesarecategorizedusingthefollowingcriteria:FRCC1representsecosystemswithlow(lessthan33percent)departureandthatarestillwithintheestimatedhistoricalrangeofvariabilityduringaspecificallydefinedreferenceperiod;FRCC2indicatesecosystemswithmoderate(33to66percent)departure;andFRCC3indicatesecosystemswithhigh(morethan66percent)departurefromreferenceconditions.Asdescribedbelow,departureisbasedonacentraltendency(ormean)metricandrepresentsacompositeestimateofthereferenceconditionvegetationcharacteristics;fuelcomposition;firefrequency,severity,andpattern;andotherassociatednaturaldisturbances.Lowdepartureincludesarangeofplusorminus33percentdeviationfromthecentraltendency.

Characteristicvegetationandfuelconditionsareconsideredtobethosethatoccurredwithinthenaturalfireregime,suchasthosefoundinareascategorizedasFRCC1(lowdeparture).Uncharacteristicconditionsareconsideredtobethosethatdidnotoccurwithinthenaturalregime,suchasareasthatareoftencategorizedasFRCC2andFRCC3(moderatetohighdeparture).Theseuncharacteristicconditionsinclude,butarenotlimitedtothefollowing:invasivespecies(weedsandinsects),diseases,

Watershed Condition Classification Technical Guide 33

“highgraded”forestcompositionandstructure(inwhich,forexample,large,fire-toleranttreeshavebeenremovedandsmallfire-intoleranttreeshavebeenleftwithinafrequentsurfacefireregime),orovergrazingbydomesticlivestockthatadverselyeffectsnativegrasslandsorpromotesunnaturallevelsofsoilerosion(Hannetal.2004,2008).

watershed recovery period.Theperiodoftime,inyears,thatisrequiredfortheburnedareatodevelopvegetationandinfiltrationconditionssufficienttoreducerunoffanderosionpotentialtoessentiallypredisturbanceconditions.Thisisabestestimateofnaturalregeneration,soilstabilization,andhydrophobicityreduction,supplementedbyanytreatmentsprescribed(USDAForestService2009).

Rationale for IndicatorToalargeextent,watershedconditioniscontrolledbythecompositionanddensityofvegetativecoverandtheamountofbaresoilresultingfromanthropogenicornaturaldisturbancesthataffectthewatershed(Nearyetal.2005).Fireprimarilyaltersvegetationandsoilproperties,changinghydrologicandgeomorphicprocesses.Ingeneral,theeffectsoffireareincreasedsoilwaterandoverlandflowthatresultinacceleratederosionbyavarietyofsurfaceandmassmovementprocesses.Themagnitudeoftheeffectsonanecosystemdependstoalargedegreeonthefrequencyandintensityoffireandthesen-sitivityoftheecosystemtodisturbance(Swanson1981).Fireregimeandgeomorphicsensitivitymaybeusedtocharacterizeandcontrastthegeomorphicconsequencesoffireindifferentecosystems.Forexample,frequent,intensefireinhighlyerosivelandscapes,suchassteep-landchaparralinsouthernCalifornia,isanextremelyimportantcomponentofsomegeomorphicsystems.Theeffectsoffireareprogressivelylesssignificantinecosystemsinwhichfireislessfrequentand/orlessintense.FRCC,whichisameasureofvegetationdeparturefromreferencecondition,effectivelyevaluatespotentialveg-etationchangeeffectstowatershedcondition.Wildfireshavethepotentialtoexertatremendousinfluenceonthehydrologicconditionsofwatershedsinmanyforestecosystemsdependingonthefire’sseverity,duration,andfrequency.Wildfireis

thesingleforestdisturbancethathasthegreatestpotentialtochangewatershedcondition(DeBanoetal.1998).Anexten-sive,high-severitywildfirecandestroythevegetationandlitterlayerinawatershedanddetrimentallyalterphysicalpropertiesofthesoil,includinginfiltrationandpercolationcapacities.Thesecumulativefireeffectscanchangethewatershedcondi-tionfromgoodtopoor,resultinginunacceptableincreasestooverlandflow,erosion,andsoilloss(Nearyetal.2005).

Indicator ReferencesDeBano,L.F.;Neary,D.G.;Ffolliott,P.F.1998.Fire’seffectsonecosystems.NewYork:JohnWiley&Sons.333p.

Hann,W.;Shlisky,A.;Havlina,D.,etal.2004.Interagencyfireregimeconditionclassguidebook.LastupdateJanuary2008:Version1.3.0[HomepageoftheInteragencyandTheNatureConservancyFireRegimeConditionClassWebsite,U.S.DepartmentofAgricultureForestService,U.S.DepartmentoftheInterior,TheNatureConservancy,andSystemsforEnvironmentalManagement].http://www.frcc.gov.

Hannetal.2008.InteragencyandTheNatureConservancyFireRegimeConditionClassWebsite.U.S.DepartmentofAgricultureForestService,U.S.DepartmentoftheInterior,TheNatureConservancy,andSystemsforEnvironmentalManagement.www.frcc.gov.

Neary,D.G.;Ryan,K.C.;DeBano,L.F.,eds.2005(revised2008).Wildlandfireinecosystems:effectsoffireonsoilsandwater.Gen.Tech.Rep.RMRS-GTR-42-Vol.4.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation.250p.

