46
RESEARCH By: Inge Aarseth, Atle Nesje and Ola Fredin UNESCO World Heritage. Guide to geological excursion from Nærøyfjord to Geirangerfjord WEST NORWEGIAN FJORDS GEOLOGICAL GUIDES 3 - 2014

WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

RESEARCH

By: Inge Aarseth, Atle Nesje and Ola Fredin

UNESCO World Heritage. Guide to geological excursion from Nærøyfjord to Geirangerfjord

WEST NORWEGIAN FJORDS

GEOLOGICAL GUIDES3 - 2014

Page 2: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

 ©  Geological Society of Norway (NGF) , 2014  ISBN:  978‐82‐92‐39491‐5  NGF Geological guides  Editorial committee: Tom Heldal, NGU Ole Lutro, NGU Hans Arne Nakrem, NHM Atle Nesje, UiB  Editor: Ann Mari Husås, NGF  Front cover illustrations: Atle Nesje View of the outer part of the Nærøyfjord from Bakkanosi mountain (1398m asl.) just above the village Bakka. The picture shows the contrast between the preglacial mountain plateau and the deep intersected fjord. 

  Levels geological guides: The geological guides from NGF, is divided in three leves. Level 1—Schools and the public Level 2—Students Level 3—Research and professional geologists  This is a level 3 guide.  Published by: Norsk Geologisk Forening c/o Norges Geologiske Undersøkelse N‐7491 Trondheim, Norway E‐mail: [email protected] www.geologi.no  

2   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 3: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

 WEST NORWEGIAN FJORDS: UNESCO World Heritage  

GUIDE TO GEOLOGICAL EXCURSION FROM NÆRØYFJORD TO GEIRANGERFJORD 

By Inge Aarseth, University of Bergen Atle Nesje, University of Bergen and Bjerkenes Research Centre, Bergen Ola Fredin, Geological Survey of Norway, Trondheim 

 

Acknowledgements 

Brian Robins has corrected parts of the text and EvaBjørseth has assisted in making the final version of thefigures .We also thank several colleagues for inputs fromtheir special fields: Haakon Fossen, Jan Mangerud, EilivLarsenandLarsHaraldBlikra.

Logistics 

This5daysexcursionguideisarevisionoftheguideforanexcursion arranged in connection with the IUGS geologycongress in Oslo August 2008: UNESCO FJORDS – FromNærøyfjordtoGeirangerfjord.

Timing: Thebesttimeformakingthisexcursionisthesummermonths:June–Augustasthe road leads over mountain passesthatmaynotopenbeforemidJune.Thetourist ferry on the total length of theGeirangerfjord (from Valldal toGeiranger)isonlyoperatingmidJune–mid August. The rest of the year it ispossible to take a shorter ferry fromHellesylttoGeiranger.

Startlocation: The excursion guide starts in Bergen,“Thecapitalofthefjords”.

Endlocation: The guide ends in Loen, Stryn,Nordfjord. From there it is possible tobebackinBergenlatesameeveningbydriving280km(5hours)alongE‐39.

Abstract

In addition tomagnificent scenery, fjordsmay display awidevarietyof geological subjects suchasbedrockgeol‐ogy, geomorphology,glacial geology, glaciologyand sedi‐mentology.ThisexcursioncanbringyoutotheheartlandofthewesternNorwegianfjords includingthetwofjordslistedontheUNESCOheritagelist:theNærøyfjordandtheGeirangerfjord. These fjords were selected as the mostspectacular amongmany others because of their naturalbeauty as well as their cultural heritage. Because of thegreatrelief,bothterrestrialandsubmarine,theyaresub‐ject to dramatic exogenic processes. The excursion cangiveyouanoverviewandadetailedinsightintheforma‐tionoffjordsinadditiontothegeologicalprocessestakingplace in the fjord environment today. You will see howglaciers respond toclimatic changeandhowman ispre‐paringfornaturaldisastersfromsnowavalanchesaswellasfromtsunamiscausedbyrockslides.Youwillseefjordsfrombelow(shipdecks), fromabove(outlookpoints),aswellasfromhotelrestaurantsandyouwilllearnthatthesaying:

“Ifyouhaveseenone,youhaveseenthemall”doesnotap‐plytothesefjords .

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   3 

Page 4: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Accommodation:    

Todothewholeexcursiononehastobookovernightstaysat Bergen, Sogndal, Nordfjordeid (two nights), Geiranger

andStryn(or return toBergen the lastevening).Bookingcannowbedoneon the internet. It isalsopossible todopartsoftheexcursionbydroppingone(forinstanceday3)ormoredays.

Field logistics: 

Theexcursionareaisaccessiblebybus(Fig.1).Inadditionthere are two 2‐hours boat trips; on the Nærøyfjord andtheGeirangerfjord.There isa ferryserviceontheNærøy‐fjord(fromGudvangentoFlåm)operatingallyearsround

aspartofthetrip“NorwayinaNutshell”.Checkthesched‐uleontheweb.Inadditionthreefjordswillbecrossedbyshorter frequent ferries.Theprogramme in theexcursionareaincludeslittlehikingexceptforoneday(day3).Some

ofthepublicroadsaretypicalnarrowwesternNorwegianroadswithhairpinbendsupordownsteepmountainsides,butitispossiblewithamaximum12mlongbus.Forper‐sonal equipmentone shouldbringmountainboots,warm

clothing and rain gear. The excursion takes you up tomountainsabove1400masl.anditmightbecoldupthereeveninthesummermonths.

General Introduction  

This excursion will take you to the two fjords listed onUNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐fjordandGeirangerfjord”aswell as the fjordareas inbe‐tween. On the third day (optional) the route leads to

Vågsøy island (62ON) at the coast. The excursion guideprovidesadetailedand integratedoverviewofprocesses,deposits,landforms,humanimpactandlandscapedevelop‐ment in theheartlandof the fjords. It includesthediscus‐

sionof long‐termpre‐Quaternary landscapedevelopment,Quaternaryglaciations,deglaciationaswellaspresent‐daysurfaceprocesses.TheareahaslongbeenthefocusofQua‐ternaryandmarineaswellasgeomorphologicstudies.On‐

goingresearchprogramsdealswithseveraltopicssuchasglaciers reaction to global warming, geo hazards fromsnowaswellasfromrockavalanches(historicandpoten‐tialtsunamis)andchemicalandphysicalweathering.

Fig. 1. Excursionroute.Dotted:Fjordcruises.Glaciermar‐ginsoftheYoungerDryasstadialandtheBremangereventareindicated.

Regional Geology  Sincetheexcursiondealswithseveraltopics,theregional geology is split up in several chapterswritten by geologists working on the subject inthearea.

4   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 5: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

 Haakon Fossen: 

The bedrock of the Bergen‐Geiranger area   

The bedrock reflects the general tectono‐stratigraphy ofthe Scandinavian Caledonides; a Precambrian basement

(WesternGneissRegion:WGR) thatwere increasingly in‐volved in Caledonian deformation and metamorphism tothewest,anoverlyingunitofmicaschistandphyllite,andremnantsofCaledonianNappesthatwerethrustabovethe

micaschist/phyllitelayerandthebasement(Fig.2).TheWesternGneissRegion consists of intrusive complexesand subordinate metasedimentary rocks that were de‐formed and to a large extent turned into gneisses during

ProterozoicaswellasCaledonianorogenicmovements. ItwasoncecoveredbyseveraltensofkilometersofCaledo‐nian allochthonous units (nappes) that constituted theCaledonianorogenicwedge.TodaytheWGRdefinesama‐

jorwindowintheScandinavianCaledonides.Eclogitesandhigh‐pressureminerals such asmicro‐diamonds and coe‐siteinthenorthwesternpartoftheWGRsuggestthatthisrepresentsthepaleo‐marginofBalticathatwassubducted

underneathLaurentiatodepthsinexcessof100km.A layer of phyllite and micaschists separates the Caledo‐nian nappes from rocks of the WGR. This mechanically

weaklayeractedasadécollementduringSiluro‐DevonianCaledoniancollision,duringwhicha tectonicwedgeofal‐lochthonous units accumulated. The Caledonian alloch‐thons(nappes)constitute fragmentsof theBalticamargin

andoceaniccrustfromthelowerPaleozoicIapetusocean,including island arc complexes as well as ophiolite frag‐ments. The largest nappe unit is the Jotun Nappe, whichoccupiestheeasternSognarea.

Shearzones,faultsandfracturesAt the end of the Caledonian orogeny (early Devonian

times),Caledoniancontractiongaveway forDevonianex‐tensionwiththeformationofimpressiveextensionalshearzones.Theinitialstagewascharacterizedbymassiveback‐slidingoftheorogenicwedgeonthemicaschists/phyllites

(décollementzone).ThenW‐andNW‐dippingextensionalshear zones evolved, notably the Hardangerfjord ShearZone (HSZ) and the Nordfjord Sogn Detachment Zone(NSDZ). The former is seen in the Aurland‐Lærdal area,

where the basement‐phyllite interface bends down to‐wards the Sognefjord. The NSDZ involves many tens ofkilometersofoffsetandseparatesDevonianconglomeratesandsandstonesinitshangingwallfrom(ultra)highrocks,

notablyeclogites,intheWGR.TheHSZinvolvesafewkilo‐meters of offset, andmarks the transition from the vari‐ously deformed and rotated WGR to almost unaffected

basementtotheSE.ReactivationoftheseshearzonesasbrittlefaultsoccurredrepeatedlyaftertheCaledonianorogeny.Inaddition,many

post‐Devonian faults and fractures, particularly along thecoast,havecoast‐parallel trendsandhavebeenrelated tothe North Sea Permo‐Triassic and late Jurassic riftingevents. The many structural “grains” that have resulted

from the prolonged structural history of this area are re‐flected by the different orientations of valleys and fjords,includingthemany“kinks”ontheSognefjord.

Fig. 2.  Bedrockgeologyoftheexcursionarea.Below:W‐E‐SEprofileofthebedrockunits.HSZ:HardangerfjordShearZone.

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   5 

Page 6: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Inge Aarseth: 

Geomorphology 

Geomorphologicstudies in the fjordregionofwesternNor‐way have been undertaken by several authors. The older

works took very little account of the bedrock geology.Ahlman(1919)wasinfavourofrelativemodestglacialero‐sion except for the over‐deepening of the fjords. Gjessing(1967)onthecontrarypointedtoglacialerosionasthemost

active process in landscape development along fjords andvalleys.Valleyheadswereaccordingtohimformedbyback‐wardglacialerosion(Fig.3).Themountainplateaus,liketheHardangervidda plateau, had not been altered much sinceearlyCenozoictimeexceptfordeepweathering.Theweath‐

ered material had been removed later by periglacial massmovementaswellasglacialerosion(Gjessing1967).Holte‐dahl(1967,1975),whostudiedtheareaaroundtheHardan‐gerfjord in particular, found several areas of potholes and

other P‐forms and argued that glaciofluvial erosion hadplayed an important role in fjord formation. According tohimconfluenceoftributaryglaciersintheinnerfjordsledtoexcavationofdeep fjordbasins.Near the coast the glaciers

spread out and lost their concentration. This diffluence re‐ducedtheerosionandleftbehindbedrockthresholds.Nesje&Whillans(1994)arguedthatV‐shapedvalleysandgulliesalongthesidesof theSognefjordpointedtoastrongfluvial

and downslope action. The glaciers were only responsiblefor removal of the weathered material and the over‐deepening of the fjords. They connected the gently slopingsurfaces above the fjord‐ and valley shoulders and con‐

structedthepreglaciallandscape;thepaleicsurface.Aresentreferee paper gives a comprehensive discussion on the At‐lanticcoastandfjords(Corner2005a).

Whencomparingasatelliteimageofthefjorddistrict(Fig.4),toabedrockmapofthesamearea(Fig.2)onerealizethe connection between the bedrock structures and the

architectureofthefjords. Inrecentyearsseveralauthorshave linked the upper terrestrial bedrock surface (thepaleicsurface)tothehistoryoftheoffshoresedimentarybasins.During theLateCretaceoustransgressionmostof

SouthernNorwaywas coveredbyCretaceous sediments.This was found by extrapolating seismic reflectors, liketheCretaceous/TertiaryboundaryfromtheNorthSeaontothelandarea.Thesesedimentswerestrippedoffduring

thefollowingCenozoicupliftcausedbytheopeningoftheNorwegian‐GreenlandSea.

Fig. 3.  SchematicprofileofafjordshowingthepaleicsurfaceandtheNorwegianstrandflat.(ModifiedfromGjessing,1967).

