37
UNIT II – INFINITE IMPULSE RESPONSE FILTERS STRUCTURES FOR IIR SYSTEMS : IIR Systems are represented in four different ways 1. Direct Form Structures Form I and Form II 2. Cascade Form Structure 3. Parallel Form Structure 4. Lattice and Lattice-Ladder structure. D IRE C T FORM-I : Challenge: Obtain the direct form-I, direct form-II,Cascade and parallel form realization of the system y(n)=-0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2) [April/May-2015] Solution: Direct Form I: Direct form II: From the given difference equation we have IIR Filters Page 1 Characteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design of IIR filters from analog filters (LPF, HPF, BPF, BRF) - Approximation of derivatives, Impulse invariance method, Bilinear

stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

UNIT II – INFINITE IMPULSE RESPONSE FILTERS

STRUCTURES FOR IIR SYSTEMS : IIR Systems are represented in four different ways

1. Direct Form Structures Form I and Form II 2. Cascade Form Structure 3. Parallel Form Structure 4. Lattice and Lattice-Ladder structure.

D IRE C T FORM-I :

Challenge: Obtain the direct form-I, direct form-II,Cascade and parallel form realization of the system

y(n)=-0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2) [April/May-2015]

Solution:Direct Form I:

Direct form II:From the given difference equation we have

The above system function can be realized in direct form II

IIR Filters Page 1

Characteristics of practical frequency selective filters. characteristics of commonly used analog filters -

Butterworth filters, Chebyshev filters. Design of IIR filters from analog filters (LPF, HPF, BPF, BRF) -

Approximation of derivatives, Impulse invariance method, Bilinear transformation. Frequency transformation in

the analog domain. Structure of IIR filter - direct form I, direct form II, Cascade, parallel realizations.

Page 2: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

+ + + +

z-1

Cascade Form:

3

x(n) y(n)

-0.5 0.6 0.4

IIR Filters Page 2

z-1

Page 3: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

+ +

+ +

z-1

z-1

Parallel form:

x(n) -3 7

0.4

-1 y(n)

-0.5

-----------------------------------------------------------------------------------------------------------

Direct form I:H.W: Obtain the direct form-I realization for the system described by the following difference equations.( i) y (n )=2y (n−1)+3y (n−2 )+x (n)+2x (n−1 )+3x (n−2)( ii ) y (n)=0 .5 y (n−1)+0 .06 y (n−2)+0 .3 x (n )+0 .5 x (n−1 )Obtain the direct form-I realization for the system described by difference equation y (n )=0 .5 y (n−1 )−0 . 25 y (n−2)+x (n )+0 .4 x (n−1 )---------------------------------------------------------------------------------------------------------------------Direct form II

H.W: Determine the direct form II realization for the following system ( i) y (n )+ y (n−1)−4 y (n−3)=x (n)+3 x (n−2 )

( ii ) y (n)=34

y (n−1 )−18

y (n−2)+x (n )+12

x (n−1)

[May/June-14]Determine the direct form II realization for the following system y (n )=−0 . 1 y ( n−1)+0.72 y (n−2 )+0 .7 x (n )−0 .252 x (n−2)CASCADE FORM:IIR Filters Page 3

Page 4: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

-----------------------------------------------------------------------------------------------------------------

H.W: For the system function

H ( z )= 1+2 z−1+z−2

1− 34

z−1+ 18

z−2

obtain cascade structure.

Realize the system with difference equation y (n )=3

4y (n−1)−1

8y (n−2 )+ x( n)+ 1

3x (n−1 )

in cascade form.**************************************************************************************Parallel form:H.W: Realize the system given by difference equation y (n )=−0 . 1 y ( n−1)+0.72 y (n−2 )+0 .7 x (n )−0 .252 x (n−2)in parallel form.**************************************************************************************Analog filter design:

There are two types of analog filter design are, Butterworth Filter Chebyshev Filter.

Analog Low pass Butterworth Filter:N Denominator of H(s)1 S+12 s2+√2 s+13 ( s+1 ) (s2+s+1 )4 ( s2+0 .76537 s+1 ) ( s2+1. 8477 s+1 )5 ( s+1 ) (s2+0.61803 s+1 ) (s2+1 .61803 s+1 )6 ( s2+1. 931855 s+1 ) (s2+√2 s+1 ) (s2+0 . 51764 s+1 )7 ( s+1 ) (s2+1 .80194 s+1 ) (s2+1 .247 s+1 ) ( s2+0 .445 s+1 )

------------------------------------------------------------------------------------------------------------------------

Solution:

Given data:

Pass band attenuation αP= 2 dB;

Stop band attenuation αS= 10 dB;

Pass band frequency ΩP= 20 rad/sec.

IIR Filters Page 4

Design an analog Butterworth filter that has a -2dB pass band attenuation at a frequency of 20

rad/sec and atleast -10 dB stop band attenuation at 30 rad/sec.

Page 5: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Stop band frequency ΩS=30 rad/sec.

The order of the filter

N≥[ log10 √(100 .1 α s−110

0 .1 α p−1 )log10( Ωs

ΩP ) ]N≥[ log10 √(100 .1∗10−1

100 .1∗2−1 )log10(30

20 ) ] ≥

log √(10−1100 . 2−1 )

log 3020

≥ 3 . 37

Rounding off ‘N’ to the next higher integer, we get

N=4

The normalized transfer function for N=4.