Swanson,F.J.1981.Fireandgeomorphicprocesses.In:Mooney,H.A.,etal.,tech.coords.Fireregimesandecosystemproperties.Gen.Tech.Rep.WO-26.Washington,DC:U.S.DepartmentofAgriculture,ForestService:410–420.

U.S.DepartmentofAgriculture(USDA),ForestService.2009.Emergencystabilization,Burned-AreaEmergencyResponse(BAER).FSM2523.Washington,DC:U.S.DepartmentofAgriculture,ForestService.

34 Watershed Condition Classification Technical Guide

9. Forest Cover Condition

PurposeThisindicatoraddressesthepotentialforalteredhydrologicandsedimentregimesbecauseofthelossofforestcoveronforestlands.

Condition Rating Rule Set9. Forest Cover

Condition Indicator

TheamountofNationalForestSystem(NFS)forestlandinthewatershedthatisnotsupportingforestcoverisminor.

TheamountofNFSforestlandinthewatershedthatisnotsupportingforestcoverismoderate.

TheamountofNFSforestlandinthewatershedthatisnotsupportingforestcoverishigh.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Loss of forest cover

Lessthan5percentofNFSlandinthewatershedcontainscut-over,denuded,ordeforestedforestlandwhereappropriateforestcovershouldbereestablishedorrestoredtoachievethedesiredconditionsorotherapplicableforestplandirectionforNFSlands.

Between5and15percentofNFSlandinthewatershedcontainscut-over,denuded,ordeforestedforestlandwhereappropriateforestcovershouldbereestablishedorrestoredtoachievethedesiredconditionsorotherapplicableforestplandirectionforNFSlands.

Morethan15percentofNFSlandinthewatershedcontainscut-over,denuded,ordeforestedforestlandwhereappropriateforestcovershouldbereestablishedorrestoredtoachievethedesiredconditionsorotherapplicableforestplandirectionforNFSlands.

Additional Guidance1. Thisindicatorfocusesonthepresenceorabsenceofforest

cover(landsbeingmanagedasnaturalorseminaturalforest

ecosystems)onNFSlandsinconsiderationofNational

ForestManagementAct(NFMA)requirements.Because

non-NFSlandsdonothavethisFederallegalstandardfor

forestcover,thoseprivateandotherownershipsarenot

includedinratingthewatershedforthisindicator.

2. ThisindicatormayberatedN/Aifforestcover(asprecisely

definedbelow)isabsentinthewatershed.Ifforestcoveris

ratedN/A,rangelandconditionmustberated.Ineffect,we

characterizeawatershedashavingforestcover,rangelands,

orboth.Inmanywatersheds,wewillratebothindicators.

Notethatlandsthatmeettheforestlanddefinitionwillalso

normallyhavearangelandcomponenttotheunderstory.

Thisisespeciallytrueinthoseforestlandswherethetree

coverisrelativelysparse(normallylessthan60percent

canopycover),withtheamountofrangelandvegetationin-

creasingastreecanopycoverdecreases.Intheseinstances,

bothindicatorsshallbeevaluatedandrated.

3. Wewillproducethemostaccurateandrapidassessment

iftheForestServiceActivityTrackingSystem(FACTS)

databasereflectscurrentconditionsregardinglossofforest

coverandplannedorsubsequentreforestationactivities.Use

sourcessuchasRapidAssessmentofVegetationCondition

AfterWildfiretoupdateFACTSuntilfieldexamscanbe

conducted.ApplyFACTSbusinessrules.

4. Methodology:

a. Calculatepercentforeach6th-levelHUCwatershedusingtheformulabelow:

(100) AT

AD

where:

AD=area(inacres)ofNFSforestlandwithinthe

watershedthatisnotprovidingforestcover.NFSfor-estlandmustmeetallthreeofthefollowingcriteria:

i. isbeingmanagedasforestland(aland-usedeterminationdefinedbythelandandresourcesmanagementplan).

ii. hasbeencutover,denuded,orlostforestcoverfromanyhumanornaturaldisturbance.

iii. whereforestcoverhasnotyetbeenreestablished.Seethedefinitionof“forestcover”below.

AT=totalarea(inacres)ofNFSforestlandwithinthe

watershed.ObtainfrombestsourcesuchasNRM-NaturalResourceInformationSystems(NRIS),legacydatabases,otherassessments,remotesensing,orGISsources.

Watershed Condition Classification Technical Guide 35

b. Usingthepercentagedeterminedfromstepa,categorizeeachwatershed’sforestcoverconditionintoeitherCategory1,2,or3.

