38
Strategic Alliance Reference Group Meeting – 5 October 2011 Strategic Alliance Reference Group Meeting PROGRAM Wednesday 5 October 2011 Ballymore Rugby Club Clyde Road, Herston 8:30am to 4:00pm 8:30am Registration 9:00am Chairman of Board opens meeting & board update Peter Evans 9:10am Sustainability Benefits brought by Asphalt Pavement Technologies Dave Newcomb 9:40am AAPA R&T Project – Asphalt Pavement Solutions for Life Ian Rickards 10:10am Principles of Perpetual Pavement Design David Timm 10:40am Morning Break 11:00am Matching Accelerated Pavement Testing to Design & Performance Buzz Powell 11:30am Polymers for a New Era of Pavement Design Erik Scholten 12:00pm Feedback on AAPA 2011 Study Tour of South Africa Peter Evans / Rob Vos / Russell Lowe 12:30pm Update - SARG Projects - Including safe sampling of binders in the field protocol (update and display of sampling device) and skid resistance Rob Vos 12:45pm Development of WMA protocol for Australia Kieran Sharp 1:00pm Lunch 1:30pm Separate Technical Committee Meetings AAPA Technical Committee Meeting TMR Road Surfacings Technology Meeting Chris Lange - Incl. sampling of binders - Incl. sampling of binders Mike Pickering 3:20pm Meetings close 3:30pm Close out – all meeting participants come together 4:00pm Close

Wednesday 5 October 2011 Ballymore Rugby Club Strategic …aapaqtmr.org/SARG20111005/SARG2011-10-05_Report.… ·  · 2016-08-22Strategic Alliance Reference Group Meeting –5 October

Embed Size (px)

Citation preview

Strategic Alliance Reference Group Meeting – 5 October 2011 Page 1

Strategic Alliance Reference Group Meeting PROGRAM

Wednesday 5 October 2011 Ballymore Rugby Club

Clyde Road, Herston 8:30am to 4:00pm

8:30am Registration

9:00am Chairman of Board opens meeting & board update Peter Evans

9:10am Sustainability Benefits brought by Asphalt Pavement Technologies

Dave Newcomb

9:40am AAPA R&T Project – Asphalt Pavement Solutions for Life

Ian Rickards

10:10am Principles of Perpetual Pavement Design David Timm

10:40am Morning Break

11:00am Matching Accelerated Pavement Testing to Design & Performance

Buzz Powell

11:30am Polymers for a New Era of Pavement Design Erik Scholten

12:00pm Feedback on AAPA 2011 Study Tour of South Africa Peter Evans / Rob Vos / Russell Lowe

12:30pm Update - SARG Projects

- Including safe sampling of binders in the field

protocol (update and display of sampling device) and skid resistance

Rob Vos

12:45pm Development of WMA protocol for Australia Kieran Sharp

1:00pm Lunch

1:30pm Separate Technical Committee Meetings

AAPA Technical Committee Meeting

TMR Road Surfacings Technology Meeting

Chris Lange

- Incl. sampling of binders

- Incl. sampling of binders

Mike Pickering

3:20pm Meetings close

3:30pm Close out – all meeting participants come together

4:00pm Close

16-Dec-11

1

AAPA’s 14th International Flexible Pavements Conference

Sydney25–28 September 2011

Topic:

PRESENTER: David NewcombPosition: Senior Research Scientist

Organisation: Texas Transportation Institute(Formerly: VP, Research & Technology, NAPA)

It’s All About . . .

• Saving Money!

• Saving Energy!

• Saving the Environment!

NAPA Strategic Plan

• Legislation

• Warm Mix

• RAP

• Thin Overlays

• Life Cycle Costs

• Perpetual Pavements

Saving Money

• Legislative Work

• Concrete vs. Asphalt

• RAP

• Perpetual Pavements

• Thin Overlays

Warm Mix Asphalt‐‐‐

The Future of Flexible Pavements

States that have or will havePermissive WMA Specifications

CA

AZ

CO

NM

TX

OK AR

LA

MO KY

AL GA

FL

VA

OH

MI

VTAK

VI

MT

NV

Guam

ME

WA

OR

UT

KS

IDWY

ND

SD

MN

NE

WI

IA

IL IN

MS

TN

SC

NC

WV

PA

NY

CTNJDEMD

DC

MANH

PR

HI

RI

16-Dec-11

2

WMA Survey

• 2009 – 13 million tons

• 2010 – 47 million tons

Initial CostThe Beauty of RAP!

U.S. Department of TransportationFederal Highway Administration

Increased RAP Use Since 2007

CA

AZ

CO

NM

TX

OK AR

LA

MO KY

AL GA

FL

VA

OH

MI

VTAK

MT

NV

ME

WA

OR

UT

KS

IDWY

ND

SD

MN

NE

WI

IA

IL IN

MS

TN

SC

NC

WV

PA

NY

CTNJDEMD

DC

MANH

PR

HI

RI

Increased RAP Use from 2007 to 2009No Increase since 2007

Jones 2009 surveyU.S. Department of TransportationFederal Highway Administration

States that Permit More than 25% RAP in HMA Layers

CA

AZ

CO

NM

TX

OK AR

LA

MO KY

AL GA

FL

VA

OH

MI

VTAK

MT

NV

ME

WA

OR

UT

KS

IDWY

ND

SD

MN

NE

WI

IA

IL IN

MS

TN

SC

NC

WV

PA

NY

CTNJDEMD

DC

MA

NH

HI

RI

All layersBase and Intermediate Layers OnlyBase layer onlyDo not permit more than 25% RAP Jones 2009 survey

Usage

• In 2008, national average RAP use was about 12.5%

• In 2010, the average was 17.6%

Max Tensile Strain

Pavement Foundation

High ModulusRut Resistant Material(Varies As Needed)

Flexible Fatigue ResistantMaterial 75 - 100 mm

40-75 mm SMA, OGFC or Superpave}100 mmto150 mm

ZoneOf High

Compression

Perpetual Pavement

16-Dec-11

3

Comparison of Thickness –AASHTO 93 vs. Long Life

0

5

10

15

20

25

0.1 1 10 100 1000

As

ph

alt

Th

ick

ne

ss

, in

.

