87
Wave-equation tomography using image-space phase-encoded data Claudio Guerra*, Yaxun Tang and Biondo Biondi SEG Houston – 2009

Wave-equation tomography using image-space phase-encoded data

  • Upload
    yael

  • View
    27

  • Download
    0

Embed Size (px)

DESCRIPTION

Wave-equation tomography using image-space phase-encoded data. Claudio Guerra*, Yaxun Tang and Biondo Biondi. SEG Houston – 2009. Motivation. Velocity determination is a difficult task, especially in areas of complex geology. Motivation. - PowerPoint PPT Presentation

Citation preview

Page 1: Wave-equation tomography using image-space phase-encoded data

Wave-equation tomography using image-space

phase-encoded data

Claudio Guerra*, Yaxun Tang and Biondo Biondi

SEG Houston – 2009

Page 2: Wave-equation tomography using image-space phase-encoded data

2

• Velocity determination is a difficult task, especially in areas of complex geology

Motivation

Page 3: Wave-equation tomography using image-space phase-encoded data

3

• Velocity determination is a difficult task, especially in areas of complex geology

• Wave-equation tomography (WETom) is a robust method to estimate the slowness model– uses wavefields as carriers of information– insensitive to multi-pathing

Motivation

Page 4: Wave-equation tomography using image-space phase-encoded data

4

• Velocity determination is a difficult task, especially in areas of complex geology

• Wave-equation tomography (WETom) is a robust method to estimate the slowness model– uses wavefields as carriers of information– insensitive to multi-pathing

– computationally expensive

Motivation

Page 5: Wave-equation tomography using image-space phase-encoded data

5

• WETom can be accelerated by– solving in a target-oriented way

Motivation

Page 6: Wave-equation tomography using image-space phase-encoded data

6

• WETom can be accelerated by– solving in a target-oriented way

– using generalized sources • Shen and Symes (2008) – image-space WETom• Vigh and Starr (2008) – data-space WETom

Motivation

Page 7: Wave-equation tomography using image-space phase-encoded data

7

• Image-space generalized sources– The prestack exploding-reflector modeling (Biondi,

2006) synthesizes areal data from a prestack image obtained with wave-equation methods

Motivation

Page 8: Wave-equation tomography using image-space phase-encoded data

8

• Image-space generalized sources– The prestack exploding-reflector modeling (Biondi,

2006) synthesizes areal data from a prestack image obtained with wave-equation methods

– Wavefields are upward propagated to the top of the target saving computer time

Motivation

? ? ?

z

x

Page 9: Wave-equation tomography using image-space phase-encoded data

9

• Image-space generalized sources– The prestack exploding-reflector modeling (Biondi,

2006) synthesizes areal data from a prestack image obtained with wave-equation methods

– Wavefields are upward propagated to the top of the target saving computer time

– Additional savings when combining modeling experiments

Motivation

Page 10: Wave-equation tomography using image-space phase-encoded data

10

z

x

z

Optimized

Background True x

Motivation – reduce costs in WETom

5% cost

Page 11: Wave-equation tomography using image-space phase-encoded data

11

• Introduction• Prestack exploding-reflector modeling• Image-space phase-encoded wavefields

(ISPEW)

• Image-space WETom using ISPEW

• Numerical example

• Conclusions

Agenda

Page 12: Wave-equation tomography using image-space phase-encoded data

12

• The exploding reflector assumes all energy focused at zero-subsurface offset

• Generalizes the exploding reflector concept

Prestack exploding–reflector modeling

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 13: Wave-equation tomography using image-space phase-encoded data

13

• Generalizes the exploding reflector concept• Uses a partially focused wave-equation prestack

image as initial condition

Prestack exploding–reflector modeling

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 14: Wave-equation tomography using image-space phase-encoded data

14

• Generalizes the exploding reflector concept• Uses a partially focused wave-equation prestack

image as initial condition• Models areal source and receiver wavefields

suitable for MVA

Prestack exploding–reflector modeling

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 15: Wave-equation tomography using image-space phase-encoded data

15

• The exploding–reflector assumes zero–subsurface offset reflectivity– Slowness inaccuracy spreads energy to nonzero-offsets

• Generalizes the exploding reflector concept• Uses a partially focused wave-equation prestack

image as initial condition• Models areal source and receiver wavefields

suitable for MVA• Can be used in a target–oriented way since the

wavefields can be collected at any depth

Prestack exploding–reflector modeling

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 16: Wave-equation tomography using image-space phase-encoded data