Definitionsforest cover.Areaswheretreesprovide10percentorgreatercanopycoverandarepartofthedominant(uppermost)vegetationlayer,includingareasthathavebeenplantedtoproducewoodycrops.Forthepurposesofwatershedcondi-tionassessment,landsthatdonotyetprovide10percenttreecanopycoverwillbeconsideredasmeetingthedefinitionofforestcoveriftheareashavebeencertifiedandrecordedinFACTSashavingbeenregeneratedtoappropriateforestcover(whetherthroughnaturalorartificialregeneration)asspecifiedinthelandandresourcesmanagementplan.“Appropriateforestcover”maybedefinedinoneormoreofthefollowingforestplancomponents(desiredconditions,standards,guidelines,managementareaprescriptionsandallocationmap,mapoflandssuitablefortimberproduction,orotherdirection).ThefollowingFACTScodesareapplicable(theseareusedtogeneratetheReforestationNeedsReport):HarvestCodes4101,4102,4110-17,4131-34,4143,4147,4150-52,4160,4162,4175-77,4183,and4194;CausalAgent:4250,4260,4265,4270,4280,and4290.

forest land.Landisatleast10percentoccupiedbyforesttrees,oritpreviouslyhadsuchtreecover,isandnotcurrentlydevelopedfornonforestuse.Landsdevelopedfornonforestuseincludeareasforcrops,improvedpasture,residential,oradministrativeareas,improvedroadsofanywidth,andadjoiningroadclearingandpower-lineclearingofanywidth(FSM1905).Note:Designatedwilderness,roadlessareas,andunproductiveforestlandthatmeettheabovedefinitionareclassifiedasforestland.

Rationale for IndicatorThisisafoundationalindicatorofwhetherforestecosystemsarebeingsustainedorlostovertime(“Maintainforestsasforests”).Theabilityofforeststoregulatewaterflowsandmaintainqualitysuppliesisaffectedbytheconditionoftheforestandtheoccurrenceofdisturbancesthatchangethestruc-ture,composition,andpatternofforestvegetation.Forestcoverisaprimaryterrestrialecosystemcomponentthatisimportanttowatershedcondition.Treesprovidemanywater-andsoil-relatedecosystemservicessuchasinterceptingprecipitationandprotectingsoil,regulatingsnowmelt,andstabilizingsteep

slopes.Extensivelossofforestcoverbecauseofseverewild-fires,widespreadinsectanddiseaseepidemics,timberharvest,weatherevents,andlong-termdroughtaffectrunoff,erosion,sedimentsupply,bankstability,largewoodydebrisretention,andstreamtemperaturerelationships(MacDonaldetal.1991,Meehan1991,Reid1993).Manyoftheeffectsfromtheseandsimilardisturbancesdecreaseaftertheinitialdisturbancebutmayremainabovenaturallevelsformanyyears(PlattsandMegahan1975).Carefullydesignedandexecutedmanagementactionscanbothrestorevegetativecoverandimprovewater-shedcondition.

Section4(Reforestation)oftheForestandRangelandRenew-ableResourcesPlanningActof1974,asamendedbyNFMA(NationalForestManagementActof1976)(16U.S.C.1601(d)(1)),establishesthepolicyofCongressthatallforestedlandsintheNFSbemaintainedinappropriateforestcoverwithspeciesoftrees,degreeofstocking,rateofgrowth,andconditionsofstanddesignedtosecurethemaximumbenefitsofmultiple-usesustainedyieldmanagementinaccordancewithlandmanage-mentplans.

Regardingprivatelands,notethatsomeStates(suchasCali-fornia)haveforestregulationsrequiringreestablishmentormaintenanceofforestcoveraftertimberharvest.

Indicator ReferencesMacDonald,L.H.;Smart,A.;Wissmar,R.C.1991.MonitoringguidelinestoevaluateeffectsofforestryactivitiesonstreamsinthePacificNorthwestandAlaska.EPA/910/9-91-001.Seattle,WA:U.S.EnvironmentalProtectionAgency,Region10.166p.

Meehan,W.R.,ed.1991.Influencesofforestandrangelandmanagementonsalmonidfishesandtheirhabitat.SpecialPublication19.Bethesda,MD:AmericanFisheriesSociety.

Platts,W.S.;Megahan,W.F.1975.Timetrendsinriverbedsedimentcompositioninsalmonandsteelheadspawningareas.In:Proceedings,40thAmericanwildlifeandnaturalresourcesconference:229–239.

Reid,L.M.1993.Researchandcumulativewatershedeffects.Gen.Tech.Rep.PSW-GTR-141.Albany,CA:U.S.DepartmentofAgriculture,ForestService,PacificSouthwestResearchStation.118p.

U.S.Government.1974.ForestandRangelandRenewableResourcesPlanningActof1974,asamendedbytheNationalForestManagementActof1976(16UnitedStatesCode1600-1614,472a).

36 Watershed Condition Classification Technical Guide

10. Rangeland Vegetation Condition

PurposeThisindicatoraddressesimpactstosoilandwaterrelativetothevegetativehealthofrangelands.

Condition Rating Rule Set

10. Rangeland Vegetation Condition Indicator

Rangelandsreflectnativeordesirednonnativeplantcompositionandcoveratnear-naturallevelsasdefinedbythesitepotential.

Rangelandsreflectnativeordesirednonnativeplantcompositionandcoverwithslighttomoderatedeviationcomparedtonaturallevelsasdefinedbythesitepotential.

Rangelandsreflectnativeordesirednonnativeplantcompositionandcoveraregreatlyreducedorunac-ceptablyalteredcomparedtonaturallevelsasdefinedbythesitepotential.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Rangeland vegetation condition

Vegetationcontributestosoilcondition,nutrientcycling,andhydrologicregimesatnear-naturallevels;functional/structuralgroups,numberofspecies,plantmortalityanddecadencecloselymatchthatexpectedforthesiteaverageannualplantproductionequalsorexceeds70percentofproductionpotential;litteramountisapproximatelywhatisexpectedforthesitepotentialandweather;thereproductivecapacityofnativeornaturalizedperennialplantstoproduceseedsorvegetativetillersissustainableoverthelongterm;andintroducedplantspeciesarebeingmanagedtofacilitatelong-termreplacementbysite-adaptednativespecies.