ESALs, Millions

AASHTO PerRoad

125

250

375

500

Perpetual Pavement Life Cycle Costs

Save 44%

Perpetual Pavement Material Usage ‐Sustainable

Save 32% Save 28%

Save 31% Save 28%

Study of Kansas Interstates Perpetual Pavements vs. Concrete

~50%

User Costs – Consider Additional Emissions from Vehicles

0

500,000

1,000,000

1,500,000

Rubblize & Overlay Remove/Replace PCC

$ p

er M

ile

Thin Overlay Economics

16-Dec-11

4

Saving Energy

• Fuel Economy

• Energy Consumption  in Construction

• Warm Mix

• 2nd International Conference on Warm Mix Asphalt – October 11‐13, 2011 – St. Louis

Saving Road Users’ Energy

407

408

409

410

411

412

413

414

415

416

1 1.5 2 2.5 3 3.5 4

Fuel Consumption, ml/km

Roughness, m/km

Energy Consumption Related to Road Construction and Maint.

0

100

200

300

400

500

600

700

800

HMA WMA HMA w/25% RAP

PCCP

Laydown

Transport

Manufacture

Aggregate

Binder

MJ/tonne

Source: The Environmental Road of the Future, Life Cycle Cost Analysis, Chappat and Bilal, Colas Group 2003, p.34

Saving the Environment

• Warm Mix

• RAP/RAS

• Perpetual Pavements

• Work Zone Delays

• Green House Gas Calculator

• LEED Credits

• Noise Reduction

A History of Environmental Success

• 1970 – 1999

– Increased Production by 250%

– Decreased Emissions by 97%

• 2002

– EPA De‐Lists Asphalt Plants as Major Pollution Source 

16-Dec-11

5

Green Rating Systems

• LEED

• IN‐VEST – Infrastructure Voluntary Evaluation Sustainability Tool

• Green Roads 

NCAT Study of 244 Pavements

889092949698

100102104

So

un

d L

ev

el,

dB

(A)

Fine

OGFC

SMA

Dense H

MA

Coarse

OGFC

Diam

ond Gnd

.

Long. T

ined

Long. G

roove

d

Trans.

Tin

ed

HMA PCC

Summary

• This Industry has a great story to tell.

• Innovation = Flexibility

• Flexibility = Wider Applications

• Economics for contractors and owners

• Energy conservation for contractors and road users

• Environmental benefits for everyone.

16‐Dec‐11

1

AAPA’s 14th International Flexible Pavements Conference

Sydney25–28 September 2011

Topic: Asphalt Pavement Solutions – For Life

Implementation project update

PRESENTER:  Ian RickardsPosition:  ConsultantOrganisation:   AAPA

ASPHALT PAVEMENT SOLUTIONS –FOR LIFE (APS-FL) PRESENTATION

• LLAP background and motivation

• Project methodology and deliverables– National asphalt characterisation project

– CIRCLY LLAP software development

– Calibration studies

• Project current status

APS-FL Project background and motivation APS-FL Project background and motivation

APS-FL Project background and motivation APS-FL Project background and motivation

16‐Dec‐11

2

APS-FL Project background and motivation

M65

M6

M62M18

M56

M1

M58

M53

M6

M54

M42

M69

M6

M5 M45M11

M1

M25

M2

M20M23

M3

M40

M27

M4

M50

M5

M62

M61

M55

05

25

06

0104 11

07

09

26

22

08

18

2932/33

19/34

30/31

17

27

02

03

20

2423

16

21

15

13

35

10

14

A1A65

A6

A46

A49

A64

A16

A17

A50A5

A49

A40

A303

A35A31

A34

A12

A23A3

A259

A6

A1(M) A10

A47

A11

A43

Leeds

ManchesterLiverpool

StokeDerby

Shrewsbury

BirminghamCoventry

Norwich

Leicester

Scarborough

York

Sheffield

Hull

Gloucester

CardiffBristol

Banbury

Oxford

Reading

ExeterSo'ton

Brighton

Dover

LONDON

IpswichCambridge

12

41

46A14

A38

40

A24943

A2144

45A27

A30

42

39

28 Fully flexible sites monitored

FWD - D1-D4 Against Traffic

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

0 10 20 30 40 50 60 70 80 90Traffic / MSA

FW

D -

D1-D

4 /

mic

rons_

APS-FL Project background and motivation

APS-FL Project background and motivation European asphalt thickness design 100MSA

0

50

100

150

200

250

300

350

Fig 3.2 Asphalt thickness design for 100 MSA80 design trafficFEHRL Report 2004/01

APS-FL Project background and motivation

0

50

100

150

200

250

300

350

400

450

500

1 10 100 1000

Design Life (msa)

To

tal

Asp

hal

t T

hic

knes

s (

mm

) 80 msa

GRADE 1

GRADE 3

GRADE 6

GRADE 9

UK Highways Agency design chart

Interpretation: if pavement survives 80MSA it is above the threshold

thickness for a “Long Life Pavement”

APS-FL Project background and motivation

No Damage Accumulation

Log N

Log

ThresholdStrain

E1

E2

E3

D1

D2

D3

P

A

t

v

ASPHALT FATIGUE ENDURANCE LIMIT CONCEPT

16‐Dec‐11

3

CORRELATION OF STRAIN DISTRIBUTION AND PERFORMACNE

APS-FL Project background and motivation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200