16

Prestack exploding–reflector modeling

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 17: Wave-equation tomography using image-space phase-encoded data

17

Prestack exploding–reflector modeling

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 18: Wave-equation tomography using image-space phase-encoded data

18

Prestack exploding–reflector modeling

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 19: Wave-equation tomography using image-space phase-encoded data

19

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 20: Wave-equation tomography using image-space phase-encoded data

20

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 21: Wave-equation tomography using image-space phase-encoded data

21

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 22: Wave-equation tomography using image-space phase-encoded data

22

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 23: Wave-equation tomography using image-space phase-encoded data

23

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 24: Wave-equation tomography using image-space phase-encoded data

24

Prestack exploding–reflector modeling

angle

OriginalADCIG

PermADCIG

z

angle

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 25: Wave-equation tomography using image-space phase-encoded data

25

• Combination of modeling experiments– reduces the data size

Prestack exploding–reflector modeling

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 26: Wave-equation tomography using image-space phase-encoded data

26

• Combination of modeling experiments– reduces the data size

– generates crosstalk

Prestack exploding–reflector modeling

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 27: Wave-equation tomography using image-space phase-encoded data

27

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 28: Wave-equation tomography using image-space phase-encoded data

28

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 29: Wave-equation tomography using image-space phase-encoded data

29

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 30: Wave-equation tomography using image-space phase-encoded data

30

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 31: Wave-equation tomography using image-space phase-encoded data

31

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 32: Wave-equation tomography using image-space phase-encoded data

32

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 33: Wave-equation tomography using image-space phase-encoded data

33

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 34: Wave-equation tomography using image-space phase-encoded data

34

Prestack exploding–reflector modeling

z

x

z

x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 35: Wave-equation tomography using image-space phase-encoded data

35

Prestack exploding–reflector modeling

z

x h x h

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 36: Wave-equation tomography using image-space phase-encoded data

36

• Phase-encode the modeling experiments– reduces the data size

Image-space phase-encoded wavefields

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 37: Wave-equation tomography using image-space phase-encoded data

37

• Phase-encode the modeling experiments– reduces the data size

– attenuates crosstalk

Image-space phase-encoded wavefields

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 38: Wave-equation tomography using image-space phase-encoded data

38

• Phase-encode the modeling experiments– reduces the data size

– attenuates crosstalk

– keeps the kinematic information

Image-space phase-encoded wavefields

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 39: Wave-equation tomography using image-space phase-encoded data

39

• Phase-encode the modeling experiments– reduces the data size

– attenuates crosstalk

– keeps the kinematic information

– requires picking the prestack image

Image-space phase-encoded wavefields

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 40: Wave-equation tomography using image-space phase-encoded data

40

• Phase-encode the modeling experiments– reduces the data size

– attenuates crosstalk

– keeps the kinematic information

– requires picking the prestack image

– allows selecting key reflectors

Image-space phase-encoded wavefields

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 41: Wave-equation tomography using image-space phase-encoded data

41

Image-space phase-encoded wavefields

Source wavefield

Receiver wavefield

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 42: Wave-equation tomography using image-space phase-encoded data

42

Image-space phase-encoded wavefields

Source wavefield initial condition

Receiver wavefield initial condition

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 43: Wave-equation tomography using image-space phase-encoded data

43

Image-space phase-encoded wavefields

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 44: Wave-equation tomography using image-space phase-encoded data

44

Image-space phase-encoded wavefields

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 45: Wave-equation tomography using image-space phase-encoded data

45

Image-space phase-encoded wavefields

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 46: Wave-equation tomography using image-space phase-encoded data

46

Image-space phase-encoded wavefields

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 47: Wave-equation tomography using image-space phase-encoded data

47

Image-space phase-encoded wavefields

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 48: Wave-equation tomography using image-space phase-encoded data

48

Image-space phase-encoded wavefields

z

x h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 49: Wave-equation tomography using image-space phase-encoded data

49

Image-space phase encoded wavefields

x

x

t

Source wavefield

Receiver wavefield

t

0

0

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 50: Wave-equation tomography using image-space phase-encoded data

50

Image-space phase-encoded wavefields

z

x h x h

No phase-encoding Random phase-encoding

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 51: Wave-equation tomography using image-space phase-encoded data

51

Image-space WETom with ISPEW

DownwardPropagation

Adjoint imaging

Adjoint scattering

Backgroundwavefields

Perturbedwavefields

Slownessperturbation

Scattering

Imaging

Scatteredwavefields

Perturbedimage

Slownessperturbation

DownProp

Perturbedwavefields

Perturbedimage

UpProp

Scatteredwavefields

Forward

Adjoint

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 52: Wave-equation tomography using image-space phase-encoded data