Functional/structuralgroupsandnumberofspeciesareslightlytomoderatelyreduced;somedeadand/ordecadentplantsarepresentabovewhatwouldbeexpectedforthesite;averageannualplantproductionis40to69percentofproductionpotential;litteramountismoderatelylessthanwouldbeexpectedrelativetositepo-tentialandweather;thereproductivecapacityofperennialnativeornatu-ralizedplantstoproduceseedsorvegetativetillersissomewhatreducedbutisstillsustainableoverthelongterm;and,introducedplantspeciesarebeingmanagedtofacilitatelong-termreplacementbysite-adaptednativespeciesortoensureadequategroundcovertoprotectthesoil.

Functional/structuralgroupsandnumberofspeciesaremoderatelytogreatlyreducedoralteredrelativetositepotential;deadand/ordecadentplantsaresignificantlymorecommonthanwouldbeexpectedforthesite;averageannualplantproductionislessthan40percentofproductionpotential;litterislargelyabsentorissparseanddisconnectedrela-tivetositepotentialandweather;thereproductivecapacityofnativeornaturalizedperennialplantstoproduceseedsorvegetativetillers(nativeorseeded)isseverelyreducedrelativetositepotentials;andintro-ducedplantspeciesaredominantandarenoteffectiveinprotectingthesiteandsoil.

Additional Guidance1. Rangelandsareratedrelativetobioticintegrity.Useguid-

anceanddefinitionsfoundinthepublication,“Interpreting

IndicatorsofRangelandHealth”(Pellantetal.2005),to

assistwiththisevaluation.Becauseofthecloseinterrela-

tionshipbetweensoils,hydrology,andvegetationcondition,

rangelandecologists,hydrologists,andsoilscientistsare

encouragedtoworktogethertomakethisevaluation.

Rangelandsoil/andsitestabilityandhydrologicfunction

areratedintheSoilsConditionindicator.Invasivespecies

areratedintheTerrestrialInvasiveSpeciesCondition

Indicator.

2. Ifforestplanrangelanddirectionexistsforecological

condition(functionalstructuralgroups,plantmortalityand

decadence,annualproduction,litteramounts,reproductive

capacity,orsimilarattributes),usethelocalthresholdsde-

rivedfromforestplanstandardsandguidelinestodetermine

theappropriaterating.

3. ThisindicatormayberatedN/Aifrangelands(asdefined

below)areabsentinthewatershed.Ifrangelandisrated

N/A,forestcoverconditionmustberated.Ineffect,we

characterizeawatershedashavingforestcover,rangelands,

orboth.Inmanywatersheds,wewillratebothindicators.If

rangelandsarenotpresent,wemaydecidetoexcludethem

onanindividualwatershedbasis,butinmanycasesthedeci-

sionwillapplytoanentirenationalforest.Coordinationwith

theRegionalOversightTeamisrecommended.

Definitionsbiotic integrity(integrityofthebioticcommunity).Capacityofasitetosupportcharacteristicfunctionalandstructuralcommu-nitiesinthecontextofnormalvariability,toresistlossofthis

Watershed Condition Classification Technical Guide 37

functionandstructurebecauseofadisturbance,andtorecoverfollowingsuchdisturbance(Pellantetal.2005).

functioning at risk.Rangelandsthathaveareversiblelossinproductivecapabilityandincreasedvulnerabilitytoirreversibledegradationbaseduponanevaluationofcurrentconditionsofthesoilandecologicalprocesses(NationalResearchCouncil1994).

functioning properly. Rangelandsthatarefunctioningprop-erlyrelativetotheecologicalsitedescriptionand/orecologicalreferenceareagiventhenormalrangeofvariabilityassociatedwiththesiteandclimate.

impaired. Rangelandsonwhichdegradationhasresultedinthelossofecologicalprocessesthatfunctionproperlyandthecapacitytoprovidevaluesandcommoditiestoadegreethatexternalinputsarerequiredtorestorethehealthoftheland(NationalResearchCouncil1994).

rangeland. Landonwhichtheindigenousvegetation(climaxornaturalpotential)ispredominantlygrasses,grass-likeplants,forbs,orshrubsandismanagedasanaturalecosystem.Ifplantsareintroduced,theyaremanagedsimilarly.Rangelandsincludenaturalgrasslands,savannas,shrublands,manydeserts,tundra,alpinecommunities,marshes,andwetmeadows(SocietyofRangeManagement1999).(Pellantetal.2005)includeoakandpinyon-juniperwoodlandsinthisdefinition).Inthisassessment,wewillratetheconditionofmarshesundertheRiparian/WetlandVegetationindicator.