                                                                                                      Fig. 4. Landsat7falsecolourmosaic(picturedate2007‐07‐21)showingsouth‐westernNorwayandmostoftheexcursionarea.Thecolours(Landsatbands7,4,2)essentiallyshowsnowandiceascyan,bedrockandsoilasredandvegetationasgreen.Waterisblack.Notethestructurallycontrolled

6   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 7: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Theuplifthasbeen tectonicallypulsating.Aconvolutingsur‐face of the terrestrialmountains is thought to represent theuplifted Early Tertiary surface. The surface was exposed to

weathering, mass wasting and fluvial transport to the sedi‐mentarybasinsintheNorthSea.Thetransportanddepositionofsedimentscauseddown‐warpingof thebasinandupliftofthe terrestrialsurface.Duringtheglaciations thisprocess in‐

creasedwhenthedeepvalleysandfjordswereformed.Calcu‐lationsofsedimentwedgesoffshorehaveledtoestimatesofamean onshore erosion of 1000m in the area just inside thecoastofwesternNorway.Aresentreviewpapergivesacom‐

prehensivediscussiononthegeomorphologyoftheScandina‐vianmountainareas(Corner2005b).

Jan Mangerud: The deglaciation of the area between Hardangerfjorden and Storfjorden, west‐ern Norway BetweenHardangerfjorden and Storfjorden (Fig. 1) the

ScandinavianIceSheetreachedtheedgeofthecontinen‐tal shelf during the Last Glacial Maximum (Mangerud2004;Ottesenetal.2005).Theicesheetwasontheshelfcharacterized by fast flowing ice streams separated by

areas of slower ice.Most of these ice streams followedtroughs that are continuations of the fjords, but in theNorwegianChannel therewas an ice streamparallel tothecoast.AccordingtoNygårdetal.(2004)theicemar‐

ginstartedtowithdrawfromitsmaximumpositionsoonafter 15 14C ka (about 18 cal ka) and there was a re‐advance (the Bremanger event, Fig. 1) across much oftheshelfbefore13.314Cka.

Fig.5. Theupperdiagramshowsice‐frontfluctuationsintheHardangerfjord‐Bergendistrict,drawninaschematiccrosssectionFromtheopenoceantotheleftandintothefjordstotheright.SlightlymodifiedfromMangerud(1980).ThelowerisasimilardiagramfortheNordfjordareafromRyeetal.(1987).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   7 

Page 8: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Along the coast a number of samples of marinemolluscsand terrestrialplantremainshavegivenages in therange12.4‐12.9 14Cka, indicating that the coast first became ice

freesoonafter1314Cka(Svendsen&Mangerud1987;Kris‐tiansen et al. 1988; Mangerud 2000; Nygard et al. 2004;Bondeviketal.2006), although in theBergenarea the icemargin re‐advanced to the open ocean again some time

between12.1and12.414Cka(Fig.5).Whentheicemarginhadwithdrawn inside theshallowsills theglacier tongueswould have to float in the deep fjords. This lead to a fastcalvingandinmostareasglacialstriaeshowthatthefjords

calvedupfirstandthatthelasticeflowwasfromtheadja‐centlandareastowardsthemiddleofthefjords.During the Allerød the ice margin withdraw far into the

fjordsintheentirearea.However,thebehaviouroftheicesheetduringtheYoungerDryaswasverydifferentbetweenthe southern (Hardangerfjorden‐Bergen) and northern(Nordfjord‐Storfjorden)areas(Fig.5).Inthesouthernarea

the icemarginre‐advancedalmost to theopenocean,andin several fjords thatwere ice‐freeduring theAllerød, theiceobtainedthicknessesofwellabove1000m(Andersenetal.1995).There‐advancecausedarelativesealevelriseof

10m,butthesea‐leveldataalsoindicatethere‐advanceinfact started during later parts of theAllerød (Lohne et al.2007).TheicemarginreachedthemaximumpositionattheveryendoftheYoungerDryas(Aarseth&Mangerud1974;

Bondevik&Mangerud2002).Inthenorthernarea,incon‐trast,theicemarginreachedthemaximumpositionearlyinthe Younger Dryas (Fig. 5), the moraines are located farinto the fjords (Fig. 1) and there was no sea‐level rise

(Svendsen & Mangerud 1987). The different reactions oftheicesheetwereprobablypartlyduetohigherprecipita‐tion in thesouthernareaandpartly to topographicdiffer‐ences(Mangerud1980). In thesouthernarea largemoun‐tainplateausclosetothecoastactedasaccumulationareas

whentheequilibriumlinewaslowered,whereasthemorealpine topography in the northern areamainly generatedice caps and cirque glaciers during the Younger Dryas(Larsenetal.1998;Sønstegaardetal.1999).

Atle Nesje:        Glaciers and climate Glaciers respond tobothsummer temperatureandwinter(accumulation‐season) precipitation as expressed in theglaciermass balance. In Norwegianmass‐balance studies,theablationandaccumulationsseasonsare1May‐30Sep‐

tember and 1 October‐30 April, respectively. The balanceyeargoes fromearlyOctober toendofSeptember the fol‐lowing year. The response time or time lag of a glacier isthe lag between a climate change and observed length

changeattheglacierfront.Thistimelagishighlyvariable,ranging from3‐4 years for steep and short glacier snoutsroundJostedalsbreen(Nesjeetal.1995)to15‐60yearsonlonger,moregentlyslopingmaritimeglaciers(Johannesson

etal.1989).Analyses show that thenetmassbalanceofmaritimegla‐ciersinsouthernNorwayismainlycontrolledbythewinterbalance(Nesjeetal.1995,2000).AtÅlfotbreenglacier, lo‐

cated at the coast ofwesternNorway just south ofNord‐fjord, the correlation coefficient between the winter bal‐anceandthenetbalanceandbetweenthesummerbalanceandthenetbalance(1962‐2003)are0.85and0.63,respec‐

tively. In the extratropical Northern Hemisphere, two re‐latedmajorweathermodes, theNorthAtlanticOscillation(NAO)andtheArcticOscillation(AO),havebeenrelatedtointerannual(winter‐season)temperatureandprecipitationvariability(Hurrelletal.2003).TheNAOiscommonlyde‐

scribed as the sea‐level pressure difference between Ice‐landandtheAzores,andrelatestothestrengthofthewest‐erlywindsacross theNorthAtlantic (Hurrell1995;Luter‐bacheretal.2002).InapositiveNAOphase,themeridional

air‐pressuregradientislargeinwinterintheNorthAtlanticregion,bringingmildandhumidwinterweather insouth‐westernScandinavia.Inter‐annualanddecadalvariationsinglaciermassbalance

inwesternNorwayinthelate20th/early21stcenturieshavebeen attributed to the NAO. Positive NAO index wintersyield abovenormalwinter accumulation, and (if not com‐pensatedbyafollowingwarmsummer),positivenetmass

balance on coastal glaciers in southern Norway, but lowwinteraccumulationonglaciers in theAlps,andviceversa(Nesjeetal.2000;Reichertetal.2001;Sixetal.2001).Thecorrelation coefficient between the annual NAO index

(Nesjeetal.2000)andthewinterbalanceofÅlfotbreenandNigardsbreen from 1962 to 2003 are 0.77 and 0.71, ex‐plaining59and50%of thevariability,respectively. Intheearly1990s,prevailingpositiveNAOindexwinterscaused

glaciers in western Norway with short response time toadvance.

8   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 9: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Inge Aarseth: 

Marine geology 

ThefjordsedimentsofwesternNorwayhavebeensubjecttogeologicalinvestigationformanyyears(Holtedahl1967,

1975), from the first use of simple echo sounders to thepresentdaytechnologywithMultibeamechosounderandTOPAS (Parametric Sub‐bottom Profiler System) PS18(Hjelstuenetal.2009).Thefjordsactaseffectivesediment

trapsduringdeglaciationaswellasduringinterglacialandinterstadialphases.Acousticandsedimentologicinvestiga‐tionshavebeenused in estimatingquantities (Fig. 6) andcomposition of sediments present in the fjords today(Aarseth 1997). Correlation to raised marine sediments

along the fjords as well as chrono‐ and biostratigraphicanalyses of sediment cores have made determinations ofagesandsedimentationratespossible(Sejrupetal.1996).

Sedimentaryinfillinsomecoast‐parallelfjordsiscorrelatedto terrestrial sediments older than Late Weichselian. Ap‐proximately 10% of the fjord sediments inwesternNor‐waypredate theWeichseliandeglaciation (Aarseth1997).

During the deglaciation glaciers were subject to severaloscillations (Mangerud 1970) of which the Allerød/Younger Dryas can be traced in terrestrial as well as infjord sediments. In many fjords the moraines deposited

during Younger Dryas comprise large accumulationswithglaciofluvial foreset beds 50‐100m thick resting on eventhickerbottomsetbeds.Thedistalglaciomarinesedimentsmayamount to350m in some fjords inwesternNorway.

Thesesedimentstypicallyconsistof25‐55%clay,70‐45%silt and<2‐3% fine sandexcept foroccasional ice‐raftedgravels(Aarsethetal.1989).

High sedimentation rates during the deglaciation createdsediment slopes subject to gravity failure. The largestslidestookplaceonslopesconnectingtributaryfjordsand

Fig. 6. SedimentdistributioninthethreelongestfjordsinwesternNorway(Aarseth1997).

Fig. 7. SchematiclongitudinalprofileofanarchetypicalwesternNorwegianfjord(Sejrupetal.1996).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   9 

Page 10: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

much deeper trunk fjords. Most slide activity happenedduringandjustafterthedeglaciation,butslidesupto15x106m3tookplaceafewdecadesagointheinnerpartsof

Nordfjord(Aarsethetal.1989).Fjordsedimentshavealsobeen used to demonstrate climatic variation using bio‐stratigraphyaswellasoxygenisotopes(Mikalsen&Sejrup2000).Present sedimentation rates in thedeep fjordsare

in the order of 0.3 – 1.0 mm/yr. In fjords fed by riversdraining glaciated areas sedimentation rates may be 1‐4mm/yr(Aarseth1997).Fig.7showsaschematiclongitudi‐nal profile of an archetypical western Norwegian fjord

(Sejrupetal.1996).

Route information and Road Log  

Thefirstday:FromBergenalongtheE‐16(Europeanroad16) to Voss and Gudvangen (138 km). Then follows a 30

km fjord cruise on theUNESCO siteNærøyfjord andAur‐landfjordtoFlåm,fromwheretheroutegoes45kmonthe“Snowroad”(Countyroad243,insteadofthe24,5kmlongLærdal tunnel – the longest in the world), over 1300 m

highmountainstoLærdalandacrossthefjordtoSogndal.(230km).Ontheseconddayyoudriveonthe“Geonatureroute”(R‐

5)toFjærland.HeretheNorwegianglacierMuseumcanbevisited+ twooutlet glaciers.Then furtherunder the Jost‐edalsbreenglaciertoSkeitopickupE‐39towardstheferrycrossingAnda–LotejustbeforeNordfjordeid.(135km).

Onthethirdday(optional)yougotowardsthecoast(TheNorthSea)onthenorthernsideofNordfjord(R‐15).FromthetownofMåløyontheislandVågsøyyoudriveonlocal

roads to the westernmost point Kråkenes. On Vågsøycoastalabrasion,weatheringpitsandYoungerDryas localglaciation can be studied in detail. Back to Nordfjordeid.(160km).

ThefourthdaygoeseastonR‐15andR‐60toHellesyltandStranda where you can get information on the Åknes –Tafjord rock slidemonitoring and early‐warning centre ifyoucontacttheheadquateratStranda.TheGeirangerfjord

canbestudiedfroma50kmlongafternoonferrytripfromValldal to Geiranger. (110 km by car/bus). This touristferryoperatesonlyJune20thtoAugust20thandonlytwicea day. At other times a shorter and more frequent ferry

sailsontheGeirangerfjordfromHellesylttoGeiranger.Onthisfjordbookingisrecommended.

The fifth day starts with three breathtaking views of the Gei-

rangerfjord: The “Eagle Road Bend”, Flydalsgjuvet canyon,

and if weather permits also Dalsnibba (1476 m asl.). Further to

the Strynefjell mountain road snow avalanche research station,

Briksdalsbreen glacier and Loen (historic rock falls and tsuna-

mis). Overnight stop at Stryn. (195 km). Alternatively it is

possible to reach Bergen late the same evening (5 hours driv-

ing on the E-39).   

 

DAY 1:   BERGEN  – NÆRØYFJORD – FLÅM 

– SOGNDAL 

ThefirstdayoftheexcursionwilltakeyoufromBergentothe Sognefjord with maximum glacial erosion. Here thereliefis2800minoneslope,frommountainpeaksat1700

m asl. to the bottom of the 900m deep fjord, containing200 m thick glaciomarine sediments. The relief togetherwith thehigh precipitation, such as extreme rainfalls andheavy snowfalls, are responsible for slope processes of

variouskinds. In 2007Bergen got 3024mmof precipita‐tion. In the autumn of 2005 Bergen experienced debrisflowswithfatalresults(4personswerekilled).Numerousslide scars and debris fanswitness such active processes

alongtheroute.Whenyouentertheheartlandofthefjordsyouwill see large old and new, aswell as potential rockfalls.The road passes a few siteswith Eemian sediments,wit‐

nessingrelativelymodestglacialerosionduringtheWeich‐selianglaciation.Theareaof the firstday’sexcursionwasmainlydeglaciatedduringPreborealtime(11,500–10,200years ago). The oblique glaci‐isostatic rebound is demon‐

stratedby thedifference in theuppermarine limit, being52masl. inBergenand rising to135masl. at Flåm.Thehighlightof thedaywillbe the two‐hourboat tripon theNærøyfjordwhereyoumayhavealunchasthescenicland‐

scapeof thisUNESCOworldheritage sitepasses leisurelyby.Fromanew“skywalk”at640masl.,youcanstudyval‐ley and fjord generations around the Aurlandfjord. Map:SeeFig.1.