Microstrain

Per

centile

N1 2003N2 2003N3 2003N4 2003

N5 2003N6 2003N7 2003N1 2006N2 2006

N3 2006N4 2006N8 2006N9 2006N10 2006

S11 2006S13 2000

FatigueNo Fatigue

APS-FL Project background and motivation

Design Traffic

Asphalt CharacterisationDesign Modulus

(@wMAPT and traffic speed)

Asphalt CharacterisationDynamic Modulus (Spectrum

of temperature & traffic speeds)

Calculate critical strain using CIRCLY

Calculate cumulative strain distribution using CIRCLY

Select trial asphalt thickness for analysis

Select trial asphalt thickness for analysis

Examine performance using Shell fatigue criterion

Confirm conformance using LTPP & NCAT field test data

Refine design

thickness

Refine design

thickness

CURRENT AUSTROADS DESIGN METHOD

PROPOSED ASP-FL DESIGN METHOD

APS-FL Project background and motivation

SPT TEST - OUTPUT DATA DYNAMIC MODULUS E*

0 90 180 270 360

SINUSOIDAL LOAD CYCLE (1 CYCLE)

ST

RE

SS

& S

TR

AIN

Stress

Strain

Phase angle

Phase angle 0o Elastic

Phase angle = 90o Viscous

ASPHALT MATERIALS PERFORMANCE TESTER (AMPT)

Dynamic modulus master curve

APS-FL Project background and motivation APS-FL Project background and motivation

Design Traffic

Asphalt CharacterisationDesign Modulus

(@wMAPT and traffic speed)

Characterise asphalt E*Dynamic Modulus (Spectrum

of temperature & traffic speeds)

Calculate critical strain using CIRCLY

Calculate cumulative strain distribution using CIRCLY

Select trial asphalt thickness for analysis

Select trial asphalt thickness for analysis

Examine performance using Shell fatigue criterion

Confirm conformance using LTPP & NCAT field test data

Refine design

thickness

Refine design

thickness

CURRENT AUSTROADS DESIGN METHOD

PROPOSED ASP-FL DESIGN METHOD

16‐Dec‐11

4

APS-FL Project background and motivation APS-FL Project background and motivation

APS-FL Project background and motivation APS-FL Project background and motivation

• NCAT measure the fluctuation in asphalt stiffness and strain as a function of load & temperature spectrum

• Conclusion: limiting the cumulative distribution of asphalt strain will provide a rational design criterion

• Thus we need to model asphalt stiffness over the temperature spectrum in design analyses

• This process will enable us to calibrate the LLAP design limits by analysis of LTPP sites

APS-FL national asphalt characterisation study

Objectives

• Determine range of E* v temperature and load duration of typical Australian mixes

• Determine range of G* v temperature and load frequency of typical Australian bitumen

• Calibrate predictive models e.g. Hirsch

• Once calibrated can be used in the absence of laboratory data

APS-FL national asphalt characterisation study

• Replicate testing in overseas laboratory to calibrate our sampling and testing methods

• Correlation will ensure a sound basis for performance comparison with overseas mixes

• Will facilitate access to LTPP data i.e. similar laboratory performance implies similar field performance

• Peer review of APS-FL project and research plan; workshops with overseas experts

16‐Dec‐11

5

Long life pavement design software and manual

• Define software methodology; prepare project brief and obtain cost estimates

• Beta version; temperature spectrum single layer; outputs cumulative distribution of strain

• Refinement; modeling multi layer structure; output strain distribution cumulative damage

• Final version; includes iterative loop to yield required thickness to satisfy design criterion

Long life pavement design software and manual

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Dynamic modulus MPaDistribution

Pavement temperature C

TRAFFIC, PAVEMENT TEMPERATURE & ASPHALT STIFFNESS DISTRIBUTION

Melbourne 100mm

Canberra 100mm

Asphalt stiffness

Long life pavement design software and manual

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

Cummulative distribution %

Tensile strain bottom of asphalt

CUMULATIVE ASPHALT STRAIN DISTRIBUTION RELATIVE TO CLIMATE 300mm ASPHALT ON STANDARD FOUNDATION

Melbourne

Canberra

Sydney

Darwin

NCAT tentative  limit

Long life pavement design software and manual

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

Cummulative distribution %

Tensile strain bottom of asphalt

CUMULATIVE ASPHALT STRAIN DISTRIBUTION RELATIVE TO CLIMATE 300mm ASPHALT ON STANDARD FOUNDATION

Melbourne

Canberra

Sydney

Darwin

NCAT tentative  limit

UK

Fra

• Identify and select LLAP sites i.e. deflections reducing over the long term

• Obtain pavement composition, temperature / traffic distribution data from long life LTPP sites

• Obtain component asphalt materials master curve data (if possible)

• Run deflection back-analyses to estimate E* at test temperature and calculate asphalt strain

• Analyses of deflections taken over a range of temperatures will enable the calculation of the cumulative distribution of asphalt strain

Calibration of the limiting cumulative distribution of strain

• In all pavement thickness design a number of assumptions and relationships are applied

• In the calibration exercise if the same assumptions and relationships are used, the limiting cumulative distribution of strain so derived accrues the effects of all the variables.

Calibration of the limiting cumulative distribution of strain

16‐Dec‐11

6

• US proposal to incorporate healing into design process beyond our resources

• Control the durability of the bottom asphalt layer by the specification of the binder ‘richness modulus’ and other benchmark conditions

• The APS-FL manual will dictate high standards of construction quality; this will more than compensate for minor inaccuracy in modelling

Long life pavement design software and manualAPS-FL information dissemination & training

program

• Staged technical reports of findings in condensed / practitioner format

• Long Life pavement design and construction manual prepared by AAPA

• National roadshow to disseminate project outcomes and train practitioners in implementation

• Austroads guidelines for the design and construction of long life asphalt pavements

APS-FL CURRENT STATUS

• The project team is in place and guidelines framed with input from key stakeholders

• The national asphalt characterisation project has been scoped, approved and samples sought

• The long life pavement design software has been scoped and costed

• Information dissemination is ongoing and peer review is programmed

AAPA’s 14th International Flexible Pavements Conference

Sydney25–28 September 2011

Topic: Asphalt Pavement Solutions – For Life

Implementation project update

PRESENTER:  Ian RickardsPosition:  ConsultantOrganisation:   AAPA

16-Dec-11

1

What is a Perpetual Pavement?