Rationale for IndicatorRangelandhealthisafunctionof(1)soil/sitestability—thecapacityofthesitetolimitredistributionandlossofsoilresources(includingnutrientsandorganicmatter)bywindandwater;(2)hydrologicfunction—thecapacityofthesitetocapture,store,andsafelyreleasewaterfromrainfall,runoff,andsnowmeltandtorecoverfollowingdisturbance;and(3)theintegrityofthebioticcommunity—thecapacityofthesitetosupportecologicalprocesseswithinthenormalrangeofvari-abilityexpectedforthesiteandtorecoverafteradisturbance(Pellantetal.2005).Impropermanagementcandecreasegroundcoverandreducespeciesdiversity,compositionand/orcover.Impropermanagementcanresultindiminishedwatershedfunctionalitythroughsoilcompaction,whichmay

increaseoverlandflowandleadtoincisedchannelsandbankerosion(BohnandBuckhouse1986,KaufmanandKreuger1984,Platts1991).Conversely,propermanagementcanlessenadverseeffects(ClaryandWebster1989).Insummary,rangelandvegetativecommunitiesthatarefunctioningproperlyprovideforconditionsthatsustainsoilstability,hydrologicfunction,andbioticdiversity.

Indicator ReferencesBohn,C.C.;Buckhouse,J.C.1986.Effectsofgrazingmanage-mentonstreambanks.Proceedings:NorthAmericanwildlifenaturalresourceconference.51:265–271.

Clary,W.P.;Webster,B.F.1989.ManaginggrazingofriparianareasintheIntermountainRegion.Gen.Tech.Rep.INT-263.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainResearchStation.11p.

Johnson,K.L.1992.Managementforwaterqualityonrange-landthroughbestmanagementpractices:theIdahoapproach.In:Watershedmanagement:balancingsustainabilityandenvironmentalchange.NewYork:Springer-Verlag:415–441.

Kaufmann,J.B.;Kreuger,W.C.1984.Livestockimpactsonriparianecosystemsandstreamsidemanagementimplications:areview.JournalofRangeManagement.37:430–438.

NationalResearchCouncil.1994.Rangelandhealth:newmeth-odstoclassify,inventory,andmonitorrangelands.Washington,DC:NationalAcademyPress,NationalResearchCouncil.180p.

Pellant,M.;Shaver,P.;Pyke,D.A.;Herrick,J.E.2005.Interpretingindicatorsofrangelandhealth.Tech.Ref.1734-6.BLM/WO/ST-00/001+1734/REV05.Denver,CO:U.S.Depart-mentoftheInterior,BureauofLandManagement,NationalScienceandTechnologyCenter.122pp.Ver.4.http://www.blm.gov/nstc/library/pdf/1734-6rev05.pdf.(24March2011).

Platts,W.S.1991.Livestockgrazing.In:Influenceofforestandrangelandmanagementonsalmonidfishesandtheirhabitats.SpecialPublication19.Bethesda,MD:AmericanFisheriesSociety:389–423.

SocietyforRangeManagement.1999.Aglossaryoftermsusedinrangemanagement.Denver,CO:SocietyforRangeManagement.20p.

38 Watershed Condition Classification Technical Guide

11. Terrestrial Invasive Species Condition

PurposeThisindicatoraddressespotentialimpactstosoil,vegetation,andwaterresourcesduetoterrestrialinvasivespecies(includingvertebrates,invertebrates,andplants).

Condition Rating Rule Set

11. Terrestrial Invasive Species Condition Indicator

Fewornopopulationsofterrestrialinvasivespeciesinfestthewatershedthatcouldnecessitateremovaltreatmentsthatwouldaffectsoilandwaterresources.

Populationsofterrestrialinvasivespeciesareestablishedwithinthewatershedsand/ortherateofexpansionand/orpotentialforimpactonwatershedresourcesismoderate.

Terrestrialinvasivespeciespopula-tionsinfestsignificantportionsofthewatershed,areexpandingtheirrange,andthereisdocumentationofwidespreadimpactstowatershedresources.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Extent and rate of spread

Few(lessthan10percent)ornopopulationsofterrestrialinvasivespeciesinfestthewatershedthatcouldnecessitateremovaltreatmentstoprotect,soil,nativevegetation,orotherwaterresources.Thosethatoc-curaresmallinextentandscatteredinnature.Therateofspreadand/orpotentialforimpactonwatershedresourcesisminimalorunlikely.Managementinterventionmaybenecessarytopreventincreasedriskofspreadorinvasion.Integratedman-agementtreatmentsmaytemporarilynegativelyaffectsoil,nativevegeta-tion,andotherwaterresources,butthescaleandscopewouldbeminor.

Populationsofterrestrialinvasivespeciesareestablishedwithin(10to25percent)thewatershedand/ortherateofspreadand/orpotentialforim-pactonsoil,vegetation,orotherwa-terresourcesismoderate.Integratedtreatmentsaffect10to25percentofthewatershedandmustbeongoingjusttokeeptheinvasivespeciesincheck.Managementinterventionwillberequiredtopreventincreasedlevelofrisk.

Populationsofterrestrialinvasivespeciesinfestsignificantportions(morethan25percent)ofthewater-shed,maybeexpandingtheirrange,andwidespreadimpactstosoil,nativevegetation,orotherwaterresourceshavebeendocumented.Treatmentsforcontainmentaffectmorethan25percentofthewater-shed,andmanagementadjustmentsand/ortreatmentsneedtobeongoingjusttokeeptheinvasivespeciesincheck.Managementinterventionisnecessarytoalleviatesignificantresourcedamageandincreaseddegradationofwatershedcondition.