10   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 11: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Structurally controlled fjords 

Thebedrockstructuresandpetrographyhashadanimpor‐tantrole forthearchitectureof the fjord landscape in the

Bergenarea(Fig.2&4).ThetopographymirrorstheCale‐donian structures of “The Bergen Arcs” with valleys andfjords being parallel to, or at right angles to the bedrockstrike. Some fjords have a direction closer to N‐S. Thesefjords have steeper mountain sides controlled by nearly

vertical coast‐parallel fractures thought to have beenformed during the opening of theNorth Sea basin in thePermian,TriassicandJurassic.Thebestexampleofafrac‐ture‐fjordisthe30kmlongandmax.400mdeepVeafjor‐

den to the east ofOsterøy island.This fjord is situated inProterozoicgneissjustoutsidetherocksoftheBergenArcSystem.Onbothsidesofthefjordthereisarelativelyevenmountainplateauat600‐800masl.,Fig.8A&B.

 

 

Fig. 8B

Fig. 8A

Fig.8.a. TheVeafjord,eastofBergenlooking

north.TheroadE‐16canbeseenalongtheeasternsideofthefjord.Preglacialplateausurface(6‐800masl.)onbothsidesofthefjord.Photo:I.Aarseth.

b. b.Seismicprofileacrossthefjordshows100mthicksediments.Bedrockrelieff:1000m.(Aarsethetal.2010).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   11 

Page 12: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

The Bolstadfjord   

FromtheN‐StrendingfjordVeafjorden,theE‐16turnsto‐wards theNE, followingthemaindirectionof theCaledo‐

nianorogenicbelt.TheBolstadfjordisa“land‐locked”fjordwithanoxicbottomsediments(Strøm1936;Taylor&Price1983).Thisupto160mdeepfjordisconnectedtotheOs‐terfjordthrougha1.5mdeepthresholdwithaverystrongtidalcurrent.Thefjordisalso“baseoferosion”fortheVoss

riversystem,thelargestriversysteminthecountyofHor‐daland, with a natural drainage area of 1500 km2 . Thefresh‐andbrackishsurfacewatersaretrappingtheheaviersaltwater(20‰salt)andthuspreventingverticalcircula‐

tion. Organic sediments are therefore being deposited onthe fjord bottom and H2S is found in the fjord at depthsgreaterthan40‐50m.

The lower Voss valley 

The 4 km long river below Lake Evanger (10 m asl.) is

namedBolstadelviriverandenterstheseaatBolstadøyri.TheuppermarineterraceatBolstadøyriis63ma.s.lAboveLake Evanger the river is called Vosso. The lower Vossoriverflowsonanarrowfloodplainsometimesborderedby

bedrock.Partsof theriverbedcontain largeboulderswit‐nessingstrongrivercurrentsduringfloods.Onlyoneofthetributaryrivershasbeenexploitedforhydroelectricity,therestisnowprotected.

Lake Vangsvatnet (47 m asl.)  

Both to the north and south of Voss the fjords penetratefurther inland than Voss. The climate at Voss is even somorecontinentalthanalongthefjordsinHardangertothe

southandSogntothenorth.Thisisaresultoftheheatres‐ervoirinthefjords.ThenaturaloutletfromLakeVangsvat‐net is rathernarrow,andVoss towncentreusedtosufferfrequentfloodingwhichnowiseliminatedthankstoalow‐

ered threshold. The lake consists of two basins, the east‐ernmost(60mdeep)reachesbelowsealevel.

Development of the Voss river system in relation to the neighbouring fjords The landscape at Voss is much less influenced by glacialerosionthantheareasalongtheinnerpartsofthefjordsinHardangerandSogn.Thereasonforthiswassuggestedby

Holtedahl (1975) to be due to the Vosso river being theoriginalriver thatalsodrainedthe innerpartsofHardan‐ger and Sogn. According to him there was no preglacialvalleyatthelocationoftheSognefjord.Thisideahasbeen

rejectedbyNesje&Whillans(1994).

ThepreglacialriversintheSognvalleyandtheHardangervalleydrainedlargerareasthantheVossriversystem,Fig.9 (Aarseth 2005). Their water divides reached the main

dividetowardsEastNorwaywhilethedrainageareaoftheVossoRiverwasmuchsmaller.Duringtheearlyglaciationstributaryglacierscoalescedanddevelopedicestreamsthatdrainedthroughthelargerrivervalleys.Theconfluenceof

tributaryglaciers increasederosionand led to the forma‐tionofdeep fjords.Thus thebaseoferosionwasbroughtfar inland inSognandHardanger.The interglacialand in‐terstadialrivers incombinationwithglacialerosioncould

capturesomeoftheuppertributariesoftheVossriversys‐tem. This will be studied at the “classic” locality at Stal‐heim.

Fig. 9. Reconstructionofthepreglacialdrainageareasandriversofthethreedistricts:Hardanger,VossandSogn.Bluearrowsindicatehowearlyglaciersfollowedthevalleys(upper).ThelowermapshowsiceflowandlocalglacialdividesduringtheWeichselian(last)glaciation(Aarseth2005).

12   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 13: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 1 ‐ Bordalsgjelet canyon  (UTM 

0358950  6722400)  031370 

The tributary valleys leading down to Lake Vangsvatnetarehangingvalleys.Themost spectacular is theBordalen

valleywithprominentledgesillustratingtheformervalleyfloor.Bordalsgjeletcanyonisa“valleyofadjustment”con‐necting the formervalley floor inBordalenvalley toLakeVangsvatnetwith a difference in elevation of 250m. The

lower parts of this 5 km long canyon is accessible to thepublicalonganarrownaturetrailintothecanyon.Thecan‐yonisdevelopedinphyllitesandcontainsmanylargeandsmall, half and whole potholes. The bridge crossing thecanyonis32mlongandthecanyonunderthebridge32m

deep. A poster describing the geology, ornithology androad history is placed at the parking lot aswell as underthebridge.

At the lowerendof the canyon twoglacialaccumulationsarefound.Tothewestafancomposedofglaciofluvialma‐terialreaches160masl.Thisisthoughttorepresentasub‐glacial accumulation, and lumps of very hard till were

foundinagravelpit.Thecanyonmayhavebeenfilledwithtill during parts of the Weichselian glaciation. The otherdepositisamarinedeltawiththehighestlevelmarkingtheupper marine limit in the area, 97 m asl. when a fjord

reachedallthewaytoVoss.

Vossestrand 

The tributary river from the north is named Strondaelvi

andcomesfromLakeOppheimsvatnet.Theriverflowspar‐alleltotheE‐16.JustnorthofVossthickaccumulationsoftill was plastered on the western side of the valley(Mangerud&Skreden1972).AsectioncontainingEemian

sedimentswasfoundalongtheroadintheVinjadalenval‐ley, justbelowtheoutletofLakeOppheimsvatnet(Eide&Sindre1985).Herea2cmthicklayerofverycompactpeatwas found containing pollen from picea (spruce). The

spruce treesgrowing in the area today are planted. Theorganic layer lay beneath a thick sequence of laminatedglaciolacustrine sediments deposited between the glaciercomingfromMyrkdalenandthewatershedtotheeast.The

directionofthispartofthevalley(NNW‐SSE)isnormaltothedirectionofthemainglacialmovement.Thefinesedi‐mentscappingthepeatdeposithavealsoprotecteditfromerosion.A thicktill ispresentlycoveringthesedimentse‐

quence.

Lake Oppheimsvatnet and Stalheim 

Stop 2 ‐ Stalheim  (UTM 0373952  6746639)           

The5 km longLakeOppheimsvatnet (332masl.) is situ‐ated close to the local water divide just east of the lake

(Haugsvik at 333m asl.). Looking towards east from thewestern shores of this lake we can see several valleyspointing towards the lake, but their rivers are changingdirectionandarenowcapturedbythevalleyleadingdown

totheNærøyfjordatGudvangen.This isevenbetterstud‐ied at the classical site Stalheim (Reusch 1901; Ahlman1919).HereReusch described “hook‐valleys” (the norwe‐gianword“agnordal”whichmeansfish‐hookvalley:aval‐leywithanacuteangle).TheviewfromtheterraceatStal‐

heim tourist hotel gives an instructive demonstration ofriver piracy. Groups travelling by bus should contact thehotel in advance to get admission to the hotel terrace:phone:56520122.Allarewelcomed.

Here thebackwarderosion,mainlyofglacialorigin, is re‐sponsible for capturing rivers from several tributary val‐leys: The Jordalen and Brekkedalen valley on the left(north)andØvsthusdalenandBrandsetdalenvalleysinthe

backgroundontheright(south).Inadditiontochangesinrivercourses(Fig.10)thevalleyshouldersoftheNærøyda‐len valley itself clearly demonstrates the different valleygenerations. TheNærøydalen valley ends at thewaterfall

Stalheimfossen(126mhigh).Thisvalleyhead isa typicalglaciallandformfoundinmanywesternNorwegianvalleys.

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   13 

Page 14: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Nærøydalen valley 

TheNærøydalen valley and theNærøyfjord togetherwiththeGeirangerfjordareawerelistedasUNESCOworldheri‐

tagesitesin2005.Thiswasmainlyduetothegeologyandspectacular geomorphology of the areas. The high reliefandthenarrowvalleyandfjordmakesastrongimpressionon visitors. Maximum visual relief is seen at the quay at

Gudvangenwhere the edge of the cliff is 1420masl. Thefjordandvalleyiscutfarintothepaleicsurfaceresultinginextremehangingvalleyswithwaterfallsseeminglycomingfrom the sky (Fig. 11). The active exogenic processes are

clearlydemonstratedbothfromthesteepmountainslopesand along the Nærøydalen river. There are plans to in‐crease the ongoing mining operation for anorthosite, butno final decision has yet been made. The plans involve

shipmentduring thenight fromanartificial cavern insidethemountainnearGudvangen.Theanorthosite isa futurerawmaterialforaluminiumproduction,butisnowusedina variety of ways due to its whiteness. Present export is

230.000tons,mainlyusedforrockwoolproduction.

Fig 10. ReconstructionofthepreglacialdrainagepatternintheVoss–Sognareaandthechangeinthewaterdivide.(FromNorwegianNomination2004:TheWestNorwegianFjords).

Fig. 11. Thewaterfall“Kjelsfossen”justeastofGudvangenvillage.PhotoI.Aarseth2004.

14   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 15: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 3 ‐ Gudvangen (Port: UTM 0373952  

6746639) 

The small farms in Gudvangen have long suffered fromstrongwindsgeneratedbysnowavalanches.Stone fences

werebuiltlongagoonthelowersidesofthehousestopro‐tect themfromavalanchewindsfromtheoppositesideofthevalley!Beforeconstructionofthenewprotectionram‐partsin1998measurementswerecarriedoutonthesnow

avalanchesaswellasonthestabilityoftheavalanchefans.Two large artificial snow avalanche ramparts LangageitiandNautagroviwereconstructedtoprotectthevillageandthe harbour at Gudvangen. Langageiti is 570 m long andmax 13m high. Here the slide volumemay reach 50.000

m3withavelocityofupto40‐50m/sinthesteepestpartof theslidepath.Thewindpressuremayreach1Ton/m2andthepressurefromthesnowitself12Tons/m2.Atthenorthernmostavalancherampart,Nautagrovi(310mlong,

Fig. 12) the slide volumemay reach 100.000m3 and theslide velocity 30 m/s. Wind pressure is measured to 0.6Ton/m2 and the pressure from the loose snow itself asmuchas6.8Tons/m2attheHotel(Projectbrochure).

Cruise on the Nærøyfjord and the Aurland‐

fjord 

Checktheferryschedulefor“NorwayinaNutshell”onthe

web: Ferry Gudvangen ‐ Flåm. A bus may travel to Flåmthrougt two long tunnels. On this 30 km long cruise youwill be able to see geomorphologic landforms and proc‐esses as well as historical land use along the fjord. Very

little detailed geomorphologic studies have been carriedout in thisarea.Thepreglacialwaterdividewasprobablysituated on the mountains above Bakka. The mountainpeaks in this areawerehigher than to the southwest andnortheast demonstrating a possible former dome. The in‐

ner fjordbasin is relativelyshallowwithonly70mwaterdepth inside the 11 m deep threshold complex at Bakkawhere several shoals make a tricky sailing path for thecruise ships. The threshold is made up of terminal mo‐

rainesaswellasrock falls.Furtherout the fjordbecomesgraduallydeeperwitha150mstepdowntotheAurland‐fjord which is 500 m deep at the intersection. Along theAurlandfjord valley ledges are found representing older

valleygenerations.TheoldfarmsatStigen(348masl.)andNedbergo (545 m asl.) are located on two such slopingledges.