Ha (s )= 1( s2+0 .76537 s+1 ) ( s2+1. 8477 s+1 )

To find cut off frequency

Ωc=Ωp

(100 .1 αp−1) 1/2 N

Ωc=20

(100 .1∗20−1 )1

2∗4

=21.3868

The transfer function for Ωc=21.3868, H (s )=H a( s )|

S−¿ s21 .3868

H ( s )= 1( s2+0 . 76537 s+1 )( s2+1 .8477 s+1 )

|s−¿ s21 .3868

IIR Filters Page 5

Page 6: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

H ( s )=1

(s21. 868 )

2+0 . 76535(s

21 .3868 )+1∗1

(s21. 868 )

2+1 . 8477(s

21 .3868 )+1

H ( s )=0 . 20921×106

( s2+16. 3686 s+457.394 ) ( s2+39 .5176 s+457 .394 )

**********************************************************************************************

H.W: Challenge 1: For the given specification design an analog Butterworth filter0 .9≤|H ( j Ω)|≤1 for 0≤Ω≤0 . 2π |H ( jΩ)|≤0 .2 for 0 . 4 π≤Ω≤π .

Ans:

H ( s )= 0. 323( s2+0 . 577 s+0 .0576 π2 )( s2+1 .393 s+0 . 0576 π 2)

Challenge 2: Determine the order and the poles of low pass Butterworth filter that has 3 dB

attenuation at 500 Hz and an attenuation of 40dB at 1000Hz.

Ans: H ( s )=(s+1 ) (s2+1 .80194 s+1 ) (s2+1 .247 s+1 ) ( s2+0 .445 s+1 )

Given the specification α p=1dB ;α s=30 dB ;Ω p=200 rad /sec ; Ωs=600 rad/sec .determine the order of the filter. Ans: N=4---------------------------------------------------------------------------------------------------------------------------Analog Low pass Chebyshev Filter:

There are two types of Chebyshev filters.

IIR Filters Page 6

Page 7: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Solution:Given:Step 1:Pass band attenuation αp= 3dB,Stop band attenuation αs=16 dB, Pass band frequency fP=1 KHz=2π*1000=2000π rad/secStop band frequency fS=2 KHz=2π*2*1000=4000π rad/secStep 2: Order of the filter

N≥

cosh−1√(100 .1 α S−110

0 .1 αP−1 )cosh−1(ΩS

ΩP )

N≥

cosh−1√(100 .1∗16−1100 .1∗3−1 )

cosh−1(4000 π2000 π )

≥1 . 91Rounding the next higher integer value N=2.Step 3: The value of minor axis and major axis can be found as below

ε=√ (100 .1* αP−1)=√( 100 .1* 3−1 )=1

μ=ε−1+√1+ε−2=1−1+√1+1−2=2. 414

a=ΩP

[μ1N −μ

−1N ]

2=2000π

[ (2. 414 )12 −(2 .414 )

−12 ]

2=910π

b=ΩS

[μ1N +μ

−1N ]

2=4000 π

[ (2. 414 )12 + (2. 414 )

−12 ]

2=2197 π

Step 4: The poles are given by

IIR Filters Page 7

Given specifications αp= 3dB,αs=16 dB, fP=1KHz and fS=2KHz. Determine the order of the filter using Chebyshev approximation. Find H(s).

Page 8: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

SK=a cosφk + jb sin φk ; k=1,2

φk=π2

+(2 k−1 ) π2 N

; k=1,2

For k=1

φ1=π2

+(2−1 ) π2∗2

=π2

+π4

=135o

Fork=2

φ2=π2

+(2∗2−1 ) π2∗2

=π2

+3 π4

=225o

s1=a cos φ1+ jbsin φ1=( 910π *cos135 )+ j (2197 *sin 135 ) s1=−643 . 46 π+ j 1553 π s2=a cosφ2+ jb sin φ2=(910 π *cos225 )+ j (2197 *sin 225 ) s2=−643 .46 π− j 1553 πStep 5: The denominator of H(s):

H ( s )=( s+643 . 46 π )2+(1554 )2

Step 6: The numerator of H(s):

substitute , s=0 H ( s )=(643 . 46 π )2+(1554 π )2

√1+ε 2

=(643. 46 π )2+ (1554 π )2

√1+12= (1414 . 38 )2 π2

The transfer function H ( s )= (1414 . 38 )2 π2

s2+1287 πs+(1682 )2 π2

----------------------------------------------------------------------------------------------------------------------------HW: Challenge 1: Obtain an analog Chebyshev filter transfer function that satisfies the constraints

1√2

≤|H ( j Ω)|≤1 ; for 0≤Ω≤2

|H ( jΩ)|≤0 .1 for Ω≥4

Ans: H (s )= 2

( s+0 .596 ) (s2+0 .596 s+3 .354 )2. Design a Chebyshev filter with a maximum pass band attenuation of 2.5dB at ΩP=20rad/sec and stop band attenuation of 30 dB at ΩS=50rad/sec.

Ans: N=3. H ( s )=2265 .27

(s+6 .6 ) ( s2+6 . 6 s+343. 2 )---------------------------------------------------------------------------------------------------------------------------------3. For the given specifications find the order of the Chebyshev-I filterα P=1. 5dB ;α S=10 dB ;ΩP=2 rad /Sec ; ΩS=30 rad /sec .---------------------------------------------------------------------------------------------------------------------------------4. For the given specifications find the order of the Chebyshev-I filterα P=1dB ; αS=25 dB ;ΩP=1rad / Sec; ΩS=20 rad /sec.

IIR Filters Page 8

Page 9: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Discrete time IIR filter from analog filter:Magnitude Response of LPF:

Design of IIR filters from analog filters:The different design techniques available for IIR filter are

1) Approximation of derivates2) Impulse invariant method3) Bilinear transformation4) Matched z-transform techniques.