• No deep structural distress

Limit Cracking to top-down

Goal of Perpetual Pavement Design• Design so there are no deep structural distresses

– Bottom up fatigue cracking– Structural rutting

• All distresses can be quickly remedied from surface• Result in a structure with ‘Perpetual’ or ‘Long Life’

Do Perpetual Pavements Exist?

• Perpetual Pavements are NOT a new concept

– Full-depth

– Mill and inlay

– Deep strength

• Perpetual Pavement Award– 35+ years

– No structural failures

– 13+ year rehab interval

16-Dec-11

2

Designing Perpetual Pavements

Newcomb, 2001

M-E Perpetual Pavement Design

No Damage Accumulation

Log N

Log

ThresholdStrain

E1

E2

E3

D1

D2

D3

P

A

t

v

Normal Fatigue Testing Results VersusEndurance Limit Testing

0

200

400

600

800

1000

1200

1000 100000 10000000 1.1E+08

Number of Loads to Failure

Stra

in, (

10E

-06)

Endurance Limit

Normal Range forFatigue Testing

0

200

400

600

800

1000

1200

1000 100000 10000000 1.1E+08

Number of Loads to Failure

Stra

in, (

10E

-06)

Endurance Limit

0

200

400

600

800

1000

1200

1000 100000 10000000 1.1E+08

Number of Loads to Failure

Stra

in, (

10E

-06)

Endurance Limit

Normal Range forFatigue Testing

What is the Endurance Limit for HMA?

• 1972 – Monismith estimates about 70 • 2001 – I-710 designed at 70 • 2002 – 70 used by APA• 2007 – NCHRP 9-38 Lab Study

– 100 for unmod binders– 250 for mod binders– More severe than field

• 2007 – MEPDG uses 100 to 250 • 2008 – Field measurements show higher

strains

N8 and N9

2.3 2.0

2.9 3.5

2.8 3.1

1.92.6

3.26.4

8.4

0.0

5.0

10.0

15.0

20.0

25.0

N8 N9Section

De

pth

Fro

m P

ave

me

nt S

urf

ac

e, i

n.

Lift 1

Lift 2

Lift 3

Lift 4

Lift 1

Lift 2

Lift 3

Lift 4

Lift 5

Aggregate Base(Track Fill)

Subgrade(A-7-6 Soil)

Rich Bottom LayerPG 64-22

Dense Graded HMAPG 64-22

Dense Graded HMAPG 76-28

SMAPG 76-28

Moisture Content = 10.8%Unit Weight = 133.4 pcf

Moisture Content = 12.9%Unit Weight = 133.8 pcf

Moisture Content = 18.0%Unit Weight = 126.2 pcf

Moisture Content = 17.2%Unit Weight = 126.9 pcf

250 mm 350 mm

16-Dec-11

3

Strain Measurements Strain and Temperature

0

200

400

600

800

1000

1200

01

-No

v-0

6

31

-De

c-0

6

01

-Ma

r-0

7

30

-Ap

r-0

7

29

-Ju

n-0

7

28

-Au

g-0

7

27

-Oct

-07

26

-De

c-0

7

24

-Fe

b-0

8

24

-Ap

r-0

8

Date

Lo

ng

itud

ina

l Mic

rost

rain

-Sin

gle

Axl

e

0

20

40

60

80

100

120

Mid

-De

pth

Pa

vem

en

t Te

mp

era

ture

,F

N8-Strain

N9-Strain

N8-Temperature

N9-Temperature

Strain vs. Temperature

N8 Strain = 21.249e0.033*Temp

R2 = 0.9584

N9 Strain = 11.136e0.0293*Temp

R2 = 0.9309

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

Mid-Depth Pavement Temperature, F

Lo

ng

itu

din

al M

icro

str

ain

-Sin

gle

Axl

e

Section Axle Type C1 C2 R2

Single 21.249 0.033 0.96Tandem 15.326 0.035 0.96

Steer 11.341 0.036 0.87Single 11.136 0.029 0.93

Tandem 8.600 0.030 0.92Steer 5.901 0.030 0.93

N8

N9

Strain Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Longitudinal Strain

Pe

rce

ntile

N9 N8

End Result NCAT Test Track Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200

Microstrain

Pe

rce

nti

le

N1 2003N2 2003N3 2003N4 2003N5 2003N6 2003N7 2003N1 2006N2 2006N3 2006N4 2006N8 2006N9 2006N10 2006S11 2006S13 2000

FatigueNo Fatigue

16-Dec-11

4

2003 Test Sections

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N1 2003 N2 2003 N3 2003 N4 2003 N5 2003 N6 2003 N7 2003

Section

Fat

igu

e R

ati

o

Fatigue Cracking Occurred

Fatigue Cracking AbsentMax Ratio = 2.11

2006 Test Sections

0

1

2

3

4

5

6

N1 2006 N2 2006 N3 2006 N4 2006 N8 2006 N9 2006 N10 2006 S11 2006

Section

Fat

igue

Rat

io

Fatigue Cracking Occurred

Fatigue Cracking AbsentMax. Ratio = 2.18

Probabilistic Design – Monte Carlo Simulation

Thickness

f

Material Properties

f

Axle Weight

f

MonteCarlo

RandomSampling

MechanisticModel

Pavement Response

f % Below Threshold

% Above Threshold

% Below Threshold

• Design should have high % below threshold

Pavement Response

f% Below Threshold

How much ‘damage’ does this

area correspond to?