Fig. 12. Snowavalancherampart“Nautagrovi”justabovethehotelandthequayatGudvangen..Photo:I.AarsethMarch2007.

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   15 

Page 16: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Undredalvalleyisthelargesttributaryvalley.Hereslopingterracesindicateaformervalleyfillofglacifluvialmaterialuptomorethan150masl.Thevillageiswellknownforits

production of goat cheese. Goats are the animals bestadaptedtothiskindoftopography!ThesedimentbasinjustoutsideCapeFlenesis420mdeep

andhasasedimentthicknessof200m.Thehighestmoun‐taintotheNE,Blåskavlenis1809mhigh.Thisgivesabed‐rockreliefof2400minthisarea.The1000mhighmoun‐tainslopes to thenorthare strikingcontrasts to theeven

plateaujustabovetheescarpment.Theslopescontainsev‐eralravinesandgorgespointingtoastrongfluvialactivityduringinterstadialsaswellasinterglacials.AtCapeFlenesthe fjord turns abruptly toward SSW, eroded along the

thrustplanebetweentheJotunNappetothewestandtheunderlyingPaleozoicphyllitestotheeast.The Aurlandsdalen valley is eroded into the Precambrianbasement.AtCapeOtnes thecontactbetween themigma‐

titicgneissand thephyllites clearlydemonstratesa shearzonewith strongly foliated gneissic rocks below the con‐tact. Here loose blocks of gneiss rest on a steep surface(Hardangerfjord Shear Zone) just above the newly built

housesinthearea.TheasymmetryofthispartofthefjordaswellasthelowerpartoftheFlåmvalleyisduetothewestwarddippingbed‐

rockunits. Large rockslides are localisedat the fjordbot‐tom3kmnorthof theheadof the fjordaswellason theeasternmountainside,Fig.13(Braathenetal.2004).Openjoints as well as talus blocks are now monitored on the

phylliteslopesabovethemainroad(E‐16).A totalvolumeof900‐1500millionm3phyllite is consid‐eredunstableintheAurland–Flåmarea.ThisisthelargestunstablerockvolumeinNorway.Taluscreephasbeenob‐served at several locations and some minor talus ava‐

lancheshavetakenplaceinrecentyearsinconnectionwithsevere rainfall. A basal date of a sediment core from theinnerpartoftheAurlandfjordindicatesanageofapproxi‐mately3000cal.yearsforthelargerockavalancheintothe

fjord(Bøeetal.2004).

Fig.13. TheinnerpartoftheAurlandsfjordandthelowerFlåmvalley.Oldrockslidetonguesandopenjointsrepresentinglargepotentialrockslides(Braathenetal.2004).

16   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 17: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 4 ‐ Flåm church. (UTM 0397920  6746100) At a stop near Flåm church one can demonstrate largeHolocene slide tongues and glacial frontal deposits. Hori‐zontalterracesonbothsidesoftheriverindicateanuppermarinelimitof135masl.,thehighestmarinelimitinwest‐

ernNorway,(Fig.14).InthedistancetothenorthyoucanseethecontactbetweentheJotunNappeandtheunderly‐ingphyllites.

Aurlandsvangen village.   The glacial geology of the Aurlandsdalen valley shows aseries of recessional terminal aswell as lateralmorainesdepositedduringdeglaciationintheEarlyPreboreal.Thereisnotimetostudytheseapartfromtheviewfromtheboat

andthebus/carwindow.

Fig.14. Upper:ModelofthedepositionofatypicalPreborealicemarginaldeltaattheinnerfjordsofwesternNorway;examplefromtheFlåmvalley.Lower:PresentdayterraceswiththeuppermarinelimitatFlåm(135ma.s.l),(Aarsethetal.2006).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   17 

Page 18: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 5 ‐ Stegastein, 640 m asl. (UTM 0403064  6753886)  A new “skywalk” was opened in 2006 as part of the“National Tourist Route” Aurlandsvegen road. This restarea is situated at the transitionbetween theProterozoicbasement (gneissic rocks)and theoverlyingunitofOlder

Paleozoic phyllite. North of here and across the fjordwecan see rocks of the Caledonian Jotun Nappe(hyperstenmonzonitt–mangeritt).

The skywalk gives a splendid view of themountains andfjord (Fig. 15). The view can be used to demonstrate thegeomorphologicdevelopmentofseveralvalleygenerationsaswellasyoungertributarygorgesadaptingtothepresent

sea level. The upper gentle surface represents the paleic(old)surfaceformedaftertheepeirogenicupliftofScandi‐navia during Cenozoic time. An early uplift took place inconnection with the opening of the Norwegian Sea be‐

tween Norway and Greenland that started 56 mill yearsago.AlateruplifttookplacepossiblyinMiocene–Pliocene.Subsequently series of younger fluvial valley generationsdevelopedbeforetheQuaternaryglaciationsintensifiedthe

erosion that led to the formationof fjords. Fromherewe

see excellent examplesof “truncated spurs”where glacialerosionhasstraightenedformerwindingfluvialvalleys.

Stop 6 ‐ Nalfarhøgdi 1300 m asl.  (UTM 0408198  6755560) Thesocalled“snowroad”leadsfurtherupahangingvalley

(Kvammadal), passing mountain farms situated on thickfertiletilldeposits,andreachesthemountainplateauNal‐farhøgdi at 1300m asl. (Photostop). This is a northernextension of the Hardangervidda mountain plateau, the

largestinnorthernEurope.Severallakesarestrewnacrossthe plateau andmountaintops represent remnants of theover trusted Jotun Nappe, the most prominent beingHornsnipa,a1692mhighpeak justwestof theroad.The

plateau is themain drainage area for large hydroelectricplants with reservoirs at 1400‐1450 m asl. The environ‐ment along the next 10 km of the road on the plateauchanges from a stony and barren landscape on Precam‐

brian migmatitic gneiss to green pastures on phyllites.Periglacial frost phenomena are common along the road.The road leads down to Lærdalsfjord, a branch of theSognefjord, through the V‐shaped Erdalen valley. Below

130masl.thevalleyhasslopingsedimentterracesdepos‐itedduringthedeglaciation.

Fig.15. Viewfromthe“skywalk”at“Stegastein”,Aurland(640masl.;Photo:I.Aarseth2007).

18   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 19: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

The Sognefjord. This excursion only touches the innermost part of thenearly200km longandup to1308mdeepSognefjord+200mof deglaciation sediments (Aarseth 1997).Nesje&

Whillans (1994) discussed the formation of the fjord andemphasised fluvialdown‐slopeactionduring interstadialsand interglacials being responsible for the formation ofnumerousV‐shapedvalleysandslidescarsalongthefjord.

Glacial processes, according to Nesje & Whillans (1994),wereonlyresponsibleforremovaloftheerosionproductsanddeepeningofthefjordbelowsealevel.Theyproposedamodelfortheformationofthefjord(Fig.16).

Stop 7 ‐ Fodnes: (UTM 0413169  6780460). (Ferry Fodnes – Mannhiller) AttheferrycrossingFodnes–Mannhiller,theSognefjordis824mdeep.10kmwestofherearecordbedrockreliefisfound.Theverticaldistancefromtheedgeofthemountain

Bleiaat1660mtothe920mdeepfjordwith200mthicksediments isapproximately2800moverahorizontaldis‐tanceof 4000m.This is almost twice the relief of the fa‐mousGrandCanyonintheUS.Alittlefurtherwestthefor‐

merbottomofthefluvialvalleycanbefoundasbroadval‐leyledgesonbothsidesofthefjord,andonthenorthsidethe local airport is located at 500m asl. (Fig.17, Aarseth1980).

TheroadtowardsSogndalleadsthroughapaleo‐valley(at

Kaupangerskogenindustrialarea).JustbeforeSogndalvil‐lage a bridge crosses a tidal current with an 8 m deepthreshold to theBarsnes fjord.This fjordhasanoxic fjordsedimentsinthe80mand66mdeepfjordbasins(Paetzel

&Schrader1992).OvernightstopinSogndal

Fig.16.

PhasesinproposedformationhistoryoftheSognefjord.Sealevelisrepresentedbythedashedline.1. Paleiclandscape,2. 2.Fluvialstage,3. 3.Glacialstage.4. 4.Presentstage.(SlightlymodifiedfromNesje&

Whillans1994).

Fig.17. ProfileacrosstheSognefjord15kmWoftheferrycrossingFodnes–Mannhiller.Sogndalairportissituatedonthepreglacialvalleyshoulder(Aarseth1980.)

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   19 

Page 20: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Day 2:  SOGNDAL – NORDFJORDEID  Today the excursion takes you along the “Geo nature

route”(FromSogndaltotheE39atSkei)infrontof,aswellasunder,theJostedalGlacier.Heregeologyhasbeenmadeaccessibleforthepublicintheformofpostersandmodelsatseveralscenicrestareas.

TheNorwegianGlacierMuseuminFjærlandcanbevisited.Themuseumwas opened in 1991. A new climate exhibi‐tionwasopenedthesummerof2007.InFjærlandyoualsomayvisittwo tributaryglaciers:SupphellebreenandBøy‐

abreen (café). Fjærland is surrounded by glaciers with agreatvarietyinsizefromsmallcirqueglacierstoJostedals‐breen, the largest ice cap onmainland Europe. Jostedals‐breen is approximately80km longandcoversanareaof

487km2.ThehighestelevationofJostedalsbreenis1957masl. (Høgste Breakulen), and the lowest altitude is thetongueofSupphellebreenat60masl.Morethan30namedoutletglaciersflowfromtheicecap.

On thenorthsideof the6,4km longFjærland tunnel, the“Georoad” takes you along the Kjøsnesfjord (a tributarylake toLake Jølstervatn)withwelldeveloped sheetingon

theoppositemountain side.Theoutletof the22km longLake Jølstervatnhasshifteddue tooblique isostaticupliftduringHolocene.NowitdrainstowardstheSW.

AsyouapproachtheNordfjordareayouwillgetcloser tothe terminal moraines of the Younger Dryas re‐advance.Duringthisphasethemainglacierwassplitinthreelobes,the southernmost in the Gloppen fjord, themiddle in the

NordfjorditselfandthenorthernmostintheLakeHornin‐dalsvatn east of Nordfjordeid. Largemoraines are visiblebothbelowandabovetheuppermarinelimit,andseismicsurveys in the fjordshave revealed the giganticmorainesaswellasupto350mthicksequencesofdistalglacimarine

sediments.

Sogndal valley The river in the Sogndal valleydrains an areawithup to1600mhighmountainswithsomesmallercirqueglaciers.

Thelowerpartsofthevalleyarerelativelysteepandlackaflood plain above the delta area. The upper parts have afewlakesofwhichLakeDalavatnet(398masl.)isthelarg‐est.DuringroadworkasectioncontainingMiddleWeich‐selianinterstadialsedimentswasfoundinthevalley(Aa&

Sønstegaard2001).At 380masl. a 20 cm thickbedwithgyttjasiltisoverlainby3mofglaciolacustrinesiltand5‐6moftill.Pollenfromthegyttjasilt indicatesanopentree‐

lesslandscape.TworadiocarbonageestimatesindicateaninterstadialofMiddleWeichselianage.

Stop 1 ‐ Vatnaseter rest area  (UTM 0388975  6801593) Along this “GeoNatureRoute” severalnew rest areas are

suppliedwithinformationonthegeologyandgeomorphol‐ogyof thearea.Shortstopscanbemadeonbothsidesofthe 6746 m long Frudalstunnel: Vatnasete and Berge. AtVatasete history since the ice age is illustrated as awalk

back through history with historic and prehistoric land‐marks engraved on the “stepping stones”. In addition theformationsoflacustrinedeltasareshown.Snowavalancheprotection ramparts are also built along the road in this

area(Nesjeetal.1994).

Stop 2 ‐ Berge rest area  (UTM 0380233  6807254) The rest area at thewestern end of the tunnel overlookstheFjærlandsfjordandexplainstheformationoffjordsand

thedepositionoffjordsediments.Thesedimentationratesin this fjord are relativelyhigh. 210Pbmeasurements gaveratesof4mmyear‐1just2.2kmfromthedeltafrontoverthelast90years.6.5kmfromthedeltatheratedecreases

to1.2mmyear‐1(Aarseth1988).Thedeltafronthadpro‐graded at an average rate of 2.5 m year‐1 in the period1830‐1950.

Stop 3 ‐ The Norwegian Glacier Museum, Fjærland (UTM 0380566  6811956) The Norwegian Glacier Museum is a non‐profit makingfoundation established by the International GlaciologicalSociety,NorwegianMountainTouringAssociation,Norwe‐

gianWaterResourcesandEnergyDirectorate,NorwegianPolarInstitute,SognogFjordaneRegionalCollege,theUni‐versityofBergenandtheUniversityofOslo.ThemuseumwasopenedbyHerMajestyQueenSonjainthesummerof

1991andattracts50‐60.000visitorseveryyear.Theexhi‐bitionsdealwith24themes in fourmaincategories.Theyshowamongotherthingshowglaciersbuildup,howtheyshapethelandscape,andwhytheyplayanimportantrole

inthesearchforknowledgeaboutthepastandfuturecli‐mate.