Approximation of derivates:For analog to digital domain, we get

s=1−z−1

T -------------------------- (3) H (z )=H ( s )|

s=1−z−1

T --------------------- (4)Mapping of the s-plane to the z-plane using approximation of derivatives.------------------------------------------------------------------------------------------------------------------------------

Solution:Given: H (z )=Ha (s )|

s= 1− z−1

T

H (z )=1( s+0 .1 )2+9

|s=1−z−1

T

=1

(1−z−1

T+0 .1)2

+9

=T2 ( 1+0.2 T+9. 01 T2 )

1−2 (1+0 .1T )1+0 .2T +9 . 01T 2 z−1+1

1+0 .2T +9 . 01T 2 z−2

T=0 . 1 sec, = 0 . 91± j0 .27Design of IIR filter using Impulse Invariance Method:Steps to design a digital filter using Impulse Invariance Method (IIM):

IIR Filters Page 9

Convert the analog BPF with system IIR filter Ha (s )= 1

( s+0 .1 )2+9 into a digital IIR filter by use of the backward difference for the derivative. [Nov/Dec-2015]

Page 10: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Step 1: For the given specifications, find Ha(s) the Transfer function of an analog filter.

Step 2: Select the sampling rate of the digital filter, T seconds per sample.

Step 3: Express the analog filter transfer function as the sum of single-pole filter.

Ha (s )=∑k=1

N C k

S−Pk

Step 4: Compute the z-transform of the digital filter by using formula

H (z )=∑k=1

N C k

1−epk T

z−1

For high sampling rate,

∴H ( z )=∑k=1

N TC k

1−epk T

z−1

------------------------------------------------------------------------------------------------------------------------------------------------------

Solution:

IIR Filters Page 10

For the analog transfer function Determine H (z) using impulse invariant

transformation if (a) T=1 second and (b) T=0.1 second. [Nov/Dec-15]

Page 11: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

IIR Filters Page 11

Page 12: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Solution:

Given: For N=3, the transfer function of a normalized Butterworth filter is given by

Ans:

IIR Filters Page 12

Design a third order Butterworth digital filter using impulse invariant technique. Assume sampling

Page 13: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

----------------------------------------------------------------------------------------------------------------------------

Solution:

Given: The transfer function H ( s )= s+a

(s+a )2+b2

Sampling the function produces

h (nT )=¿ e−anT cos (bnT ) for n≥0 ¿ ¿¿¿¿

¿--------------------------------------------------------------------------------------------------------------------------------

Solution:

Given: Analog filter Ha (s )= s+0 . 1

(s+0 .1 )2+9

s+a( s+a )2+b2=

1−e−aT cos(bT )z−1

1−2 e−aT cos (bT )z−1+e−2aT z−2

s+0.1( s+0 . 1)2+9

=1−e−aT cos (bT ) z−1

1−2 e−aT cos(bT ) z−1+e−2 aT z−2 ; T=1 sec

IIR Filters Page 13

Apply impulse invariant method and find H(z) for H ( s )= s+a

(s+a )2+b2

Convert analog filter Ha (s )= s+0 .1

(s+0 .1 )2+9 into digital IIR filter using impulse invariant method. [Nov/Dec-2015]

Page 14: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

s+0 .1(s+0 . 1)2+9

=1−e−0. 1 cos (3 ) z−1

1−2 e−0 . 1 cos(3 )z−1+e−2∗0.1 z−2 ;

=1−0 .9048*(−0 . 9899 )z−1

1+1 .791 z−1+0 .818 z−2

H ( z )=1+0 . 89566z−1

1+1. 7915 z−1+0 .818 z−2

Solution:

Given: Analog filter Ha (s )= 6

(s+0 .1 )2+36

b(s+a)2+b2 = e−aT sin bTz−1

1−2e−aT cosbTz−1+e−2 aT z−2

6(s+0 .1 )2+36

=e−0 .1 sin (6) z−1

1−2e−0 .1 cos (6 )z−1+e−2∗0 .1 z−2

Assume T=1 sec .

6(s+0 .1 )2+36

=−0 . 2528 z−1

1−2∗0 .8687 z−1+0 .818 z−2

=−0 . 2528z−1

1−1 .7374 z−1+0 .818 z−2

---------------------------------------------------------------------------------------------------------------------------------

H.W: Challenge 1: An analog filter has a transfer functionHa (s )=10

s2+7 s+10 . Design a digital filter equivalent to this using impulse invariant method for T=0.2 sec. [Nov/Dec-15]

Ans :

2. An analog filter has a transfer functionH ( s )= 5

s3+6 s2+11s+6 . Design a digital equivalent to this using impulse invariant method for T=1 sec.

3. An analog filter has a transfer functionH ( s )= s+3

s2+6 s+25 . Design a digital filter equivalent to this using impulse invariant method T=1 sec.---------------------------------------------------------------------------------------------------------------------------------

Design of IIR filters using Bilinear Transformation:Steps to design digital filter using bilinear transform technique:

IIR Filters Page 14

Convert analog filter Ha (s )= 6

(s+0 .1 )2+36 into digital IIR filter whose system function is given above. The digital filter should have (ωr=0.2 π ). Use impulse invariant mapping T=1sec.

Page 15: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

1. From the given specifications, find prewarping analog frequencies using formula Ω= 2

Ttan ω

22. Using the analog frequencies find H(s) of the analog filter.3. Select the sampling rate of the digital filter, call it T seconds per sample.

4. Substitute s= 2

T ( 1−z−1

1+z−1 ) into the transfer function found in step2.