Additional Guidance1. Thisindictorappliesonlytoterrestrialvertebrates,

invertebrates,andplantsthatmayhaveanadverseeffecton

soilandwaterresources.Aquaticinvasivespeciesarecon-

sideredunderAquaticBiotaCondition.Invasiveinsectsand

pathogens(includingnativeforestinsectpestsanddiseases)

arecoveredundertheForestHealthindicator.

2. Infestationextent.Infestationextentisusuallyevaluated

withriskassessmentsandotherinventoryandevaluation

proceduresateitherthespecieslevel,sitelevel,orproject

level.Forexample,theextentoftheterrestrialinvasivespe-

ciesinfestationonanindividualspecies-levelmayindicate

thatthewatershedconditionratingis“good,”butwhen

viewedwithinthecontextofallthedocumentedterrestrial

invasivespeciesinfestingtheentirewatershed,theoverall

conditionratingmaybeconsidered“poor.”

3. Integratedmanagementtreatmentsagainstterrestrialinvasive

speciesmaytemporarilynegativelyaffectsoil,nativevegeta-

tion,andotherwatershedresources,requiringarestoration

componenttotheprojectplan.

Definitionsnative species. Withrespecttoaparticularecosystem,aspeciesthathistoricallyoccurredinthatecosystem.

terrestrial invasive species.Aterrestrialinvasivespecies(includingvertebrates,invertebrates,pathogens,andplants)isaspeciesnotnativetotheecosystemlocationunderconsider-ation,anditsintroductioncausesorislikelytocauseeconomicorenvironmentalharm,orharmtohumanhealth.Thelackofnaturalecologicalcontrols(whichtypicallykepttheseexoticspeciesregulatedintheirnativehome)allowstheseexoticspeciestosignificantlyharmtheareastheyinvade.Terrestrialinvasivespeciesreferstoharmfulexoticspeciesthatarefound

Watershed Condition Classification Technical Guide 39

oroccuronthelandsurfaceratherthaninaquaticenviron-ments.Manyexoticplantandanimalspeciesoccupyterrestrialhabitats,buttheyarenotnecessarilyharmfulandtypicallycauselittletonoeconomicorenvironmentaldamage,anddonotout-competeordisplacenativeplantsoranimals.

Rationale for IndicatorWhentheyproducesignificantchangesinecologicalprocesses,invasivespeciesmaycauseenvironmentalharmtowatershedconditions,sometimesacrossbroadgeographicalareas,whichresultsinconditionsthatnativeanimalandplantcommunitiescannottolerate.Someinvasivespeciescansignificantlyaltereffectivegroundcover,erosionrates,andnutrientcycling;changethefrequencyandintensityofwildfires;oralterthehydrologyofrivers,streams,lakes,andwetlands(Macketal.2000).Forexample,forcheatgrassthelinktosoilandhydrologicprocessesisthroughachainoflogicthatrecognizesthatwhilecheatgrassmayseasonallyprovideadequatecoverforwater-shedprotection,becauseitisanannualthatitleaveslittletonovegetativesoilprotectionindryyearstoprovidesoilprotection.Consequently,itsoverallabilitytoprotectthesoilisminimal(andiswelloutsideofthenativesitepotential).Also,sincedisturbanceofthesoilisthemainreasoncheatgrassspreads,itiscloselyassociatedwithanundesirableconditionfromasoilandwaterperspective.CheatgrassintheGreatBasinregionhasbeenshowntodecreasetheintervalbetweentheoccurrencesofwildfiresfromonceevery70to100yearstoevery3to5yearsbecauseitformsdensestandsoffinefuelan-nually.Thisdecreaseinintervalbetweenwildfirescausesmoreseveresoilerosionanddramaticallyaltersdesirablenativeplantcommunities(Knapp1996;Pimenteletal.2000).Similarly,tamarisk(saltcedar)[Tamarixspp.]intheSouthwestdisruptsthestructureandstabilityofNorthAmericannativeriparianplantcommunitiesbyout-competingandreplacingnativeplant

species,increasingsoilsalinity,monopolizinglimitedsourcesofmoisture,andincreasingthefrequency,intensity,andeffectoffiresandfloods.TamariskhastakenoverlargesectionsofriparianecosystemsintheWesternUnitedStatesthatwereoncehometonativecottonwoodsandwillows(Christensen1962;Stromberg1998).Inaddition,infestationsofterrestrialinvasivevertebratespeciessuchaswild(feral)pigscausewidespreadsoilerosion,harborinfectiousdiseases,damagenativevegetation,andaggressivelypreyuponnativevertebrateandinvertebratewildlife(USDA-APHIS1999).

Indicator ReferencesChristensen,E.M.1962.TherateofnaturalizationofTamarixinUtah.AmericanMidlandNaturalist.68(1):51–57.

Knapp,P.A.1996.Cheatgrass(Bromus tectorumL.)dominanceintheGreatBasinDesert:history,persistence,andinfluencestohumanactivities.GlobalEnvironmentalChange.6(1):37–52.

Mack,R.;Simberloff,D.W.M.;Lonsdale,H.,etal.2000.Bioticinvasions:causes,epidemiology,globalconsequences,andcontrol.EcologicalApplications.10:689–710.

Pimentel,D.;Lach,L.;Zuniga,R.;Morrison,D.2000.Envi-ronmentalandeconomiccostsofnonindigenousspeciesintheUnitedStates.Bioscience.50(1):53–65.