20   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 21: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

The“Ulltveit‐MoeClimateCentre”wasopenedinthesum‐

merof2007byformerUSvicepresidentWalterMondale.Hisancestorscamefromthisvillage.Thecentre ispartofthemuseumandtakesyouonajourneythroughtime,fromthecreationoftheearth,throughthelasticeageandfinally

totheyear2100.Thefirstpartoftheexhibitionintroducesnaturalclimatechanges.Thesecondpartoftheexhibitiondealswithourcommonfuture.

Stop 4 ‐ Supphellebreen glacier (UTM 0383862  6816223) Supphellebreenisa0.1km2regeneratedglacierextendingfrom320to60masl.,makingthisthelowest‐lyingglacier

insouthernNorway,(Fig.18).Theglacier isnourishedbyice breaking off from the ~50m high front of Flatbreen,which covers 11.8 km2 and extends from 1740 to 720melevation. Supphellebreen reached its maximum post‐

glacialextentaroundAD1750,about800mfurtherdownthe valley from the present front. Even at that time Sup‐phellebreen was a regenerated glacier. Investigations ofSupphellebreen from 1963 to1967 showed that about 2

milliontonsof icebrokeoff fromFlatbreenannually.Thiswas equal to adding a 15m thick ice layer to Supphelle‐

breen,orexpressedinotherterms:iftheicewasdrink‐sizeice cubes and placed end to end, they would stretch 50timesaroundtheEarth(Orheim1970).Theflowrateatthe

terminusofFlatbreenwasapproximately2m/day,andtheresponse time at the snout of Flatbreen to changes in itsmassbalancewas2‐3yearsinthatperiod.

Fig.18. Supphellebreenregeneratedglacier,Fjærland.(Photo:I.Aarseth2007).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   21 

Page 22: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 5 ‐ Øygard debris fan  (UTM 0382853  6815246) Every summer a lakewasdammedbetween the terminalmoraine complex of Flatbreen and the glacier terminus.The lake normally emptied through channels under the

glacieroverashortperiodoftime(hours).Duringtheearlysummerof2004thelakegrewtoreachthetopofthemo‐raine resulting ina JökulhlaupeventonMay8th (Fig.19).The meltwater flushed ~ 900 vertical meters down the

tributaryvalleyasamajordebrisflow.Onthefloodplainitdestroyed a vast cultivated area. The road to the glaciercrossesthenewalluvial fanwithuptocar‐sizedboulders(Breienetal.2008).

Stop 6 ‐ Bøyabreen glacier  (UTM 0380237  6818677) Bøyabreen is5.7kmlongandcoversanareaof13.9km2.Theskylineof theglacier isat1000melevation.Thegla‐

cier extendsdown to about 490masl. (2007).Below theterminusthere isasmallregeneratedglacier,Fig.20.Duetoasignificantglacialadvanceinthelate1990s,thefrontofBøyabreenwasconnectedtotheregeneratedglacieron

the right‐hand side. In Bøyadalen, several marginal mo‐raines documentminor advances/halts during glacier re‐cessionafterthe‘LittleIceAge’maximuminthemiddleofthe 18th century. The largest terminalmoraineM1, 2 km

belowtheglaciermargin,datestotheEarlyHolocene(Fig.21).TheyoungermorainesM2andM3wereestimatedtobe of Late Holocene age by the use of Schmidt hammermeasurements(Aa&Sjåstad2000).

Fig.19. MapoftheØygardjökulhlaup2004,andphotooftheflowpath.(Photo:A.Elverhøi2007,fromBreienetal.2008).

22   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 23: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Posters in the area show theHolocenehistory of the gla‐cier. Lunch can be served at the “Glacier Lake Cabin” infrontoftheglacier.

Stop 7 ‐ Lake Kjøsnesfjord  (UTM 0373469  6823261) Ontheoppositesideof theFjærlandtunnel theroadpassalongLakeKjøsnesfjord.Duetofrequentsnowavalanches,newconcreteandrock tunnelshavebeenbuilt toprotectthe most exposed areas along the road. On the opposite

side of the lake the gneissic rocks have developed strongsheetingasjointssub‐paralleltothesteeprocksurfaces.InNorwaythisiscalled“valleyjoints”.Sheetingoccurswhenthegneissicrocksarelessfoliatedthannormal.Snowava‐

lanchestransporttheweathereddebristothefoothills.

  

                

               

Fig.20. Bøyabreenglacier,1991,1995and2007.(Photos:I.Aarseth).

Fig.21. MapofthemorainesinfrontoftheBøyabreenglacier.(Aa&Sjåstad2000).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   23 

Page 24: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 8 ‐ Skei, Lake Jølstravatnet, (207 m asl.) (UTM 0366339  6829295) This 22 km long and 40 km2 large lake has a maximumdepthof233m.Severaltributaryvalleysenterthelakeashangingvalleys.TheHolocenedrainagehistoryofthelakeshows that the outlet has changed from the northeast to

the southwest end (Klakegg & Rye 1990). The study isbasedoninvestigationsofshorelevelsaswellaslakesedi‐ments.Thechangewascausedbyfasterupliftattheeast‐ern end. The lake history is subdivided into five phases.

During phase I (‐9500BP) Lake Jølstravatnetwas an ice‐dammed lake.During phases II and III (9500 – 7500BP)there was an eastern outlet, and glaci‐isostatic tiltingcausedatransgressioninthewesternpartofthelakeuntil

the lake level rose to the threshold at the western end.PhaseIV(7500–6000BP)wascharacterisedbyoutletsatbothendsofthelake.Theemergenceoftheeasternoutlet(ca.6000BP)marksthetransitiontoPhaseV,i.e.thepre‐

sentsituation(Fig.22).

Våtedalen valley JustnorthofthevillageofSkeitheroadleavestheformerriver valley from Lake Jølstervatn and leads through the

narrowandpicturesqueN‐StrendingVåtedalenvalley.Theriverflowingslowlythroughthevalleydropsonly10minseveralkm,andduringthesummeritcarriesaloadofrockflowerfromthispartofJostedalsbreenglacier.Largetalus

conesmakeacontrasttothemeanderingriveronthefloodplainanddemonstratethatactive frostweathering is tak‐ingplaceonthesteepvalleysidesthatareparalleltotheN‐Sjointsystem.

Gloppen fjord 

IntheNordfjordareatheglaciersplitupintothreeglaciertonguesduringtheYoungerDryasiceadvance.Inthisareait is called the Nor stadial (Fig. 23; Fareth 1987). Thesouthernmost branch advanced a short distance out into

the Gloppen fjord outside Sandane village. Large lateralmoraines were deposited on the SW side of the fjord atRygg (whichmeans “Ridge”). Seismicprofiles reveals twoicepushphasesinthisfjord,Fig.24,Aarsethetal.1997.On

the Quaternary map three moraine ridges are distin‐guished(Klakegg&Nordahl‐Olsen1985,1986).

Stop 9 ‐ Føleide (UTM 0351220  6858014) Theglaciertongueinthemainfjordreachedalowpassonthesouthsideandaprominentlateralmorainewasdepos‐itedatFøleide (Fareth1987). Itnowconstitutes the localwatershed between themain fjord and the Gloppen fjord

withasaddlepointat197masl.Severalfarmsarelocatedon themoraine, but stillweget the impressionof a largeridge.Thelateraldrainagefromtheglacierhascutavalleythroughthickoldertill.

Fig.22. FivephasesoftheoutletdrainageofLakeJølstravatn(Klakeggetal.1990).

24   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 25: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Fig.23. PaleogeographicmapoftheYoungerDryasNorstadialintheNordfjordarea.(ModifiedfromFareth1987).

Fig.24. Seismicprofile(Sparker)oftheterminalmorainesanddistalsedimentsdepositedduringtheYoungerDryasintheGloppenfjord.Twoglacialreadvancescanbedistinguished(Aarsethetal.1997).+++indicateacousticbasement(bedrock).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   25 

Page 26: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 10 ‐ Vereide  (UTM 0350013  6856364) ThemeltwaterriverreachedtheGloppenfjordwhereitdepositedadeltaatVereide,69mabovethepresentsealevel(Fareth1987).Thisistheuppermarinelimitinthis

area.

Stop 11 – Anda:  Ferry Anda – Lote.  (Anda: U T M   0 3 4 6 4 3 2     6 8 6 0 5 0 6 )                    DuringtheYoungerDryasiceadvancethefjordglacierter‐minatedat the locationof thepresent ferrycrossingfromAndatoLote.Thebottomtopographyrevealsa100mhighridgethatconstitutesafjordthresholdwithasaddledepthof 130m. Seismic profiles (Sparker) penetrated a 200mthicksedimentsequence(Fig.25;Aarsethetal.1997).Themorainecomplexconsistsofalowersequenceoftranspar‐ent glaciomarine sediments overlain by glacial ice pushsediments.Abovethisisa50‐100mthicksequenceofgla‐ciofluvialforesetbeds,dipping~15ºtothewest.Thetopoftheridgeiscomposedofa50mthickcompacttillillustrat‐ing the last ice push. This ice oscillation could be due toreduced calving as the water depth decreased when theforesetbedsweredeposited (Aarsethetal. 1997).On thewaydownfromtheLotetunneltoNordfjordeidvillagetheroadcrossesasmallterminalmorainedepositedbyasmallcirqueglacieronthenorth‐slopingvalleyside.

OvernightstopinNordfjordeid

Fig.25. Seismicprofile(Sparker)acrosstheYoungerDryasterminalmoraineinthemainNordfjord.(Aarsethetal.1997).

26   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 27: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Day 3: NORDFJORDEID ‐ KRÅKENES – NORDFJORDEID (Optional day – to the coast)  The third day of the excursion will focus on glacial and

nonglacialgeomorphology,regenerationofYoungerDryasglaciers and coastal processes. The road leads along thenorthernshoreofNordfjordto localitiesonthecoastal is‐landofVågsøy.Summitareasalongthecoastaregenerally

unmodifiedbyglacialerosionandthusmayprobablyrep‐resentold(Neogene)surfaces.Atseverallocalitiesonecanalsofindsoilprofilesthatrepresentdeepweathering.

Vågsøy islandVågsøyisanislandsituatedatthecoastnorthofNordfjord

and exhibit considerable relief with the highest summitsclose to 600m asl. andwith steep coastal cliffs (Fig. 26).The relief in central parts of the island is undulating andsummit areas appear to be of significant age and exhibit

non‐glacial landforms such as tors. However glacialtroughs(cirquesandvalleys)areincisedintothetopogra‐phyandnumeroussmall lakebasinsbearwitnessofQua‐ternaryglacialerosion.Theislandhasprobablybeenover‐

ridden by several Quaternary glaciations with main iceflow from east (Nordfjord) or from northeast during thelast glacial maximum. Fast flowing glacier ice (ice‐

streams?)wassituatedintroughsandfjordswhereaslesserosiveicewassituatedonuplands.Thelastmaindeglaci‐ationstartedatthecontinentalshelfbreakatabout20kyragoandVågsøywasicefreeabout13‐14kyrago.Glaciers

werenotpresentonVågsøyforacoupleofthousandyears,butwas formed again during YoungerDryas stadial. ThiswillbediscussedattheKråkenescirquelocality.The climate of Vågsøy can be described as oceanic

(maritimewestcoast)withanaverageannualtemperatureof7.1oC(min2.5oCinJanuaryand13.0oCinAugust),anda precipitation of 1280mm/yr (min in April andmax inSept.). The westernmost tip of Vågsøy (Kråkenes light‐

houselocality)isconsideredtobeoneofthestormiestlo‐calitiesinNorway.

Fig.26.3D‐viewofVågsøytowardsN.LocationofKannesteinenismarkedwitharedring.

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   27 

Page 28: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 1 ‐ Kannesteinen (UTM 0293989  6877107) Kannesteinen is a famous natural sculpture on the westcoast of Vågsøy. Take to the left just after crossing theMåløybridge.Theroadisnarrowforthelastthreekilome‐tresandnotaccessiblebylargerbuses.Kannesteinenisthe

resultofcoastalabrasion,wherewaveactionhaveerodedand cut into a rock platform and leaving a rock pedestalalmostdefyinggravity(Fig.27).TheKannesteinenisdefi‐nitelyaHolocenefeatureandcannothavesurvivedglacier

overriding. It canbenoted that onboth sidesof theKan‐nesteinen,thereisanarrowrockterracedeveloping .Thewhole Nordfjord coast is surprisingly devoid of a strand‐flat,whereasprimeexamplesofNorwegianstrandflat (50

kmwide)aresituatedontheMørecoastjust150kmtothenorth.