---------------------------------------------------------------------------------------------------------------------------------

Solution:

Given: The system function H ( s )= 2

(s+1 ) ( s+2 )

Substitute s= 2T [ 1−z−1

1+z−1 ] in H ( s) to get H ( z )

H (z )=H ( s )|s=2

T [ 1−z−1

1+ z−1 ] = 2

(s+1 ) ( s+2 )|

s= 2T [ 1−z−1

1+ z−1 ]Given T=1 sec.

---------------------------------------------------------------------------------------------------------------------------------

Solution:

Given: Pass band attenuationαP=3 dB ; Stop band attenuation α S=10 dB

Pass band frequency ωP=2 π∗1000=2000 π rad/sec .

IIR Filters Page 15

Apply bilinear transformation of H ( s )= 2

(s+1 ) ( s+2 ) with T=1 sec and find H(z).[Nov/Dec-13]

Using the bilinear transformation, design a high pass filter, monotonic in pass band with cut off frequency of 1000Hz and down 10dB at 350 Hz. The sampling frequency is 5000Hz. [May/June-16]

Page 16: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Stop band frequency ωS=2 π∗350=700 π rad/sec .

T =1f= 1

5000=2∗10−4sec .

Prewarping the digital frequencies, we have

ΩP=2T

tanωPT

2= 2

2∗10−4 tan(2000 π∗2∗10−4)

2=104 tan (0 . 2 π )=7265 rad/sec .

ΩS=2T

tanωS T

2= 2

2∗10−4 tan(700 π∗2∗10−4 )

2=104 tan ( 0. 07 π )=2235 rad/sec .

The order of the filter

N≥

log √100 . 1α S−1100 . 1αP−1

logΩS

ΩP

=log√100 . 1×10−1

100 .1×3−1

log 72652235

=log (3 )log (3 . 25)

=0 . 47710 .5118

=0 .932

N = 1The first order Butterworth filter for ΩC=1 rad/sec is H(s) = 1/S+1The high pass filter for ΩC=ΩP=7265 rad/sec can be obtained by using the transformation.

S→ΩC

s

S→7265s

The transfer function of high pass filter

H ( s )=1s+1

|s=7265

s

=ss+7265

IIR Filters Page 16

Page 17: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

U sin g bilinear transformation H ( z )=H (s )|

s=2T (1− z−1

1+z−1 ) =s

s+7265|

s=22∗10− 4 (1−z−1

1+z−1 )

=100 00 (1−z−1

1+z−1 )10000(1−z−1

1+z−1 )+7265

=0 .5792 (1−z−1 )1−0 .1584 z−1

--------------------------------------------------------------------------------------------------------------------------------H.W: 1. Determine H(z) that results when the bilinear transformation is applied to Ha(s)=

s2+4 . 525s2+0 .692 s+0. 504 [Nov/Dec-15] Ans:

H ( z )=1 . 4479+0 .1783 z−1+1 . 4479 z−2

1−1.18752 z−1+0. 5299 z−2

2. An analog filter has a transfer function H ( s )= 1

s2+6 s+9 ,design a digital filter using bilinear transformation method.-------------------------------------------------------------------------------------------------------------------------------Additional Examples:

Solution:Given data:

Pass band attenuationαP=0 .707 ; Pass band frequencyωP=

π2 ;

Stop band attenuationα S=0. 2 ; Stops band frequencyωS=

3π4 ;

Step 1: Specifying the pass band and stop band attenuation in dB. Pass band attenuation α P=−20 log δ 1=−20 log(0 .707 )=3 . 0116 dBStop band attenuation α S=−20 log δ 2=−20 log (0 .2 )=13 . 9794 dB

IIR Filters Page 17

Design a digital Butterworth filter satisfying the constraints

0 .707≤|H (e jω)|≤1 for 0≤ω≤π2

|H (e jw )|≤0 . 2 for 3 π4

≤ω≤π

With T=1 sec using bilinear transformation. [April/May-2015][May/June-14]

Page 18: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Step2. Choose

T and determine the analog frequencies (i.e) Prewarp band edge frequency

ΩP=2T

tan(ωPT2 )=2

1tan(π

22 )=2 tan(π

4 )=2 Rad /Sec

ΩS=2T

tan(ωS T2 )=2

1tan(3 π

42 )=2 tan (3 π

8 )=4 . 828 Rad / Sec

Step3. To find order of the filter

N≥[ log10 √(100 .1 α s−110

0 .1 α p−1 )log10( Ωs

ΩP ) ]N≥

log √(100 .1∗3.01−1100 .1∗13 .97−1 )

log(4 . 8282 )

≥log √(0 . 9998

23 . 945 )log (2. 414 )

≥ log (0 . 20433 )log(2.414 )

≥−0 . 68960 .382

≥1 .8017

Rounding the next higher value N=2

Step 4: The normalized transfer function

Ha (s )= 1s2+√2 s+1

Step 5: Cut off frequency

IIR Filters Page 18

Page 19: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Ωc=Ωp

(100 .1 αp−1) 1/2 N

Ωc=2

(100 .1∗3.01−1 )1

2∗2

= 2

(0 .9998 )14

=2 Rad /Sec

Step 6: To find Transfer function of H(s):

H (s )=H a( s )|S−¿

s2

H ( s )= 1s2+√2 s+1

|S → s

2

=1

(s2 )2+√2(s

2 )+1

H (s )=4s2+2 . 828 s+4

Step 7. Apply Bilinear Transformation with to obtain the digital filter

H ( z )=H ( s )|S=2

T (1−z−1

1+ z−1 ) =4

s2+2 . 828 s+4|S=2

T (1−z−1

1+ z−1 ) =

4 (1−z−1)2

4 (1−z−1)2+5 .656 (1−z−2)+4 (1+z−1)2

H ( z )=0 . 2929 (1+z−1)2

1+0 .1716 z−2

-------------------------------------------------------------------------------------------------------------------------------