‘Damage Computation’• For responses exceeding threshold, compute N

using transfer function– User defined

• Calculate damage accumulation rate– Damage / Maxles

Pavement Response

f% Below Threshold

DamageMillion Axles

Estimated Long Life

• Convert damage rate into an estimated time– Use traffic volume and growth

– Calculate when damage = 0.1

16-Dec-11

5

PerRoad 3.5• Sponsored by APA

• Developed at Auburn University / NCAT

• M-E Perpetual Pavement Design and Analysis Tool

Thickness

f

Material Properties

f

Performance Criteria

Traffic Volume

Types of Axles

Functional Classification

16-Dec-11

6

PerRoadXPress – For Low Volume Roads

Methodology - Overview

• Develop a set of boundary conditions

• Execute PerRoad analysis to determine required thickness for each “design”

• Develop design regression equations

• Guiding Principles– Limit number of required inputs

– Make design procedure simple/efficient

Structural Cross Section

Subgrade Soil

Aggregate Base

HMA Variable

0-10 in.

Infinite

Layer Stiffness

400,000 to 1,000,000 psi

20,000 psi

10,000 psi to 30,000 psi

Poisson’s Ratio

0.35

0.40

0.45

Number of Simulations# Simulations =

2 Highway Classifications

X 3 Traffic Volumes

X 3 Growth Rates

X 4 Percent Trucks

X 3 Soil Stiffnesses

X 3 HMA Stiffnesses

X 3 Base Thicknesses

1,944 Pavement Designs

Design Equation

HMA = C0 + C1*AADT + C2*%Trucks + C3*%Growth + C4*Soil Stiffness + C5*Base Thickness + C6*HMA Stiffness

16-Dec-11

7

PerRoadXPress

Traffic

SoilAgg. Base

HMA

http://www.eng.auburn.edu/users/timmdav/Software.html

16‐Dec‐11

1

AAPA’s 14th International Flexible Pavements Conference

Sydney25–28 September 2011

Matching Accelerated Pavement TestingMatching Accelerated Pavement Testingto Pavement Design and Performanceto Pavement Design and Performance

Dr. R. Buzz Powell, P.E.Assistant Director & Test Track Manager

National Center for Asphalt Technology at Auburn University USA 2

APT – Not Just Another New Thing• 1912 UK Road Machine

• 1922 Bates Experimental Road

• 1952 WASHO then AASHO (1956) Road Tests

• 1967 Washington State University Track

• 1970 South African HVS

• 1973 Danish Road Testing Machine

• 1984 Australian ALF

• 1989 New Zealand CAPTIF

• 1994 MnRoad

• 1996 WesTrack

• 2000 NCAT Pavement Test Track

• 2002 University of Waterloo CPATT

3

UK Road Machine1912

4

Australian ALF1984

NCAT Pavement Test Track2000

5

Relating APTTrack to APTHVS

6

16‐Dec‐11

2

Relating APTTrack to APTHVS

7 8

Relating APT to Infrastructure

• APT rutting relates well to infrastructure rutting

• Speed, age, and temperature can be problematic

• Laboratory master curves may improve modeling

• Loaded wheel testers still being used by many

• Cracking and durability are greater challenge

• Crack initiation and propagation are the key 

Roughness vs Traffic (Weak Subgrade)

0

25

50

75

100

125

150

175

200

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 10,000,000

IRI (

inch

es p

er m

ile)

ESALs

N8 N9

9

250 mm 350 mm

Roughness Increased at 6.8M ESALs

0

25

50

75

100

125

150

175

200

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 10,000,000

IRI (

inch

es p

er m

ile)

ESALs

N8 N9

10

250 mm 350 mm

Cracking First Mapped at 8.3M ESALs

0

25

50

75

100

125

150

175

200

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 10,000,000

IRI (

inch

es p

er m

ile)

ESALs

N8 N9

11

250 mm 350 mm

122/19/09

High‐Speed Strain Response

-400

-300

-200

-100

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time, sec

Lo

ng

itu

din

al

Mic

ros

tra

in

ALL ALC ALR

16‐Dec‐11

3

Effect of Pavement Thickness

N8 Strain = 21.487e0.0335*Temperature

R2 = 0.96

N9 Strain = 11.496e0.0298*Temperature

R2 = 0.9217

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

Mid-Depth Temperature, F

Te

nsi

le M

icro

stra

in

N8 N9

13

250 mm

350 mm

Effect of Pavement Thickness

N8 Strain = 21.487e0.0335*Temperature

R2 = 0.96

N9 Strain = 11.496e0.0298*Temperature

R2 = 0.9217

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

Mid-Depth Temperature, F

Te

nsi

le M

icro

stra

in

N8 N9

14

250 mm

350 mm

15

Strain Distributions on NCAT Track

16

Strain Distributions on NCAT Track

250 mm350 mm

17

Strain Distributions on NCAT Track

225 mm225 mm

Implementation Example

18

•• 600 mm600 mm perpetual (original) Track foundationperpetual (original) Track foundation

• Two 225 mm thick structural sections built in 2003

• 225 mm sections were found to be perpetual (LLAP)

• Design layer coefficient increased from 0.44 to 0.54

• Saving $25‐$50 million annually in Alabama alone

16‐Dec‐11

4

19

Potential Impact in Australia

20

APT Testing by Caltrans

21

2009 Group Experiment Results

50% RAP

Virgin Mixes

22

Beam Performance Expectations500

23

Beam Performance ExpectationsActual

24

Ideal Characterization vs Depth

• Upper layers (age hardening, high temperatures)

– Laboratory rut testing (AMPT, APA, Hamburg, etc.)

– Durability and top‐down cracking (fracture energy)

• Middle layers (limited age hardening)

– Thickness reduction via stiffer materials

• Lower layers (conditional aging, lower temps)

– Fatigue resistance (bottom‐up cracking)

– Need for practical, multi‐strain mix evaluation

16‐Dec‐11

5

25

Long Life Asphalt Pavement Design

• Laboratory mix characterization

• Determination of design parameters

• Pavement response predictions

• Construction of strain distribution

• Confidence via comparison to APT limit

26

Questions ?