Stromberg,J.C.1998.Functionalequivalencyofsaltcedar(Tamarix chinensis)andFremontcottonwood(Populus fre-montii)alongafree-flowingriver.Wetlands.18:675–686.

U.S.DepartmentofAgriculture(USDA),AnimalandPlantHealthInspectionService(APHIS).1999.Wildpigs:hiddendangerforfarmersandhunters.AgriculturalInformationBulletin.620:3–7.

40 Watershed Condition Classification Technical Guide

12. Forest Health Condition

PurposeThisindicatoraddressesforestmortalityimpactstohydrologicandsoilfunctionduetomajorinvasiveandnativeforestpest,insect,anddiseaseoutbreaksandairpollution.

Condition Rating Rule Set12. Forest

Health Condition Indicator

Asmallamountoftheforestedlandinthewatershedisanticipatedtoexperienceorisexperiencingtreemortalityfrominsectsanddiseaseandfromairpollution.

Amoderateamountoftheforestedlandinthewatershedisanticipatedtoorisexperiencingtreemortalityfrominsectsanddiseaseandfromairpollution.

Alargeamountoftheforestedlandinthewatershedisanticipatedtoorisexperiencingtreemortalityfrominsectsanddiseaseandfromairpollution.

Attributes Good (1) Functioning Properly Fair (2) Functioning at Risk Poor (3) Impaired Function

Insects and disease

Lessthan20percentoftheforestedlandinthewatershedisatimminentriskofabnormallyhighlevelsoftreemortality(alevelof25percentinastandisdeemedtorepresentanuncommon,ratherextraordinarilyhighamountofmortality)becauseofinsectsanddisease.

Between20and40percentoftheforestedlandinthewatershedisatimminentriskofabnormallyhighlevelsoftreemortality(alevelof25percentisdeemedtorepresentanuncommon,ratherextraordinarilyhighamountofmortality)becauseofinsectsanddisease.

Morethan40percentoftheforestedlandinthewatershedisatimminentriskofabnormallyhighlevelsoftreemortality(alevelof25percentisdeemedtorepresentanuncommon,ratherextraordinarilyhighamountofmortality)becauseofinsectsanddisease.

Ozone Ozonecausesadecreaseinbiomassgrowthinfewerthan20percentoftheyearsevaluated.

Ozonecausesadecreaseinbiomassgrowthin20to40percentoftheyearsevaluated.

Ozonecausesadecreaseinbiomassgrowthinmorethan40percentoftheyearsevaluated,and/orthewatershediswithinanareaexceed-ingtheNationalAmbientAirQualityStandardsforground-levelozone.

Additional Guidance1. Insectsanddisease.Onceoutbreaksoccur,wecandovery

littletohaltorslowthespread,thusinthisconditionclas-

sification,wetreatthepresenceofimminentoutbreaksasif

theundesirableconditionalreadyexists.

2. Insectsanddisease.Forestswillusethe2006National

InsectandDiseaseRiskMap(NIDRM)(Kristetal.2007)as

abeginningpointforevaluatingpotentialfutureconditions.

AreasatriskonNIDRMrepresentlocationsatwhichcurrent

standorecologicalconditionsindicatethatpotentialexists

forinsectanddiseaseactivityinthenearterm(i.e.,next

15years)ifremediationisnotundertaken.NIDRMisan

integrationof188individualriskmodelsconstructedwithin

acommonframeworkthatisadaptabletoregionalvariations

incurrentandfutureforesthealth.The2006riskassessment

introducedaconsistent,repeatable,transparentprocessfrom

whichspatialandtemporalriskassessmentswereatvarious

scales.Primarycontributorstotheriskofmortalityincluded

mountainpinebeetle,oakdeclineonredoaks,southernpine

beetle,rootdiseases,gypsymoth,pineengraverbeetle,fir

engraverbeetle,Douglas-firbeetle,sprucebeetle,hardwood

decline,andwesternpinebeetle.Thethresholdformapping

riskisthefollowing:theexpectationthat,withoutremedia-

tion,25percentormoreofthestandinglivebasalareaon

treesgreaterthan1inchindiameterwilldieoverthenext

15yearsbecauseofinsectsanddiseases.Kristetal.(2007)

mappedwatershedsmostatriskatthe4th-levelHUC(see

fig.11)showingthepercentageofforestedlandsatrisk.The

lowestriskcategory(0–20percent)isassignedasCondi-

tionRating1,the20to40percentcategoryisassignedas

ConditionRating2,andmorethan40percentisassigned

asConditionRating3.Thesebreakpointsareconsistent

withrecentinvestigationsofwatershedimpactsfollowing

mountainpinebeetleoutbreakinFraserExperimentalForest

inColorado(Rhoadesetal.2008).

3. Insectsanddisease.Finerscalemapsatthe6th-levelHUCs

areavailablefromtheForestHealthTechnologyEnterprise

Team(FHTET)inFortCollins,CO.

Watershed Condition Classification Technical Guide 41

4. Insectanddiseasedetectionsurveys.Aerialsketchmapping

istheprimarydata-collectionmethodforthisannualdataset.