Solution:Given data:

IIR Filters Page 19

Design a digital Butterworth filter satisfying the constraints

0 .707≤|H (e jω)|≤1 for 0≤ω≤π2

|H (e jw )|≤0 . 2 for 3 π4

≤ω≤π

With T=1 sec using Impulse invariant method. [Nov/Dec-13]

Page 20: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Pass band attenuationαP=0 .707 ; Pass band frequencyωP=

π2 ;

Stop band attenuationα S=0. 2 ; Stops band frequencyωS=

3 π4 ;

Step 1: Specifying the pass band and stop band attenuation in dB. Pass band attenuation α P=−20 log δ 1=−20 log (0 .707 )=3 . 0116 dBStop band attenuation α S=−20 log δ 2=−20 log (0 .2 )=13 .9794 dB

Step2. Choose

T and determine the analog frequencies (i.e) Prewarp band edge frequency

ωP=ΩP T=π2

Rad /Sec

ωS=ΩS T=3 π4

Rad / Sec

Step3. To find order of the filter

N≥[ log10 √(100 .1 α s−110

0 .1 α p−1 )log10( Ωs

ΩP ) ]N≥

log √(100 .1∗3.01−1100 .1∗13 .97−1 )

log(3 π4π2

) ≥

log √(0 . 999823 . 945 )

log (1 . 5 )

≥ log (0 . 20433 )log(1.5)

≥−0 . 68960 .17609

≥3 .924

Rounding the next higher value N=4

Step 4: The normalized transfer function

IIR Filters Page 20

Page 21: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Ha (s )= 1( s2+0 .76537 s+1 ) ( s2+1. 8477 s+1 )

Step 5: Cut off frequency

Ωc=Ωp

(100 .1 αp−1)1/2 N

Ωc=

π2

(100 .1∗3. 01−1 )1

2∗4

=

π2

(0 . 9998 )18

=1. 57 Rad /Sec

Step 6: To find Transfer function of H(s):

H (s )=H a( s )|S−¿ s

1. 57

H ( s )= 1( s2+0 . 76537 s+1 ) ( s2+1 .8477 s+1 )

|S→ s

1 .57

=1

((s1 .57 )

2+0 .76537(s

1 .57 )+1)((s1. 57 )2+1 .8477(s

1 .57 )+1)|

H (s )=(1. 57 )4

(s2+1 . 202 s+2 . 465 ) ( s2+2.902 s+2. 465 )Step 7: Using partial fraction expansion, expand H(s) into

H ( s )= A(s+1.45+ j0 .6 )

+ A ¿

(s+1.45− j 0 .6 )+ B

(s+0 . 6+1. 45 j )+ B¿

(s+0 . 6−1 .45 j )

To find A and A*: A =H ( s )|S=−1. 45− j0 .6

=( s+1 . 45− j0 . 6 ) (1. 57 )4

(s+1. 45+ j 0 .6 ) ( s+1 . 45− j 0 .6 ) ( s2+2. 902 s+2 . 465 )|

S=−1 .45− j0 . 6

IIR Filters Page 21

Page 22: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

=(1 .57 )4

( s+1 . 45− j0 .6 ) ( s2+1.202 s+2 . 465 )|

S=−1 . 45−j 0 . 6

=(1 .57 )4

(−1 .45− j0 . 6+1 .45− j 0.6 ) ( (−1.45− j 0 .6 )2+1 .202 (−1. 45− j0 .6 )+2 .465 )

=(1 .57 )4

− j (1 .2 ) [ 1.7425+1. 74 j−1 .7429− j 0 .7212+2 . 465 ]

=(1 .57 )4

− j (1 .2 ) [ 2.465+ j 1. 0188 ] =5 . 0631 . 0188− j2 .465

=5 .063 (1 .0188− j2 .465 )7 .114

A = 0 .7253+ j1 .754; A∗¿0 .7253− j1 .754

To find B and B*: A =H ( s )|S=−0.6− j 1.45

=( s+0 . 6+ j1 . 45 ) (1 . 57 )4

(s+1. 45+ j0 . 6 ) (s+1 .45− j0 . 6 ) (s+0 . 6+1. 45 j ) ( s+0 . 6−1. 45 j )|

S=−0 . 6− j1 .45

=(1 .57 )4

(−0 . 6− j1 . 45+1 . 45+ j0 . 6 ) (−0 .6− j1 . 45+1.45− j0 . 6 ) (−0 .6− j1 . 45+0 . 6−1 .45 j )|

S=−0 .6− j1 . 45

=(1 .57 )4

(0 . 85− j0 . 85 ) (0 . 85− j0 . 85 ) (−2. 9 j )

=(1 .57 )4

− j [−1 .0187− j2 .468 ]

=2 .095−2 . 468+ j 1 .0187

B=−0. 7253− j 0 .3 ; B*=−0 .7253+ j0 .3 H (s )= 0 . 7253+ j1 .754

s−(−1. 45− j0 .6 )+ 0. 7253− j1 . 754

s−(−1. 45+ j 0 .6 )+ −0 . 7253−0. 3 j

s−(−0. 6− j 1. 45 )+ −0 . 7253+0 .3 j

s−(−0 . 6+ j1 . 45 ) we know for T=1 sec

H ( z )=∑k =1

N Ck

1−e pk z−1

∴ =0 .7253+ j1 .7541−e−1.45 e− j0 . 6 z−1 +

0 . 7253− j1 .7541−e−1. 45 e j0 . 6 z−1 +

−0 . 7253−0. 3 j1−e−0.6 e− j1. 45 +

−0. 7253+0 .3 j1−e−0. 6e j1. 45

H ( z )=1 .454+0 .1839z−1

1−0 .387 z−1+0. 055 z−2 +−1 . 454+0 .2307 z−1

1−0 .1322 z−1+0 . 301 z−2

IIR Filters Page 22

Page 23: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

------------------------------------------------------------------------------------------------------------------------------------------H.W: Challenge 1: Design a digital Butterworth filter satisfying the constraints

0 .8≤|H (e jω)|≤1 for 0≤ω≤0 . 2π |H (e jw )|≤0 . 2 for 0 . 6 π≤ω≤πWith T=1 sec using Impulse invariant method.