52

Image-space WETom with ISPEW

Scattering

Imaging

Scatteredwavefields

Perturbedimage

Slownessperturbation

DownProp

Perturbedwavefields

Forward

Backgroundwavefields

DownwardPropagation

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 53: Wave-equation tomography using image-space phase-encoded data

53

Image-space WETom with ISPEW

Imaging

Scatteredwavefields

Perturbedimage

DownProp

Perturbedwavefields

Forward

Backgroundwavefields

DownwardPropagation

ScatteringSlowness

perturbation

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 54: Wave-equation tomography using image-space phase-encoded data

54

Image-space WETom with ISPEW

Imaging

Perturbedimage

Perturbedwavefields

Forward

Backgroundwavefields

DownwardPropagation

ScatteringSlowness

perturbation

Scatteredwavefields

DownProp

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 55: Wave-equation tomography using image-space phase-encoded data

55

Image-space WETom with ISPEW

Forward

Backgroundwavefields

DownwardPropagation

ScatteringSlowness

perturbation

Scatteredwavefields

DownProp

Imaging

Perturbedimage

Perturbedwavefields

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 56: Wave-equation tomography using image-space phase-encoded data

56

Image-space WETom with ISPEW

Adjoint imaging

Adjoint scattering

Perturbedwavefields

Slownessperturbation

Perturbedimage

UpProp

Scatteredwavefields

Adjoint

Backgroundwavefields

DownwardPropagation

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 57: Wave-equation tomography using image-space phase-encoded data

57

Image-space WETom with ISPEW

Adjoint scattering

Perturbedwavefields

Slownessperturbation

UpProp

Scatteredwavefields

Adjoint

Backgroundwavefields

DownwardPropagation

Adjoint imaging

Perturbedimage

z

x hz

x

z

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 58: Wave-equation tomography using image-space phase-encoded data

58

Image-space WETom with ISPEW

Adjoint scattering

Perturbedwavefields

Slownessperturbation

Adjoint

Backgroundwavefields

DownwardPropagation

Adjoint imaging

Perturbedimage

UpProp

Scatteredwavefields

z

x

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 59: Wave-equation tomography using image-space phase-encoded data

59

Image-space WETom with ISPEW

Perturbedwavefields

Adjoint

Backgroundwavefields

DownwardPropagation

Adjoint imaging

Perturbedimage

UpProp

Scatteredwavefields

Adjoint scattering

Slownessperturbation

z

x0.0

-0.02

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 60: Wave-equation tomography using image-space phase-encoded data

60

Image-space WETom with ISPEW

DownwardPropagation

Adjoint imaging

Adjoint scattering

Backgroundwavefields

Perturbedwavefields

Slownessperturbation

Scattering

Imaging

Scatteredwavefields

Perturbedimage

Slownessperturbation

DownProp

Perturbedwavefields

Perturbedimage

UpProp

Scatteredwavefields

Adjoint

Forward

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 61: Wave-equation tomography using image-space phase-encoded data

61

Image-space WETom with ISPEW

Z

X X

Background image True slowness

401

sh

ot p

rofil

es

Page 62: Wave-equation tomography using image-space phase-encoded data

62

Image-space WETom with ISPEW

z

x x x

z

Background image Perturbed image Slowness perturbation

401

sh

ot p

rofil

es1

1 im

ag

e-sp

ace

are

al s

ho

ts

Page 63: Wave-equation tomography using image-space phase-encoded data

63

• Solves for the slowness model that minimizes the nonlinear objective function

Image-space WETom – optimization

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 64: Wave-equation tomography using image-space phase-encoded data

64

• Solves for the slowness model that minimizes the nonlinear objective function

• WEMVA (Sava, 2004 and Sava and Biondi, 2004)

• DSVA (Shen 2004 and Shen and Symes, 2008)

Image-space WETom – optimization

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 65: Wave-equation tomography using image-space phase-encoded data

65

Image-space WETom – optimization

Backgroundwavefields

Slownessperturbation

Perturbedimage

DownwardPropagation

Slownessupdate

Imaging

Focusingoperator

FocusedImage?