Stop  2 ‐ Saprolite at Movatnet gravel pit (UTM 0291946  6881798) (Fig. 28).This localitywasdescribedbyRoaldset et al., (1982) andLongvaetal.,(1983)asapre‐Quaternarysaprolite(in‐situ

weathering).Theybasedtheirinterpretationmainlyon

morphologyofbouldersinthegravelpitwheree.g.anap‐parentcoreboulderisclearlyvisibletoday.

Fig.27. Kannesteinen.AbrasionalpedestalonthewestsideofVågsøy.

Fig.28.3Dviewof

westernmostVågsøyandKråkenestowardsSE.Mappedsaprolitelocalitiesaremarkedwithredrings.Tafonilocationismarkedwithabluering.

28   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 29: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Moreover, interpretationofXRDspectrafromgravelsam‐plesindicatespresenceoftheclaymineralkaolinite,whichcanbeusedas indicatorofchemicalweatheringatanad‐

vancedstage.Inadditiontillsamplesfromthesurroundingdrift blanket also were interpreted to contain kaolinite,which support the notion that pre‐Quaternary saprolitesare present in the area and that these saprolites were

mixedintotheglacialtill.Are‐examinationofthis localityhasthrownsomenewlightonthesefindings.Thematrixissandy‐grussy and contains very little fines and clays. XRFanalysisofmainandtraceelementshaverevealedthatbe‐

tween28%and37%oftheparentrockhasleachedoutaschemical weathering thus producing the weathering soil,whereSi+Al+Na+Kaccountforabouthalfoftheleach‐ing. XRD data suggest certain presence of chlorite

(indicativeofincipientweathering)andpossiblypresenceofsmectite,kaoliniteandserpentine.Itshouldhoweverbenoted that separation between chlorite and kaolinite isnotoriouslydifficult.Acloserlookattheeasternpartofthe

pitshowsacontactzonebetweenaugengneissandgabbro.Itisthussuggestedthatthislocalityisnotcausedbydeepweathering but by contact metamorphosis or hydrother‐malalterationsthathasweakenedthebedrockandcaused

leachingofminerals.However, theapparent coreboulderinthewesternpartofthepitsurelookslikeitwasformedthrough deep weathering and cannot be reconciledthroughthe“new”model.

                   

Kråkenes cirque  (UTM 0290812  6883082) Eiliv Larsen, Geological Survey of Norway In niceweather the view from themountain plateauMe‐huken(433masl.)ismarvellous.Walk30minutes(1,5km,150muphill) to the edgeabove the cirque.Hereyou seeCapeStadtothenorthandBremangertothesouth.

At theoutermostcoast,onthe islandofVågsøy,there isacirquecontainingawell‐developedcirquemorainewithamaximumdistalheightof16meters.Meltwater fromtheglacierthatoccupiedthecirquedrainedintothesmalllake

Kråkenesvatnetdepositinglaminatedsiltandclays.Radio‐carbon dates obtained on gyttja silt below and above theglaciolacustrine sediments demonstrated that the cirqueglacier formedanddisappearedagainduring theYounger

Dryas, i.e.within some1000‐1200 years. Thus the cirqueglacierwasnotaniceremnantleftbehindastheicesheetretreated from the area some 2000 years earlier. This iscontrary to cirque glaciers further inland that were left

behind as the ice sheet retreated, and only experiencedexpansionduringtheYoungerDryas.

Lee‐side accumulation of snow by wind and avalanchingintothecirquewascrucialforgrowthandtomaintainthecirque glacier once summer temperatures were lowenough.Atmaximum,theglacierlikelywasinequilibrium

with climate. The initial retreat from themaximum posi‐tionmighthavebeen triggeredby fall‐outof volcanic ashfrom Iceland, but the continued retreat was due to in‐creasedablationseasontemperatures.

Fromcoresinthelake,seismicsonthedeltaandmeasure‐mentsofthemarginalmoraines,thesedimentvolumepro‐ducedbythecirqueglacierwascalculated.Thiswasrecal‐culatedtobedrockvolumesanddistributedontheglacierareainordertoestimatetheerosionrateofthecirquegla‐

cier. Given an erosion period of 700 years averaged overtheentirecirquearea,thisindicatesanerosionrateof0.5to0.6mmpr.year.Withaconstanterosionrate,thecirquecouldforminsome80.000to125.000years,butobviously

cirqueerosionhastobedistributedovermanyglaciations(Larsen&Mangerud1981).

       

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   29 

Page 30: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 4 ‐  Weathering pits and tafonis at Kråkenes (UTM 0290117 6884412) Parkthecar/bus(UTM029488 6884475)500meastofthelighthouseandwalk.Duringsummerseasonthereisacafé in the lighthouse and you can even stay overnight ifyou can afford it! Around the Kråkenes lighthouse there

arewidespreadoccurrencesofweatheringpitsintheGab‐bro.Someofitcouldprobablybeclassifiedashoneycomboralveoli.This is not a single locality, but an areawith spectacular

examples of weathering pits and Tafoni. To see this re‐quiresabitofwalkingoversometimessteepandslipperyterrain–takecare!Thewholetriptakesanhourincludinginspection of theweathering pits. The path starts behind

the lighthouseand leadsupthesteepcliffwitharope forprotection.Walk along the hill passed themeteorologicalinstrumentsandradiomastanddownthesteepgrasshill‐sidetotheroadsome500mfurthereast.Themap(Fig.30)

shows the bedrock geology (augengneiss and gabbro) inaddition to the different weathering pits. Themost spec‐tacularformsarefoundonthesteepslopefacingwestjust

after the first hilltop. There are two distinct classes ofweatheringpits; classicalweatheringpits havedevelopedin augengneiss, Fig. 29Aand cavernouspits (Tafoni type)

haveevolvedinGabbro,Fig.29B.Lithologythushashadakey influenceontheweatheringmorphologybutalsodis‐tance to the seahas had significant impactwithnumbersand magnitude of the weathering pits decreasing away

fromthesea.ItthusseemsevidentthatlargetafonishaveevolvedinGabbroclosetotheseaandsmallerweatheringpitscanbefoundinaugengneissawayfromthesea,Fig.30.Someexceptionsexist,notablybeneatherraticsweredeep

weathering caverns have developed. A wide spectrum ofweatheringmorphologycanbeobservedatthislocality.Allstages of cavernous weathering (alveoli, honeycomb, ta‐foni)canbeobserved.Manyweatheringpitsareintercon‐

nected through channels and the structural control is of‐tentimes also evident with rills forming along foliations.Again,thefirstquestiontodiscussistheageoftheweath‐eringpits. Intuitively, thewelldevelopedweatheringcav‐

erns and pits indicate a long formation history. On theotherhand,weknowthatthisareahasbeenoverriddenbytheWeichselianicesheetandrecentcosmogenicdataindi‐

Fig.30. Bedrockgeologicalmapandmappedweatheringpitsshowingthemorphologicaldependenceonlithology.KråkenesLighthouseismarkedwithayellowstar.

30   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 31: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

cate that this area was indeed glacially eroded and thendeglaciatedatabout14‐15kyrago.AHoloceneageofthe

weatheringpits thusseems likely.Developmentofweath‐eringpits,andinparticulartafoniaredependentonchemi‐calattackbysaltysolutions,whichisafrequentconditionat Kråkenes. Empirical equations from other parts of the

world indicate that it indeed ispossible togrow50–100cmtafonisinabout15kyr.AHoloceneageoftheobservedweatheringpitsthusseemsplausible.ReturntoNordfjordeidforovernightstay.

Fig.29. A)PictureofweatheringpitsinterconnectedwithchannelsinAugengneiss.

B)Tafoniingabbro.Photo:OlaFredin.

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   31 

Page 32: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Day 4: NORDFJORDEID – STRANDA – VALL‐DAL ‐ GEIRANGER  Duringsummermonths(June20th–August20th)atouristferrycantakeyouallthewayfromValldaltoGeiranger.It

only sails twice a day so check the ferry schedule on theweb.IftheferryisnotrunningyouhavetoreturntoHelle‐syltfortheshorterferrytoGeiranger.Bookingisnecessaryinthetouristseason.

Beforetheglacialre‐advanceintheLateYoungerDryastheseainundatedtheareanowoccupiedbyLakeHornindals‐vatn,andaglacierdammed lakewasformed in thevalleytowardsthenortheast.FromarestareajustnorthofHelle‐

syltyoucanseethelargepotentialÅknesetslidearea6kmfurthertotheNE.Theunstablepartofthismountainslopecomprises 10‐15 mill m3, but volumes of 70‐90 mill m3cannot be excluded. This could cause a tsunami thatmayreachaheightof85minthecommunityofHellesylt,65m

in Geiranger and 3‐9 m further out along the shores ofStorfjorden.At Stranda you may get information about the Åknes‐Tafjord early‐warning centre by contacting them in ad‐

vance. After a short ferry crossing from Stranda you canboardasmallferryatValldal14:45fora2h15mincruiseontheNorddalsfjord,SynnulvsfjordandtheUNESCOheri‐tage site Geirangerfjord (summer only). The ferry passes

just below the Åknes rockslide before you arrive in Gei‐rangerat17:00.OvernightstayinGeiranger.

Eidsdalen  TherelativelybroadEidsdalenvalleybetweentheEidsfjor‐den and the Lake Hornindalsvatn has a valley fill of gla‐

ciofluvialterraces,glaciomarineclaysandfine‐grainedflu‐vial sediments (Fig.31).Twofindsofmolluscs in tillhereyielded ages of 10750 +/‐140 BP and 10930 +/‐160 BP(datesgivenasradiocarbonyrsBP),predatingtheNormo‐

raines at the outlet from Lake Hornindalsvatnet (Fareth1987).

Stop 1 ‐ Nor sand and gravel pit, Vedvik‐mona (UTM 0347498  6868337) Three dates of molluscs from the glaciomarine deposits

distal to the Nor moraines range from 10440 +/‐170 to10650+/‐160BP.Thisconfirmstheearlyageestimatethattheice‐frontdepositsatNorareofYoungerDryasage.Al‐thoughthesedepositarecalled theNormoraines,noreal

moraine ridges are found at the type locality. Instead a

largeoutwash(sandur)depositisbuiltuptoamaximumof73masl.Itslopestowardsthewestandstretchesfor3kmalongthesouthernvalleyside,(Fig.31).Theuppermarine

limitisat49‐55masl.inthisvalley,lowesttothewest.TheEidselva river has cut down through terraces during theHolocene. It has now incisedmeanders in the upper partand a series of meanders on the floodplain in the lower

part.Thefluvialsedimentshaveageneralthicknessof2‐3m above the eroded glaciomarine silty clays (Klakegg &Nordahl‐Olsen1985).

 

Stop 2 ‐ Lake Hornindalsvatn (514 m deep!) This24kmlonglakeisthedeepestlakeinEuropeandre‐

semblesalongfjord.Beforeglacierre‐advanceinYoungerDryas itwasa real fjord andmarinemolluscs foundneartheeasternendofthelakehavebeendatedtotheAllerødinterstadial(11360+/‐70BP).DuringtheYoungerDryas

Stadial this northernmost glacier tongue in theNordfjordareaadvancedandfilledthepresentlakebasincompletely.Aglacier‐dammedlakewasformedintheupperHornindalvalley between the glacier and the present watershed tothenortheast.A4kmlongand10‐60mwidelateralshore‐

linewasthenerodedintothetillonthesouth‐facingvalleyslope.The terrace slopes toward thepasspoint at 389masl.(Fareth1987). Stop 3 – Nibbedalen:  Alpine landscape with local glaciers and large lateral and ter‐minal moraines.  (UTM 0382017  6889150)Takeashortdetour(6‐7km)fromRoad60atTryggestadtoNibbedalenandstopnearFivelstadhaugen.Hereyoucanadmirethealpinelandscapewithcirquesandhornsupto1700masl.

 Stop 4 ‐ Hellesylt. (UTM 0388833  6885550)The village Hellesylt is the closest inhabited area to the

Åknesrockslide.AlargecollapseandrockslidefromÅknescan initiatedamaging tsunamis towards the settlement inHellesylt.Tsunamimodellingindicaterun‐upheightsofupto 85meters. Early‐warning and evacuation plans are to‐

dayoperativeforthearea.

32   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 33: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 5 ‐ Ljønibba view point, Photo stop. (UTM 0391731  6890276). FromhereyouareabletoseetheÅknesrockslideinpro‐file.Usingbinocularsonecanseeawhitespotwhichrepre‐sentthehelicopterpadwithsomeofthemonitoringinstru‐mentsontheupperpartofthemountainslope6kmtothe

north.

Stop 6 ‐ Stranda (UTM 0393700  6910221) An early‐warning center has been established in themu‐nicipalityofStrandainordertohandleallissuesrelatedtothemonitoringandearly‐warning. Ifyoucontact theÅke‐

nes–Tafjordproject inadvanceyoumayget informationontheproject.www.aknes.noAt the ferry terminal at Stranda there is amonument forthetsunamiin1731whenthecentreofStrandawaswiped

outduetoalargerockfall fromSkafjelletontheopposite

sideof the fjord. If theValldal–Geiranger ferry runsyoumaycrossthe fjordtoLiabygdaanddriveontoValldal. Ifnot,returntoHellesyltforashorterferrytoGeiranger.