Ans: Challenge 2: Design a digital Butterworth filter satisfying the constraints

0 .8≤|H (e jω)|≤1 for 0≤ω≤0 . 2π |H (e jw )|≤0 . 2 for 0 . 6 π≤ω≤πWith T=1 sec using Bilinear Transformation.

Ans: Challenge 3: Determine the system function H(z) of the lowest order Butterworth digital filter with the following specification.

(a) 3db ripple in pass band 0≤ω≤0 .2 π

(b) 25db attenuation in stop band 0 .45 π≤ω≤π

Ans:

Challenge 4: Enumerate the various steps involved in the design of low pass digital Butterworth IIR filter. (ii) The specification of the desired low pass filter is

0 .8≤|H (e jω)|≤1 for 0≤ω≤0 .2 π |H (e jw )|≤0 . 2 for 0 . 32 π≤ω≤π

Design a Butterworth digital filter using impulse invariant transformation.Ans:

IIR Filters Page 23

Design a chebyshev filter for the following specification using bilinear transformation.

0 . 8 ≤|H (e jω)|≤1 0≤ω≤0 .2 π |H (e jω)|≤0 .2 0 . 6 π≤ω≤π .

H ( z )= −0. 6242+0 . 2747 z−1

1−0. 253 z−1+0 . 5963 z−2 + 0 .6242−0 . 1168 z−1

1−1 .0358 z−1+0. 2869 z−2

Page 24: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Solution:Given data:

Pass band attenuationα P=0 .8 ; Pass band frequencyωP=0. 2 π ;

Stop band attenuationα S=0. 2 ; Stops band frequencyωS=0 . 6π ;

Step 1: Specifying the pass band and stop band attenuation in dB. Pass band attenuation α P=−20 log δ 1=−20 log (0 . 8)=1. 938 dBStop band attenuation α S=−20 log δ 2=−20 log (0 .2 )=13 . 9794 dB

Step2. Choose

T and determine the analog frequencies (i.e) Prewarp band edge frequency

ΩP=2T

tan(ωP

2 )=2 tan(0 .2 π2 )=0 .649 dB

ΩS=2T

tan(ωS

2 )=2 tan (0 .6 π2 )=2 . 75dB

Step3. To find order of the filter

N≥

Cosh−1√100 .1 α S−1100 .1αP−1

Cosh−1(Ωs

Ωp )

¿Cosh−1√100 .1∗13 .97−1

100 .1∗1.938−1

Cosh−1(2. 750 .649 )

¿Cosh−1√23 . 945

0 .562

Cosh−1(2. 750 .649 )

¿Cosh−1 (6 . 5273 )Cosh−1 ( 4 .2372 )

¿2 .56322 .1228

¿1 .207Rounding the next higher integer value N=2Step4. The poles of chebyshev filter can be determined by

Where,

IIR Filters Page 24

Page 25: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

φk=[ (2 k+N−1 )π2 N ] And calculate a, b,ε , μ

ε=√100 .1 αp−1 , =√100 . 1*1. 938−1ε=0 . 75 μ=ε−1+ [√1+ε−2 ] =(0 . 75 )−1+[ √1+ (0. 75 )−2 ]μ=3

a=Ωp [μ1/N−μ−1/ N

2 ] = 0 .649 [(3 )

12− (3 )

−12

2 ]a=0 .375

b=Ωp [μ1/N+μ−1/N

2 ] = 0 .649 [(3 )

12−(3 )

−12

2 ]b=0 .75

φk=[(2 k+N−1)π2 N ] ; k=1,2

φ1=[ (2(1)+2−1 ) π2∗2 ]=3 π

4=1350

φ2=[ (2(2)+2−1 ) π2∗2 ]=5 π

4=2250

SK=a cosϕk+ jb sin ϕk , k=1,2for k=1,S1=0 .375 cos ϕ1+ j (0 .75 )sin ϕ1

= 0 . 375cos 1350+ j ( 0.75 ) sin 1350

S1=−0 .265+ j 0 .53for k=2 ,S1=0 .375 cos ϕ2+ j (0 .75 )sin ϕ2

= 0 . 375cos 2250+ j (0.75 ) sin 2250

S1=−0 .265− j0 . 53Step.5 Find the denominator polynomial of the transfer function using above poles.

IIR Filters Page 25

Page 26: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

H ( s )=S+0 . 265− j0 . 53 S+0 .265− j 0 .53 = (S+0 . 265 )2−( j0 . 53 )2 =( S+0 . 265 )2+(0 . 53 )2

= S2+0 .5306 s+0 . 3516Step 6 : The numerator of the transfer function depends on the value of N.