1

Accelerated loading test results of two NCAT sections with highly modified asphalt

Erik J. Scholten – Kraton Innovation Center AmsterdamDavid H. Timm – Auburn UniversityJ. Richard Willis – Auburn UniversityR. Buzz Powell - National Center for Asphalt TechnologyRobert Q. Kluttz – Kraton Innovation Center HoustonWillem C. Vonk – Kraton Innovation Center Amsterdam

14th International Flexible Pavements ConferenceSydney, Australia25-28 September 2011

Introduction

Concept of highly modified asphalt

Two high SBS sections in monitored field trials at NCAT, USA

Rutting data comparison section N7 APA and AMPT data Finite Element Modelling and actual rut depths at NCAT

Successful rehabilitation of failed pavement on weak subgrade

Summary / conclusions

Concept of Highly Modified Asphalt (HiMA)

7.5% SBS – Continuous polymer rich phase

2.5% SBS - Continuous asphaltenerich phase

Polymerrich

Before mixing After mixing

5 % SBS - Co-continuous asphalteneand polymer rich phases

Asphaltenerich

TU Delft, standard base course mix with 4.6% binder. Full sine loading in 4 point bending

(20°C, 8 Hz)

Making it possible with current equipment

Challenges:

Hard base bitumens (40-60 pen, C320, C600)

High SBS content

Storage stability

Issues solved by adapting design of the polymer

Kraton D0243

Provides a low viscosity, even in hard bitumens at elevated SBS content

Provides compatibility

Provides storage stable PMBs with most base bitumens

Opportunities with highly modified asphalt (HiMA)

1. Base/binder course layer thickness reductionLife cycle impact reductionUp front Cost Savings and eco impact

2. Perpetual pavement at standard thicknessHigh modulus, fatigue resistant, full depth asphalt pavements

3. Reinforced binder/wearing course for pavement rehabilitationBetter performance without making pavement thicker

Kraton™ Polymers’ new SBS grade D0243 enables high SBS content with current equipment

National Center for Asphalt Technology (NCAT)

ObjectiveEvaluate in situ structural characteristics of highly modified asphalt pavement relative to reference section

Two sections1. Full depth highly modified asphalt (N7) 7.5% SBS in all layers 20% reduced pavement thickness

2. Highly modified overlay (N8) 14.5 cm inlay over cracked pavement

3 year cycle of construction and testing

Unique opportunity to evaluate structural responses against wide range of materials and pavement structures

2

Update section N7

Rutting:

S9 (control) = 5.9 mm

N7 (HiMA) = 1.3 mm

No cracking in either section

Previous experience with thin sections led to fatigue failure within one year

Test Track SoilMr = 200 Mpa = 0.45

Dense Graded Crushed Aggregate BaseMr = 85 MPa = 0.40

150mm

76mm (PG 67-22; 19mm NMAS; 80 Gyrations)

70mm (PG 76-22; 19mm NMAS; 80 Gyrations)

32mm (PG 76-22; 9.5mm NMAS; 80 Gyrations)

Control (178mm HMA)

57mm (7.5% polymer;19mm NMAS; 80 Gyrations)

57mm (7.5% polymer;19mm NMAS; 80 Gyrations)

32mm (7.5% polymer, 9.5 mm NMAS)

Experimental (145mm HMA)

Courtesy Prof. David Timm, Auburn U.

Lift thicknesses limited by 3:1 thickness:NMAS requirement

Rutting comparison mixtures section N7

Asphalt Pavement Analyzer (APA) – AASHTO TP63-09 Test temperature 64°C

8000 cycles

Asphalt Mixture Performance Tester (AMPT) Test temperature 59.5°C Flow number as rutting indicator

(no. of cycles at 10% axial strain)

MixtureAverage Rut Depth, mm StDev, mm

Rate of SecondaryRutting, mm/1000

cyclesControl – Surface 3.07 0.58 0.140

Control – Base 4.15 1.33 0.116HiMA – Surface 0.62 0.32 0.0267

HiMA – Base 0.86 0.20 0.0280

1

10

100

1000

10000

Control Surface

Control Base

HPM Surface

HPM Base

Flow

 Number, cycles

Rutting comparison mixtures section N7

Rutting predictions with APA and AMPT provide same relative result

HiMA mixes provide significant improvement in rutting resistance

y = 46.729x‐0.532

R² = 0.9289

0.1

1

10

1 10 100 1000 10000

APA

 Rut Depth, mm

Flow Number, cycles

Measured rut depths versus Finite Element Model

Relative rutting in actual NCAT sections very similar to rutting in modelled pavements at TU Delft

4.5 - 5x less rutting in high SBS pavements

TU Delft

Conventional design for N7 using stiffness data

Conventional modelling indicates highly modified pavements have more rutting due to reduced stiffness……….test results show the opposite

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Control (7") Kraton (5.75") Kraton (7")

Cross-Section

Fat

igue

Cra

ckin

g, %

of L

ane

Are

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rut

Dep

th, i

n.

Fatigue

Rutting

Design calculations

Sub grade50 MPa

Sub base100 MPa

Asphalt layer

125 mm

Shell Pavement Design Manual

Melbourne climate

10 million ESALs

Standard asphalt mix:

Stiffness at 20°C – 8 Hz: 8900 MPa

Fatigue equation:

36.31110.6 xN

Polymer modified mix:

Stiffness at 20°C – 8 Hz: 8100 MPa

Fatigue equation:

17.61810.9 xN

What difference does fatigue make for the design?