Ferry Stranda – Liabygda. No booking nec‐essary.  

 

Tourist  ferry  from  Valldal  to  Geiranger  (summer  only, 

and only twice a day). 

Fig.31. MapoftheEidvalley,Nordfjordeidwithmarginalmoraines,terracesandradiocarbondatesofmarinemolluscs(Fareth1987).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   33 

Page 34: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Åknes rockslide (UTM 0396140  6895145) Lars Harald Blikra The Åknes rockslide is located on the northwest flank ofSunnylvsfjordeninwesternNorway(Fig.32).Ithasanesti‐matedvolumeofupto54Mm3andismovingatavelocityof up to 8 cm/year. Catastrophic failure of the rockmass

wouldtriggeradevastatingtsunamiinthefjord.Becauseofthe size of the moving rock mass, remedial engineeringmeasuresarenotfeasibleandtheriskmustbemanagedbyimplementinganeffectivewarningsystem.Amajorinves‐

tigation,monitoring,andearly‐warningprogramwerebe‐gun at Åknes in 2004. The operational monitoring andearly‐warning system isnowadministeredby theÅknes/TafjordEarlyWarningCentreonapermanentbasis.

NorthoftheÅknesrockslide,youwillhaveaviewtowardsa large slide scar on thewestern sideof the fjord.Bathy‐metricalandseismicdatademonstrates thatgiganticrock

avalancheshavebeen releasedhere, filling up largeparts

ofthefjordbasin.TheÅknes rockslide is located in theWesternGneissRe‐

gionand is seated inmedium‐grainedgraniticandgrano‐dioritegneissesofProterozoicageandcontainsbandsandlensesofmaficmaterial.AtÅknes,biotite‐richlayersupto20cmthickcoincidewithzonesofhighfracturefrequency,

andtheslidingsurfacesarelikelylocatedwithinthesemica‐rich layers. The foliation generally slopes parallel to thesurface.Welldefined,verysteep,sharpfoldsarerelatedtothetensioncracksatthetopofthelandslide.

Themorphologyoftherockslideshowseveralcharacteris‐ticfeatures(Fig.33),includingaprominentupperfracturesystem that can be followed for more than 500 m. The

slope‐parallelfoliationandweakbiotite‐richlayerscontrolthelarge‐scaledisplacementdynamics.Alargedepressionor graben has developed in the upperwest corner of therockslide(Fig.32,detail).

Fig.32. TheÅknesrockslideanditslocationinwesternNorway.

34   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 35: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Thetotalverticaldisplacementmeasuredhereis20‐30m.Tension fractures are also present in the upper and themiddle parts of the slope. Prominent slide scarps charac‐

terize the east side of the deep canyon that defines thewest boundary of the landslide. Historical data indicatethat slidesoccurredon theupperpartof the slope in thelate1800s,1940,and1960.Small slidescarsalsocharac‐

terize the lower part of the rockslide. Springs dischargewateron the lowermostpartof theslopeatabout100masl,andtherearealsosmallerspringsinthemiddlepartofthelandslide.

The monitoring program integrated a variety of surfaceand subsurface instruments, including extensometers,crackmeters, tiltmeters, single lasers, GPS, total station,ground‐basedradar,geophones,climatestation,andbore‐

hole inclinometers and piezometers. Reliable power andcommunications systems operate the instruments andtransmit data. Movement data collected to date demon‐stratecontinuousmovementthroughouttheyear,butwith

significant seasonal differences. During spring snowmeltandheavyprecipitationevents, therateofmovementcanincreaseto1mm/day,whichistentimestheannualmean.Preliminary early warning levels and associated actions

have been implemented based on data from the Åknes

rockslide and information on historical rockslides else‐whereincoastalNorway.

Fig. 33. Shaded-relief map of the Åknes rock-slide, with the morphological characteristics indicated. 1. An about 500m more or less continuous back crack (Upper tension fracture). 2. A large depression in the upper western corner of the rockslide, developed into a graben structure. The total vertical displacement is from 20-30 m. 3. A series of tension fractures from the up per to the middle part of the slope. They are oriented in a WNW to ESE direction and shows up to 1 m openings in bed rock and depressions and collapse struc tures in the blocky colluvial debris. 4. Prominent slide scars along the south western canyon. Historical data indicates a slide in the upper part in the late 1800, and slides also in 1940 and 1960. 5. Small slide scars in the lower part of the rockslide. 6. Large blocks or parts of the rocks is

coming out of the slope at two particular areas, one in the middle part and one area in the lowermost part.

7. Distinct water springs at the lowermost part of the slope at about 100masl.F

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   35 

Page 36: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Fjord intersection Synnulvsfjord – Gei‐rangerfjord. AttheintersectionbetweentheSynnulvsfjordandtheGei‐rangerfjordthe two fjordglaciersnearlycoalescedduringthe Younger Dryas ice advance. In the Synnulvsfjord asharpmoraineridgewithforesetbedsandasharpcrestat

140mwaterdepthisfoundjustoutsideBjørkeneset.IntheGeirangerfjord the terminal moraine is more complex.Strong reflectors above the acoustic basement at both lo‐calitiesareinterpretedasolderbasementtill,whereasthe

moraine in theGeirangerfjordareaalsohasyounger rockslidescappingtheforesetbeds(Fig.34).

Former  settlements  along  the  Geiranger‐

fjord.                                                        

Onthe ferry there is a guide giving information on theformersettlements inthearea.Youcanobserveoldfarm‐houses,eitheronsmallfan‐deltasalongthefjordoronval‐leyshoulderswherethetopographyenabledhousestobebuilt.SomeofthesefarmswereinhabiteduptoWorldWar

II. Many of them have been restored by the society “TheFriends of Storfjord”. The nomination document for theWorld Heritage Site lists 19 abandoned farms along thefjord.Thebuildingswereplacedinshelteredareastopre‐

ventdamagefromrockfalls, floodsorsnowavalanches.AFjord Centre at Geiranger demonstrates the struggle forexistenceatthesefarms.OvernightstayinGeiranger.

Fig.34.MapoftheinnerpartoftheSynnulvsfjord‐Geirangerfjordarea(left).Seismicprofile(Sparker)oftheYoungerDryasterminalmoraineintheGeirangerfjord(right).(Aarsethetal.1997).

36   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 37: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Day  5: GEIRANGER – BRIKSDALEN – LOEN – STRYN (or  –   LOEN – BERGEN)  Thismorningyoumayvisitthreeofthebestviewpointsin

Geiranger: “The Eagle Bend”, Flydalsgjuvet canyon andDalsnibbamountaintopat1476masl.(ifweatherpermits).The first and the second viewwill demonstrate the fjordmorphologywithawindingfjord,truncatedspursandval‐

ley shoulders. Several of the latter have abolished farm‐steads.Fromthemountaintopyouhopefullywillbeabletoseaboththefjorddeepdownandthealpinetopographyofthispartof thecounty“MøreandRomsdal”.Downonthemainroadagain(R‐63)youpassLangevatnetwereasteep

mountainslopejustabovetheroadissusceptibletosnowavalanches during springtime. This road is closed inwin‐tertimeandicemaystayonthelaketillearlyAugust.

The relatively new road to Stryn (R‐15) leads throughthreelongtunnels.IntheGrasdalenvalleythereisasnowavalancheresearchstationrunbyNorwegianGeotechnicalInstitute. Largedebris cones are built toprotect the road

against avalanches. The Stryn valley is a classicU‐shapedvalleyandaphotostopwillbemadeattheintersectiontotheoldroadjustoutsidethethirdtunnel.

Briksdalsbreenglacierhaslongbeenatouristmagnet,butalso the subject for glacial geologic research as this niceoutlet glacier from the Jostedalsbreen glacier has a veryshort (3‐4 years) responding time to the glacier budget

drivenbysummertemperaturesandwinterprecipitation.

Lake Lovatnet has been the site of several large historictsunamis generated by rockfalls from themountainRam‐

nefjellet. Several villageswerewiped out and 135 peoplewerekilledinthetwolargestaccidents(1905and1936).

Stop 1 ‐ “The Eagle bend”. View of the Gei‐rangerfjord   (UTM 0404405  6889604) Afteradmiringtheviewandphotographingthe fjord(Fig.35), there is time to look at the geology! The foliated

gneissicrockat“TheEagleBend”haspronouncedsheetingwithgentlerdiptowardsthefjordthanthehillside.Thesesocalled“valley‐joints”havecertainlyplayedanimportantroleinthedenudationprocesses.Theyhaveenabledglacial

plucking during glacials and stadials aswell as increasedlateralmassmovementsalongthesteepvalleysidesduringice‐free periods. The interaction of the oblique sheetingandtheverticaljointsystemisclearlyproducingpotential

rockfalls.Forconstructionofanoutlookplatformlikethis,onehastotakethesheetingintoconsiderationandanchortheplatformdeepintotherocks.LiketheviewoftheAur‐landfjord from the “Skywalk” at Stegastein one can try to

reconstruct valley generations. As in the Nærøyfjord andAurlandfjord,someoftheledgeshavebeenusedasfounda‐tions for settlers.Thewaterfall “SevenSisters” at thedis‐tanceisfallingofftheverticalrockwallofatruncatedspur.

  

         

Fig.35.ViewoftheGeirangerfjordfromtheplatformat“TheEagleBend”.Photo:I.Aarseth2007.

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   37 

Page 38: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 2 ‐ Flydalsjuvet canyon. View of Gei‐ranger (UTM 0407211  6885471) The second stop at Flydalsjuvet shows in addition to abreathtaking view of Geiranger also the fluvial down‐cuttingoftherivertryingtoeliminateaglacialstepinthevalley.Thebedrockstructuresaremirroredinoverhanging

rock formationswherepeoplewithno aversions towardsgiddinesscanposeontheedge.Onbothlocalitiestheroadauthorities have used landscape architects to plan andbuildthenewoutlookplatforms.

Stop 3 ‐ Dalsnibba mountain top.  (1476 m asl.)  (if weather permits) (UTM 0409535  6903702) InadditiontoadistantviewofthefjordandtheGeiranger

villagewecanseetheskylineof“TheSunnmøreAlps”.Buteveninthisalpinelandscapethemountaintopshavemoreor less the same altitude: 1600 – 1800 m asl. Very fewmountainsareflattopedlikefurthersouthinwesternNor‐

way. The summit atDalsnibba has not developed a blockfield.

Stop 4 ‐ Fonnbu field station for snow and avalanch research, Grasdalen valley  (UTM 0411675  6874597)   TheStrynefjellmountainroadusedtobeclosedinwinter‐time.Theoldroadisnowopeninsummertimeandasum‐mer skiing centre (down hill) has lifts on north‐facingslopes.Duringplanningofthenewroadresearchwascar‐

riedout toprevent snowavalancheson the road.A snowavalancheresearchstationhasbeenoperatedby theNor‐wegianGeotechnicalInstitutesince1973(www.ngi.no).Anewmodern stationwas opened in 2006 after a fire. All

kindsofweatherdiagramscanbe foundon their internetaddress:www.fonnbu.no Inadditionwww.snoskred.nogivesinformationonsnowavalanche(inNorwegian).

 Stop 5 ‐ Videseter intersection R 15 – R 258. View point:  Photostop. 

View of Stryn valley.  (UTM 0408834  6868443) 

Stop 6 ‐ Briksdalsbreen mountain lodge (UTM 0384630  6838590).               ParkingatBriksdalsbreenmountainlodge.Walkfor30minutes(200melevation)towardstheglacier.

 

 

38   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 39: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Atle Nesje: 

Frontal fluctuations of Briksdalsbreen, a western outlet glacier from Jostedalsbreen in western Norway Briksdalsbreen (11.94 km2) is a steep outlet glacier fromJostedalsbreen (487 km2), the largest icecap onmainlandEurope.Theglacierrangesinaltitudefrom1910to350mover a distance of 6 km (Østrem et al. 1988). Briksdals‐

breenattaineditsmaximum’LittleIceAge’positionaroundAD 1760‐65 (Pedersen 1976). Annual frontal measure‐ments were started at Briksdalsbreen in 1900 by JohanRekstadatBergenMuseum.Inthefirstpartofthe20thcen‐

turytheglacierfrontwasinaratherstableposition,how‐ever,withaminorglacieradvancethatculminatedin1910(Fig.36).Duringthe1930sand1940s,however,theglacierfront retreated significantly, reaching amaximum annual

retreat in1948with79m.Fig.37showtheglacier inthe

years 1871, 1900, 1953 and 1963. The distal part of theproglaciallakeBriksdalsbrevatnet(maximumwaterdepthin the1980sof20m)wasdeglaciated in theearly1940s,

whereastheminimumglacierextentwasreachedin1955(‐862 m relative to the 1900 frontal position). Between1952 and 1973 the glacier front wasmore‐or‐less in thesameposition, however, between1974and1980 thegla‐

cier front advanced 186 m. In 1988 a significant glacieradvancestarted,whichculminatedin1994with61m,thelargest annual advance recorded in the 20th century. Theglacier front reached its maximum extent in 1996, when

theglaciertonguecoveredtheentireLakeBriksdalsbrevat‐net.After2001,theglacierfronthasretreatedsignificantly(maximumannual retreatof145m in2006,Fig.36).Thedistancebetweenthe1996andtoday(2011)frontalposi‐

tionsisalmost500m.InAugust2011thelowerpartoftheglaciertonguesplitintwo.