If N is Even substitute s=0 in the denominator polynomial and divide the result by√1+ε2 Find the

value. This value is equal to numerator

=0 . 3516√1+ε2

=0 . 3516

√1+(0 . 75 )2

H (s )=0 . 28

Step 7: The Transfer function is

H (s )= 0 . 28

s2+0 .5306 s+0 . 3516

Step 8: Apply bilinear transformation with to obtain the digital filter

H ( z )=0 .28s2+0 .5306 s+0 .3516

|s=2T (1−z−1

1+z−1 ) =0 .28

s2+0. 5306 s+0 .3516|s=2(1−z−1

1+z−1 ) =0 . 28

(2(1−z−1

1+z−1 ))2

+0 . 5306(2(1−z−1

1+z−1 ))+0. 3516

H ( z )=0 . 28 (1+z−1)2

1−1.348 z−1+0 .608 z−2

====================================================================

IIR Filters Page 26

Design a chebyshev filter for the following specification using impulse invariance method.

0 .8 ≤|H (e jω)|≤1 0≤ω≤0 . 2π |H (e jω)|≤0 . 2 0 . 6π≤ω≤π . [ May/June−2016 ]

Page 27: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Solution:Given data:

Pass band attenuationα P=0 .8 ; Pass band frequencyωP=0. 2 π ;

Stop band attenuationα S=0. 2 ; Stops band frequencyωS=0 . 6π ;

Step 1: Specifying the pass band and stop band attenuation in dB. Pass band attenuation α P=−20 log δ 1=−20 log (0 . 8)=1. 938 dBStop band attenuation α S=−20 log δ 2=−20 log (0 .2 )=13 . 9794 dB

Step2. Choose

T and determine the analog frequencies (i.e) Prewarp band edge frequency

ΩP=ωP

T=0 .2 π Rad /Sec

ΩS=ωS

T=0 . 6π Rad /Sec

Step3. To find order of the filter

N≥

Cosh−1√100 .1 α S−1100 .1αP−1

Cosh−1(Ωs

Ωp )

¿Cosh−1√100 .1∗13 .97−1

100 .1∗1. 938−1

Cosh−1(0 .6 π0 .2 π )

¿Cosh−1√23 . 945

0 .562Cosh−1 (3 )

¿Cosh−1 (6 . 5273 )Cosh−1 (3 )

¿2 .56321 .7627

¿1 . 454Rounding the next higher integer value N=2Step4. The poles of chebyshev filter can be determined by

IIR Filters Page 27

Page 28: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

Where,

φk=[ (2 k+N−1 )π2 N ] And calculate a, b,ε , μ

ε=√100 .1 αp−1 , =√100 . 1*1. 938−1ε=0 . 75 μ=ε−1+ [√1+ε−2 ] =(0 . 75 )−1+[ √1+ (0. 75 )−2 ]μ=3

a=Ωp [ μ1/N−μ−1/ N

2 ] = 0 . 2 π [ (3 )

12 −(3 )

−12

2 ]a=0 .362

b=Ωp [μ1/N+μ−1/N

2 ] = 0 . 2π [ (3 )

12 −(3 )

−12

2 ]b=0 .7255

φk=[(2 k+N−1)π2 N ] ; k=1,2

φ1=[ (2(1)+2−1 ) π2∗2 ]=3 π

4=1350

φ2=[ (2(2)+2−1 ) π2∗2 ]=5 π

4=2250

SK=a cosϕk+ jb sin ϕk , k=1,2for k=1,S1=0 .362 cos ϕ1+ j (0 .7255 )sin ϕ1

= 0 . 3 62cos 1350+ j (0. 7255 ) sin 1350

S1=−0 . 256+ j 0 .513for k=2 ,S1=0 .362 cos ϕ2+ j (0 .7255 )sin ϕ2

= 0 . 3 62cos 2250+ j (0. 7255 ) sin 2250

S1=−0 . 256− j0 . 513Step.5 Find the denominator polynomial of the transfer function using above poles.

IIR Filters Page 28

Page 29: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

H ( s )=S+0 .256− j0 . 513 S+0 .256− j0 . 513 = (S+0 .256 )2−( j0 .513 )2 =( S+0 . 256 )2+ (0 .513 )2

= S2+0 .513 s+0 .33Step 6 : The numerator of the transfer function depends on the value of N.

If N is Even substitute s=0 in the denominator polynomial and divide the result by√1+ε2 Find the

value. This value is equal to numerator

=0 . 33√1+ε2

=0 .33

√1+(0 .75 )2

H (s )=0 .2 64

Step 7: The Transfer function is

H (s )= 0. 264s2+0 .513 s+0 . 33

Step 8: Using partial fraction expansion, expand H(s) into

H ( s )=∑k=1

2 Ak

s−pk=

A1

s−p1+

A2

s−p2

0 . 264s2+0. 513 s+0 . 33

=A1

s−(−0 . 256+ j 0 .514 )+

A2

s−(−0 .256− j0 . 514 )

=0 . 257 js− (−0. 256+ j 0.514 )

−0 . 257 js−(−0 .256− j0 . 514 )

Step 9: Now transform analog poles Pk into digital poles epkT to obtain the digital filter

H ( z )=∑k=1

N Ak

1−epk T

z−1

=∑k=1

2 Ak

1−epk T z−1

=0 .257 js−e−0.256T e j 0. 513T z−1 −0 .257 j

s−e−0 . 256T e− j 0. 513T z−1

H ( z )=0.1954z−1

1−1. 3483 z−1+0 .5987 z−2

=====================================================================

H.W: Challenge 1: Design a chebyshev filter to meet the constraints by using bilinear transformation and assume sampling period T=1 sec.

IIR Filters Page 29

Page 30: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

1√2

≤|H ( e jω )|≤1 0≤ω≤0 .2 π

|H (e jω)|≤0 .1 0 . 5π≤ω≤π .