3

The importance of taking into account fatigue

Fatigue line HiMA included;

HiMA asphalt allows 29% thickness reduction despite slightly lower stiffness

Sub grade50 MPa

Sub base100 MPa

272 mmstandardAsphalt

-29%

194 mmHiMA

Asphalt

Sub grade50 MPa

Sub base100 MPa

Fatigue line unmodified asphalt applied for both mixes:

HiMA pavement would be thicker due to lower stiffness

Sub grade50 MPa

Sub base100 MPa

272 mmstandardAsphalt

+4.5%

285 mmHiMA

Asphalt

Sub grade50 MPa

Sub base100 MPaMaterial properties

not fully taken intoaccount

Rehabilitation of failed pavement with high SBS mix

2006 Perpetual design study Oklahoma DoT at NCAT

Soft subgrade with stiff top 8 inches (lime stabilization)

0

2

4

6

8

10

12

14

16

18

20

Original Construction Conventional Rehabilitation HPM Rehabilitation

Dep

th from Surface of Pavemen

t, in.

Subgrade

Stiff

Soil

Base

Stiff

Soil

Base

Stiff

Soil

Base

Rich AC Rich AC Rich AC

Original

Dense

Original

Dense

Original

DenseOriginal

Dense

Rehab

Dense

Rehab

SMAOriginal

SMA

HPM

HPM

Rich 

Paving

Fabric

Depth of 

Mill & Inlay

Depth of 

Mill & Inlay

Subgrade Subgrade

Subgrade

Pressure

Gauge

Base

Pressure

Gauge

Asphalt

Strain

Gauges

2006 2009 2010

Original construction severely distressed after 10 million ESALs

Rehab with paving fabric failed after 4.0 million ESALs

Rehab with paving fabric after 4.0 million ESALs

10” pavementpaved summer 20065” rehabilitationpaved August 200910 months old

High SBS modified mill & inlay after 4.2 million ESALs

10” pavementpaved summer 20065” rehabilitationpaved August 20095 ½” HiMA rehabpaved August 201010 months old

Concluding remarks

Full depth high SBS modified section N7 at NCAT shows continued good rutting results

Asphalt Pavement Analyzer and Asphalt Mixture Performance Tester predict same relative rutting differences between reference and high SBS mixes

Actual rutting data matches predicted rutting performance based on Finite Element Modelling from TU Delft

Excellent rutting performance could not be predicted with traditional pavement design models Need for better models!

High SBS modified mill and inlay shows no damage after 4.2 million ESALs whilst previous rehab failed;

new cost effective overlay solution for cracked pavement

Concluding remarks

NCAT section N7 has no cracking until date despite 20% thickness reduction

Lab testing confirms superior performance of high SBS mixes to prevent rutting and cracking

Thinner, more cost effective asphalt pavements are possible now without jeopardizing performance

4

19

We believe the information set forth above to be true and accurate, but any findings, recommendations or suggestions that may be made in the foregoing text are without any warranty or guarantee whatsoever, and shall establish no legal duty or responsibility on the part of the authors or any Kraton Polymers entity. Furthermore, nothing set forth above shall be construed as a recommendation to use any product in conflict with any existing patent rights. All Kraton Polymers entities expressly disclaim any and all liability for any damages or injuries arising out of any activities relating in any way to this publication or the information set forth herein.

©2011 Kraton Performance Polymers, Inc. All rights reserved.

Publication Disclaimer:

Kraton, the Kraton logo and design, Cariflex and Nexar are trademarks of Kraton Performance Polymers, Inc. Giving Innovators Their Edge is a service mark of Kraton Performance Polymers, Inc.

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 1

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Feedback from theAAPA 2011

Study Tour

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

• 3rd to 19th September 2011

• Tour group 9 Australian roads people

o Researchers / State & LG Road Officials / Consultants

o Industry representatives / Asphalt suppliers 

o Wide range of experience

o Skilled including professional engineers & technologists

• Five legs

o Cape Town / Pretoria / Durban / CAPSA’11 / KNP

• Four key issues www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Travel routeTravel route

www.aapa.asn.au

+11 hours flying to Sydney

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

A. Surface Treatmentso Sprayed seals | Slurry seals | Surface rejuvenation

B. Binderso use of bitumen rubber in sprayed seals and asphalt wearing courses, 

availability and specification requirements including quality control measure to ensure compliance.

C. Improving pavement performanceo modelling, accelerated testing, design methods & models, foam bitumen 

stabilisation and bitumen treated base experience and transfer of high modulus asphalt technology to RSA

D. Sustainabilityo recycling, warm mix asphalt, efforts to reduce carbon footprint, carbon 

calculators and impacts for road asset management

www.aapa.asn.au

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 2

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

ProcessProcess• Visited research centres, state road authorities, municipal government, CAPSA conference, contractors, site & road inspections

• Presentations at Society for Asphalt Technology

• Provided detailed questions ahead of visit – answers provided and will be in report

• Contacts established and directions provided to participants on specific topics

www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Immediate outcomes for QldImmediate outcomes for Qld1. Bitumen contents of foam stabilised basecourse

2. Emulsion & Polymer Modified Emulsion

3. Higher traffic loads on sprayed surface seals

4. Use of 20% rubber crumb in field blended CRB

5. Accelerated pavement test results in design

6. Warm Mix Asphalt and high % RAP used

7. Heavy duty pavement structures with HiMA

8. Use of higher standard granular basecourse G1 

9. Southern Hemisphere Sprayed Seal Alliance 

www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Reducing bitumen in foamed basesReducing bitumen in foamed bases

www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Opportunity for Queensland TMR to explore

• Queensland normally working on 3 ½%  binder in foam bitumen.

• South Africa have reduced to 2 ½% based on research.

• Can Queensland  follow?

• Substantial potential saving, given the high proportionate cost of binder in foam bitumen stabilisation.