No

Yes

End

Backgroundimage

Adjoint

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 66: Wave-equation tomography using image-space phase-encoded data

66

Numerical example

• Marmousi slowness model

True slowness Background slowness

z

x x0.66

0.22

slo

wn

ess(

s/km

)

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 67: Wave-equation tomography using image-space phase-encoded data

67

Numerical example

1.2

1.0

0.8

z

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

• Marmousi slowness model

True slowness Background slowness

z

x x0.66

0.22

slo

wn

ess(

s/km

)

Slowness ratio

Page 68: Wave-equation tomography using image-space phase-encoded data

68

Numerical example

• Two-way data 376 shots max.offset=6000m

• Background imageh

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 69: Wave-equation tomography using image-space phase-encoded data

69

Numerical example

h

z

x

• Image-space phase-encoded wavefields 12 reflectors

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 70: Wave-equation tomography using image-space phase-encoded data

70

Numerical example

• Image-space phase-encoded wavefields 12 reflectors

h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 71: Wave-equation tomography using image-space phase-encoded data

71

Numerical example

• Marmousi slowness model

True slowness

z

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

x0.66

0.22

slo

wn

ess(

s/km

)

Optimized slowness

x

Page 72: Wave-equation tomography using image-space phase-encoded data

72

Numerical example

• Marmousi slowness model

Smooth true slowness

z

x0.66

0.22

slo

wn

ess(

s/km

)

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Optimized slowness

x

Page 73: Wave-equation tomography using image-space phase-encoded data

73

Numerical example

• Marmousi slowness model

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 74: Wave-equation tomography using image-space phase-encoded data

74

Numerical example

z

x

x

Background

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Optimized

z

Truex

Page 75: Wave-equation tomography using image-space phase-encoded data

75

True

x Optimized

z

x

x

Background

Optimized

z

True

Numerical example

z

xBackground

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Truex

Page 76: Wave-equation tomography using image-space phase-encoded data

76

Conclusions

• We extended the theory of image-space WETom to the generalized source domain

Introduction ISPEW WETom using ISPEW Example Conclusion

Page 77: Wave-equation tomography using image-space phase-encoded data

77

Conclusions

• We extended the theory of image-space WETom to the generalized source domain

• ISPEW yields an accurate slowness model

Introduction ISPEW WETom using ISPEW Example Conclusion

Page 78: Wave-equation tomography using image-space phase-encoded data

78

Conclusions

• We extended the theory of image-space WETom to the generalized source domain

• ISPEW yields reasonable slowness model

• ISPEW drastically decreases the cost of image-space WETom– Reducing data size

– A target-oriented strategy is easily incorporated

Introduction ISPEW WETom using ISPEW Example Conclusion

Page 79: Wave-equation tomography using image-space phase-encoded data

79

• We would like to acknowledge the sponsors of

Acknowledgements

Page 80: Wave-equation tomography using image-space phase-encoded data

80

Thanks

Page 81: Wave-equation tomography using image-space phase-encoded data

81

Image-space phase-encoded wavefields

Introduction ISPEW WETom using ISPEW Example Conclusion

Page 82: Wave-equation tomography using image-space phase-encoded data

82

Image-space phase-encoded wavefields

Introduction ISPEW WETom using ISPEW Example Conclusion

Page 83: Wave-equation tomography using image-space phase-encoded data

83

Image-space WETom – velocity optimization

Backgroundwavefields

Slownessperturbation

Perturbedimage

DownwardPropagation

Slownessupdate

Imaging

FocusedImage?

No

Yes

End

Backgroundimage

Adjoint

Focusingoperator

DSO:

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 84: Wave-equation tomography using image-space phase-encoded data

84

Image-space WETom – velocity optimization

Backgroundwavefields

Slownessperturbation

Perturbedimage

DownwardPropagation

Slownessupdate

Imaging

Focusingoperator

FocusedImage?

No

Yes

End

Backgroundimage

Adjoint

Introduction PERM ISPEW WETom using ISPEW Example Conclusion

Page 85: Wave-equation tomography using image-space phase-encoded data

85

Numerical example – slowness perturbation

Introduction ISPEW WETom using ISPEW Example Conclusion

11 ISPEW

Fin

al g

rad

ien

t

z

x x

z

Init

ial g

rad

ien

t 8.0

0.0

70 ISPEW

8.0

0.0

Page 86: Wave-equation tomography using image-space phase-encoded data

86

Numerical example – slowness perturbation

Introduction ISPEW WETom using ISPEW Example Conclusion

11 ISPEW 70 ISPEW

Page 87: Wave-equation tomography using image-space phase-encoded data

87

Numerical example

• Image-space phase-encoded wavefields 12 reflectors

h

z

x

Introduction PERM ISPEW WETom using ISPEW Example Conclusion