Solution:

Ans:

===============================================================

H.W: Convert the following analog filter with transfer function Ha (s )= S+0 .2

( s+0 . 2 )2+16 using bilinear

transformation. Ans: Find the order and poles of a low pass Butterworth filter that has 3dB bandwidth of 500Hz and attenuation of 40dB at 1kHz.===============================================================Filter design using frequency translation (HPF, BPF, BRF):

A digital filter can be converted into a digital high pass, band stop or another digital filter. These transformations are given below.

Low pass to Low pass Low pass to high pass

Low pass to Band pass Low pass to Band Stop

IIR Filters Page 30

Page 31: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

============================================================================Analog Domain:

The frequency transformation can be used to design on LPF with different pass band frequency HPF,BPF and BSF from a normalized Low pass filter ΩC=1 rad/sec.Low pass to Low pass Low pass to high pass

S→ SΩC

S→ΩC

SLow pass to band pass Low pass to band stop

s→s2+ΩlΩu

s (Ωu−Ωl )Ωr=min |A|,|B|

A=−Ω

12+ΩlΩu

Ω1 (Ωu−Ωl )

B=Ω

22−Ωl Ωu

Ω2 (Ωu−Ωl )

s→s (Ωu−Ωl )s2+Ωl Ωu

Ωr=min |A|,|B| A=Ω1 (Ωu−Ωl )−Ω

12+ΩlΩu

B=Ω2 (Ωu−Ωl )−Ω

22+ΩlΩu

=====================================================================

H:W: 1. Design a digital chebyshev filter

1√2

≤H (e jω)≤1 for 0≤ω≤0 .2 π

0≤|H (e jω )≤0. 1 for 0 . 5 π≤ω≤π|by using bilinear transformation and assume period T=1 sec.Ans :

N=2; H (s )= 0. 212s2+0 .4172 s+0. 3

; H (z )=0 . 0413 (1+ z−1)2

1−1 .44 z−1+0 . 675 z−2

2. Enumerate the various steps involved in the design of low pass digital Butterworth IIR filter.

0 .8≤H (e jω)≤1 for 0≤ω≤0 .2 π ||H ( e jω )|≤0.2 for 0 . 32π≤ω≤π|

Design Butterworth digital filter using impulse invariant transformation.Ans:

N=4 ; H (s )=0 .2 084( s2+0. 5171 s+0 . 4565 ) (s2+1 .2485 s+0 . 4565 )

;

H ( z )=−0 .6242+0 .2747 z−1

1−0 . 253 z−1+0. 5963 z−2 +0 . 6242−0 . 1168 z−1

1−1. 03582 z−1+0 .2869 z−2

3. Design a chebyshev low pass filter with the specifications αs=1 dB ripple in the pass band 0≤ω≤0 .2 π , αs=15dB ripple in the stop band0 . 3 π≤ω≤π , using (a) Bilinear transformation (b) Impulse invariance.

(a) Bilinear transformation:Ans:

IIR Filters Page 31

Page 32: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

N=4 ; H (s )=0 .04381( s2+0.1814 s+0 .4165 ) ( s2+0 . 4378 s+0 .1180 )

;

H ( z )=0. 001836 (1+z−1)4

(1−1.499 z−1+0.8482 z−2) (1−1 .5548 z−1+0.6493 z−2)(b) Impulse invariance:Ans:

N=4 ; H (s )=0 . 03834( s2+0. 175 s+0 .391 ) ( s2+0 . 423 s+0 .11 )

;

H ( z )=−0. 083−0 . 0245 z−1

1−1. 49 z−1+0 . 839 z−2 +0 . 083+0 . 0238 z−1

1−1. 56 z−1+0 .655 z−2

4. Use the backward difference for the derivative to convert the analog low pass filter with system function.

H ( s )= 1s+2

Ans:

H ( z )= 13−z−1

5. For the analog transfer function determine H(z) using impulse invariant technique. Assume T=1sec.

H ( s )= 1(s+1 ) ( s+2 )

Ans:

H ( z )= 0.2326 z−1

1−0.5032 z−1+0 . 0498 z−2

[May/Jue-2016]

6. Determine H(z) using the impulse invariant technique for the analog transfer function.

H ( s )= 1(s+0 .5 ) ( s2+0 .5 s+2 )

Ans:

H ( z )= 0 .51−0.6065 z−1−0 . 5( 1−0 .1385 z−1

1+0 .277 z−1+0.606 z−2 )+0. 0898( 0 .7663 z−1

1−0.277 z−1+0 . 606 z−2 )

7. Using bilinear transformation obtain H (z) if

H ( s )= 1(s+1)2

and T=0.1s. Ans:

H ( z )=0 .0476(1+z−1 )2

(1−0 . 9048 z−1 )2

8.

Convert the analog filter with system function H ( s )= s+0 . 1

(s+0 .1 )2+9 into a digital IIR filter using

bilinear transformation. The digital filter should have a resonant frequency of ωr=π

4.[Nov/Dec-2015]

H ( z )= 1+0.027 z−1−0 .973 z−2

8 .572−11. 84 z−1+8 . 177 z−2

IIR Filters Page 32

Page 33: stannescet.ac.in · Web viewCharacteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design

9. A digital filter with a 3 dB bandwidth of 0.25π is to be designed from the analog filter whose

system response is H ( s )= Ω c

s+Ωc . Use bilinear transformation and obtain H(z). [Nov/Dec-15]

H ( z )= 1+z−1

3 .414−1 .414 z−1

******************************************************************************************************************

Solution:

Solution:

IIR Filters Page 33

Prove that