Observerscodepolygondatawithdamageagent,damage

type,andarangeofotherpossibleattributesincludinghost,

severity,andapproximatedeadtreesperacre.Datadescrib-

ingtheconditionwithinthepolygoncanbecontinuousor

discontinuousandservesmostlyasasnapshotintimeof

currentandpastactivity.Thesedataaresubjectiveinnature,

butmayaddvaluableinformationforwatershedassessment,

particularlyinareaswherelargemortalityordefoliation

eventshaveoccurred.InformationaboutForestService

InsectandDiseaseDetectionSurveysareavailablefrom

http://www.fs.fed.us/foresthealth/technology/adsm.shtml.

ContactthelocalForestHealthSpecialistforassistancewith

assessmentofcurrentinsectordiseaseoutbreaks.

5. Ozone.Assessmentsshouldusedatafromanearbyambi-

entozonemonitororthenationalGIScoveragebased

ontheozonemonitoringnetwork.Theattributeratingis

determinedbythepercentageofyearsduringwhichmodel-

ingshowsthatbiomassgrowthisreducedby10percent

ormore.ContactthelocalAirSpecialistorForestHealth

Specialistforassistancewiththisanalysis.

6. Ozone.Anyyearswherethesoilmoistureislow(i.e.,during

adrought),thewatershed(s)shouldbeclassifiedas“Good”

becauseitisunlikelytheozoneexposurescontributedtoany

biomassreductions.

7. Ozone.Theforestsareencouragedtoobtainozonebioin-

dicatordatafromthenationalForestHealthMonitoring

programorbyconductingfieldsurveysifawatershedis

consistentlybeingratedaspoor.Thepresenceofozone

symptomsonozone-sensitivespeciesindicatesaphysiologi-

calresponsetothechronicoracuteozoneexposure.

Rationale for IndicatorHealthyforestsareanimportantcomponentofwatershedhealth.Twoprimaryinfluencesonforesthealthareinsectsanddisease,andairpollution.Insectsanddiseasealongwithfireareimportantregulatorsofforestchange.Insectsanddiseasecannegativelyaffectresourcevaluesandecosystemfunctionsincludingreducingtheabilityofforestcanopiestointerceptsnowandpreventexcessiverunoff.Recentincreasesininsectoutbreakshavecreatedaresurgenceofinterestintheireffectsonwaterquantity,waterquality,andincreasedfirerisks.Relativelyfewstudieshaveexaminedthehydrologicresponseofforeststoinsectsanddisease,especiallyatlong-termscales

orinlargewatersheds(WSTB2008).Althoughwestillhavemuchtounderstand,wecanextrapolatetheeffectsofinsectsanddiseaseonwatershedconditionfromgeneralprinciplesderivedfromstudiesoftimberharvestandfire(MacDonaldandStednick2003).Investigationsofarecentoutbreakofmountainpinebeetle(Dendroctonus ponderosae)inFraserExperimentalForestinColoradoindicatethatspringandfallnitratecon-centrationswere30percenthigherduring6yearsfollowingonsetofbarkbeetleactivitythanpreoutbreakconcentrations(Rhoadesetal.2009).Airpollutioneffectsareaddressedbytheeffectofground-levelozoneonforestvegetation.Ozonecancausereductionsinphotosynthesis,whichcandecreasetheamountofrootgrowth,treeheight,andcrownwidth,whichmakestheweakenedtreesmoresusceptibletoinsectattacks(Lefohn1992,LefohnandRuneckles1987).

Indicator ReferencesKrist,F.J.,Jr.;Sapio,F.J.;Tkacz,B.M.2007.Mappingriskfromforestinsectsanddiseases.FHTET2007-06.WashingtonDC:U.S.DepartmentofAgriculture,ForestService,ForestHealthProtection,ForestHealthTechnologyEnterpriseTeam.http://www.fs.fed.us/foresthealth/technology/nidrm.shtml.(August2007).

Lefohn,A.S.1992.Ozonestandardsandtheirrelevanceforprotectingvegetation.In:Lehohn,A.S.,ed.Surface-levelozoneexposureandtheireffectsonvegetation.Chelsea,MI:LewisPublishers:325–359.

Lefohn,A.S.;Runeckles,V.C.1987.Establishingastandardtoprotectvegetation—ozoneexposure/doseconsiderations.AtmosphericEnvironment.21:561–568.

MacDonald,L.H.;Stednick,J.D.2003.Forestsandwater:astate-of-the-artreviewforColorado.ColoradoWaterResourcesResearchInstituteRpt.No.196.Denver,CO:ColoradoWaterResourcesResearchInstitute.

Rhoades,C.;Elder,K.;Hubbard,R.;Dixon,M.2008.Stream-waternitrogenduringmountainpinebeetleinfestationofsub-alpinewatershedsattheU.S.ForestService,FraserExperimentalForest.PosterpresentedatAmericanGeophysicalUnion,fallmeeting2008.http://www.fs.fed.us/rm/boise/AWAE/scientists/profiles/Rhoades/AGU_FEF_MPB_final.pdf.(24March2011).

WaterScienceandTechnologyBoard(WSTB).2008.Hydro-logiceffectsofachangingforestlandscape.Washington,DC:NationalAcademiesPress,CommitteeonHydrologicImpactsofForestManagement.http://www.nap.edu/openbook.php?record_id=12223&page=R1.(24March2011).

Watershed Condition Classification Technical Guide

United States Department of Agriculture

Forest Service

FS-978

July 2011