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

RAP for ColdRAP for Cold‐‐InplantInplant RecyclingRecycling

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 3

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Increased use of bitumen emulsionIncreased use of bitumen emulsion

• Emulsion used extensively in seals

• Included as part of design to ensure coating

• Polymer modified bitumen emulsion (SBR) widely used for aggregate retention and adhesion

• Extends spray seal season

www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Potential opportunity for TMR

• Would the use of polymer modified emulsions potentially extend the sealing window in Queensland through Winter?

• Would elimination of cutter reduce the potential for flushing in the following summer, and improve seal quality? 

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Higher traffic loads on sealsHigher traffic loads on seals

• Traffic loads well in excess of 5 000 vpld (>15%HV)

• 20% crumb rubber binder / double seal

• Good construction control

www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

20% crumbed rubber binders20% crumbed rubber binders

• Field blended

• Property monitoring in field (viscosity, SP (R&B))

• Usage within defined time

www.aapa.asn.au

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 4

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Potential opportunity for TMR

• Would the use of rubber modified binder increase the traffic range for spray seals beyond the limit of around 5000 vpd we would normally apply?

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Using APT in improving designUsing APT in improving design

• As with Australia – inclusion of APT data in pavement design improvements

• Have longer history and international links

• Three devices available

o Heavy Vehicle Simulator (HVS)

o Mobile Load Simulator (MLS)

o Mini Mobile Load Simulator (MMLS)

• Potential to include in Qld APT activities

www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

CSIR HMA

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

CSIR HMA

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 5

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Benoit explaining operation

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Operation of APT

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Opportunity for TMR

• Given our investment in roads infrastructure in Queensland, can we afford not to have an APT?

• What would be the best configuration to adopt?

• Working with ARRB to explore the full range of available options.

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

WMA & high % RAPWMA & high % RAP

• Three trials undertaken since 2008

• Different WMA technologies trialled

• RAP% 10,20,40%

• PMB’s included

• Surfacing & base

• Heavily trafficked

• Sabita WMA manualin print

www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Warm Mix Asphalt

• Increasing use in South Africa and US

• Appears to offer many benefits:

‐ Reduced fuming – with WHS benefits

‐ Improved consistency

‐ Better handling

• Already used extensively by BCC

• Worthwhile Alliance project

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 6

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Heavy duty pavements Heavy duty pavements HiMAHiMA

• Based on the proven French EME system

• Use of a harder but resilient binder (Pen 10/15)

• Increases the modulus to >14 000 MPA whilst retaining fatigue characteristics

• Able to provide thinner higher load bearing capacity for heavy duty pavements

• Trial project inspected forrequired performance properties

• Could be delivered locally

www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Implications for TMR

• What is the real life of HiMA?

• Harder binder when constructed would normally lead to shorter life due to fatigue.  

• Does the increase in binder content to 6% fully compensate for this?

• Can we obtain the suitable binder in Qld?

• Would adoption of HiMA (with its thinner overall thickness)  increase the competitiveness of asphalt compared to concrete pavements?

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Higher standard granular baseHigher standard granular base

www.aapa.asn.au

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 7

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

SHSSASHSSA

• Agreed to the formation of the Southern Hemisphere Sprayed Seal Alliance

• Includes

o Individuals  interested  in sprayed seals

o Representative groups

• AAPA, Sabita

• ARRB, CSIR

• AsAc, SAT

• Communication through web & LinkedIn

• Formal structure to be established

www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Questions for TMR

• What is the role of professional networking (using LinkedIn) in TMR?

• Should we establish other communities of practice for other technologies as well, as a forum for sharing of knowledge?

• How should these be managed, to ensure that “information” on LinkedIn is soundly evidence based?

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

Special eventsSpecial events

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au

AAPA 2011 Pre‐CAPSA’11 Study Tour of South AfricaTopic

Page 8

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05 www.aapa.asn.au AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Report being preparedJoint and shared content – lead by key issue leaders

Feedback Regionally through AAPA organised events

Initial overview at SARG on Wednesday

Forward actionsWill be driven by report recommendations, likely . . . . . .o Link to foam stabilisedmaterial experts in South Africa

o Review APT experience based on RSA & USA reports

o Invite supply & use of field blended 20% crumb rubber

o Trial heavy duty seal designs with above

o Commence HiMA activities

o Develop Polymer Modified Emulsion Specifications

www.aapa.asn.au

AAPA 2011 Pre-CAPSA’11 Study Tour – Feedback SARG 2011-10-05

Thank you Rob

• Sincere thanks to AAPA and particularly Rob Vos for organising this trip.

• TMR intends to work collaboratively with AAPA to drive worthwhile changes identified during the trip.

Reference Group 12 May 2010

Page 1

Referen

ce Group

Referen

ce Group

2010

2010

Strategic Alliance Reference Group

Thermal Imaging and Bitumen Sprayer Distribution

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 1

p y

Michael Janosevic

Joel Gibson

Referen

ce Group

Referen

ce Group

2010

2010

Thermal Imaging

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 2

Referen

ce Group

Referen

ce Group

2010

2010

Thermal Imaging

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 3

Referen

ce Group

Referen

ce Group

2010

2010

Thermal Imaging

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 4

Referen

ce Group

Referen

ce Group

2010

2010

Thermal Imaging

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 5

Referen

ce Group

Referen

ce Group

2010

2010

Thermal Imaging

Questions?

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 6

Reference Group 12 May 2010

Page 1

Referen

ce Group

Referen

ce Group

2010

2010

Strategic Alliance Reference Group

Bitumen Sampling Device

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 1

Michael Janosevic

Joel Gibson

Referen

ce Group

Referen

ce Group

2010

2010

Bitumen Sampling

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 2

Referen

ce Group

Referen

ce Group

2010

2010

Bitumen Sampling

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 3

Referen

ce Group

Referen

ce Group

2010

2010

Bitumen Sampling

Questions?

Strategic Alliance R

Strategic Alliance R

12 M

ay 

12 M

ay 

Thermal imaging and bitumen sprayer distribution 4