Fig.36.Upperpanel:AnnualfrontvariationsofBriksdalsbreenAD1900‐2011(data:NVE).Lowerpanel:CumulativefrontvariationsofBriksdalsbreenAD1900‐2011(data:NVE).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   39 

Page 40: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Fig.37.Briksdalsbreenin1871(photo:KnudKnudsen,Billedsamlingen,UniversityofBergen),1900(photo:KnudKnudsen,Billedsamlingen,UniversityofBergen),1953(photo:OlavLiestøl),and1963(photo:OlavLiestøl).

Climate variability in western Norway and terminal response of Briksdals‐breen. Annualglacier‐frontvariationsofBriksdalsbreenbetween1900and2007havebeencomparedwithwinterprecipita‐tion and summer temperature records from Bergen overthe same period in order to evaluate the reasons for the

observed glacier‐front variations (Nesje 2005). Between1901and1910 theglacier frontadvancedmainlyasa re‐sultoflowersummertemperatures.Subsequently,thegla‐cierfrontretreateduntil1921followedbyminoradvance

until 1931. In the period 1932‐1955 the glacier front re‐cededasmuchas809m.Thesignificantretreatwasmainlya response to high summer temperatures and lowwinterprecipitation, especially during the early 1940s. In 1956

theglacierstartedtoadvanceasacombinedeffectoflowersummer temperatures and higher winter precipitation.Between1956and1992,theglacieradvancedduetolowersummer temperatures andhigherwinter precipitation. In

the fouryearsbetween1992/93and1995/96 theglacier

frontofBriksdalsbreenadvanced242mduetohighwinterprecipitation. Between 1997 and 2007 the glacier frontreceded475m(Fig.38),withthelargestannualretreatin

2005/06of145m(mean~40cmday‐1).Thisisthelargestannual recession since the annual frontal measurementsstartedin1900.ThefrontofBriksdalsbreenwasintheau‐tumnof 2007 eightmetres behind the 1955 frontal posi‐

tion.Themaincauseof thesignificantglacierretreatdur‐ingthelate20th/early21stcenturieswasacombinedeffectof low winter precipitation and high summer tempera‐tures. The summer temperaturesduring thisperiodwere

on the average higher than during the summers in the1930sand1940s.The Briksdalsbreen 1900‐2011 glacier record (Fig. 36)

demonstrates that glacier variations not only are a re‐sponse toablation‐season(summer) temperature,butarealso highly dependent on accumulation‐season (winter)precipitation.

40   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 41: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Dated tree logs  In the 1990s, the glacier front pushed up glaciolacustrine sedi-

ments (Winkler & Nesje 1999). In 1995 a well-preserved log

was found protruding from the terminal push moraine that was

under formation in front of Briksdalsbreen (Nesje 2005). The

log, which contained 62 annual rings, was identified as a wil-

low (Salix cuprea). The log was dated at the Trondheim Dat-

ing Laboratory to be about 8400 calendar years old. Later, two

more, well preserved Salix logs were found and radiocarbon

dated . The Salix logs date from the period immediately before

or during the ‘Finse event’/’8200 cal. yr BP event’. The radio-

carbon dates record when the trees died. The three logs may

therefore have been buried rapidly in the sediments in the

Briksdalsbrevatnet basin before or during the glacier advance

associated with this event. The site was overrun by Briksdals-

breen during the ‘Little Ice Age’ without eroding/destroying

the wood remains.

Fig.38.Briksdalsbreenintheautumn1993(photo:SigbjørnMyklebust),autumn1997(photo:SigbjørnMyklebust),autumn2004(photo:AtleNesje),andsummer2007(photo:AtleNesje).

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   41 

Page 42: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

Stop 6 – Loen.  Rockfalls from Ramnefjellet in 1905 and 1936 and the devastating tsu‐nami waves they generated in Lake Lovat‐net.   (UTM 0394531  6852848) Anarrowroad leadsalong theshoresofLakeLoenvatnet

to the monument memorizing the two natural disasters.January 15th 1905 and September 13th 1936 two of thelargestnaturaldisastersinmoderntimesoccurredinNor‐way. The rockfalls in 1905 and 1936 triggered large tsu‐

namiwavesalongtheshoresofLakeLovatnet.In1905and1936 there were 61 and 74 casualties, respectively, alto‐gether135.Intotal,sevenrockfallsoccurredinRamnefjel‐letduringtheperiod1905‐1950(Table1).Ithasbeenesti‐

mated that a total of ca. 3millionm3 of rock have fallendownfromRamnefjelletsince1905.

The15January1905rockfallSundayevening15January1905,between23.00and24.00

PM, two loudbangswereheard fromRamnefjellet.Avol‐ume of 50,000 m3 of rock fell down from an altitude ofabout 500 m and triggered about 300,000 m3 of till andtalus material at the base of the slope. It has been esti‐

matedthat870.000tonsofmaterialmovedintothelake.Therockfallgeneratedlargewaveswithamaximumheightof40.5mabovethelakelevelinLovatnet(52masl.). The13September1936rockfallTheSeptember13rockfalloccurredat04.30AM.1million

m3of rock fell down fromRamnefjellet and into the lake.The rockfall generated waves with a maximum height of74.2m(Jørstad1968).Theboat‘Lodalen’thatwaswashedashoreinthe1905tsunamiwasnowlifted33mhigherup

to a position 350m from the shore (the boat can still beseenfromtheroad).

 

Submarine slide in the Innvikfjord in 1967. Submarine clay slidesarecommon inwesternNorwegianfjords. Early studies in the Hardangerfjord (Holtedahl1965,1975)unveiledmultipleturbiditesintheuppersedi‐

mentcolumn.Just3kmsouthofStryn,afairlyresentslidewasdiscoveredin1982(Aarsethetal.1989).SoundingsbytheNorwegianHydrographicOfficeinMay1967andApril1983showedanincreaseinwaterdepthofmax.55m.Cal‐

culationsof the twomapsshowed thatsedimentvolumesof15x106m3hadbeenremovedduringthistimespan.Anewspapersurveyresultedinareportofapersonalobser‐vationofthree“inexplicable”wavesupto1mhighontheshore10kmdistaltotheslidescarinSeptember1967.The

telephonecompanyalsoreported irregularitiesonacablelaiddownin1963.TheslidescarisclearlyseenonaresentTOPASprofile,Fig.39(Hjelstuenetal.2009).

Table 1. Rockfalls from the mountain Ramnefjellet in Loen 1905-1950. ________________________________________________________________________________ Date Volume rock Volume till/ Fallout Maximum No. of (m3) talus (m3) (m asl.) wave height (m) casualties ________________________________________________________________________________ 15.01.1905 50,000 300,000 500 40.5 61 20.09.1905 ca. 15,000 ca. 50,000 400 >15 0 13.09.1936 1 million - 800 74.2 74 21.09.1936 ca. 100,000 - 800 ca. 40 0 06.10.1936 ? - 800 ? 0 11.11.1936 >1 million - 800 >74 0 22.06.1950 c a. 1 million - 800 ca. 15 0 _______________________________________________________________________________

Fig.39. TOPAShigh‐resolutionseismicprofilefrominnerpartofNordfjord,showingwell‐laminatedglacimarinesedimentsandacoutictransparentslidedebritesabovebedrock.The1967NordfjordSlidehavecreatedthe15metreshighslidescarobservedwithintheglacimarinedeposits.(Hjelstuenetal.2009).

42   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 43: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

REFERENCES   Aa,A.R.&Sønstegaard,E.2001:MiddleWeichselianinter‐

stadialsedimentsinSogndalsdalen,westernNor‐way.NorskGeologiskTidsskrift,81,17‐23.

Aa,A.R.&Sjåstad,J.A.2000:Schmidthammerageevalua‐tionofthemorainesequenceinfrontofBøy‐abreen,westernNorway.NorskGeologiskTidsskrift,80,27‐32.

Aarseth,I.&Mangerud,J.1974:YoungerDryasendmorai‐nesbetweenHardangerfjordenandSognefjorden,WesternNorway.Boreas,3,3‐22.

Aarseth,I.1980:Fjellogfjord,steinogjord.ISchei,N.(red.)SognogFjordane.GyldendalNorskForlag.97‐121.

Aarseth,I.1988:SedimentsandsedimentaryprocessesintheFjærlandsfjordandpartsoftheSognefjord.InOrheim,O.(ed.)Glaciology,HydrologyandGlacialGeologyaroundJostedalsbreen.FieldGuidetoex‐cursion1988.NorwegianPolarInstitute,Oslo.

Aarseth,I.1997:WesternNorwegianfjordsediments:age,volume,stratigraphy,androleastemporaryde‐positoryduringglacialcycles.MarineGeology143,39‐53.

Aarseth,I.,2000:Fiords(fjords).InHancock,P.&Skinner,B.J.,TheOxfordCompaniontoTheEarth.347.Ox‐fordUniversityPress.NewYork.

Aarseth,I.2005:Vidde,dal,fjord.InHelland‐Hansen,W.(ed.)NaturhistoriskVegbok,Hordaland.Nor4,60‐66.

Aarseth,I.,Braanaas,T.&Henriksen,H.2006:Rallarvegen,geologioglandformer.Gråsteinen11.110pp.

Aarseth,I.,Lønne,Ø.&Giskeødegaard,O.1989:Submarineslidesinglaciomarinesedimentsfromsomewes‐ternNorwegianfjords.MarineGeology88:1‐21.

Aarseth,I.,Austbø,P.K.&Risnes,H.1997:Seismicstrati‐graphyofYoungerDryasice‐marginaldepositsinwesternNorwegianfjords.NorskGeologiskTidsskrift77,65‐85.

Aarseth,I.,Fossen,H.ogHaflidason,H.2010:Hvordanblefjordenevåretil?InJohannessen,P.,Sætre,R.,Kry‐vi,H.ogHjelle,H.(eds.)Bergensfjordene–naturogbruk.JohnGriegAS,Bergen.

Ahlmann,H.W:son1919:GeomorphologicalstudiesinNor‐way.Geografiskaannaler1,208;210pp.

Andersen,B.G.,Mangerud,J.,Sørensen,R.,Reite,A.,Sveian,H.,Thoresen,M.&Bergstrøm,B.1995:YoungerDryasice‐marginaldepositsinNorway.Quater‐naryInternational28,147‐169.

Bondevik,S.&Mangerud,J.,2002:AcalendarageestimateofaverylateYoungerDryasicesheetmaximuminwesternNorway.QuaternaryScienceReviews21,1661‐1676.

Bondevik,S.,Mangerud,J.,Birks,H.H.,Gulliksen,S.&Reimer,P.2006:ChangesinNorthAtlanticradio‐carbonreservoiragesduringtheAllerødandYoungerDryas.Science312,1514‐1517.

Braathen,A.,Blikra,L.H.,Berg,S.S.&Karlsen,F.2004:Rock‐slopefailuresinNorway,type,geometry,defor‐mationmechanismsandstability.NorwegianJour‐nalofGeology84.76‐88.

Breien,Hedda,FabioV.DeBlasio,AndersElverhøi,and

KaareHøeg.2008."ErosionandMorphologyofaDebrisFlowCausedbyaGlacialLakeOutburstFlood,WesternNorway."Landslides5,no.3:271‐80.

Bøe,R.,Longva,O.,Lepland,A.,Blikra,L.H.,Sønstegaard,E.,Haflidason,H.,Bryn,P.,Lien,R.2004:PostglasialmassmovementsandtheircausesinfjordsandlakesinwesternNorway.NorwegianJournalofGeology84:35‐55

Corner,D.2005a:AtlanticCoastandFjords.InMattiSep‐pälä(ed.)ThePhysicalGeographyofFennoscandia.OxfordUniversityPress.203‐228.

Corner, D. 2005b: Scandes Mountains. In Matti Seppälä (ed.) The Physical Geography of Fennoscandia. Oxford University Press. 229-254.

Fareth, O.W., 1987. Glacial geology of Middle and Inner Nordfjord, western Norway. Norges geologiske un-dersøkelse., 408: 55 pp.

Gjessing,J.1967:Norway’spaleicSurface.Nor.Geogr.Tidsskr.21,69‐132.

Hjelstuen,B.O.,Haflidason,H.,Sejrup,H.P.,&Lyså,A.2008:LateWeichselianmarinesedimentaryprocessesintheNordfjordsytem.MarineGeology258.

Holtedahl,H.,1967:Notesontheformationoffjordsandfjordvalleys.Geogr.Ann.Ser.A.49:188‐203.

Holtedahl,H.,1975:ThegeologyoftheHardangerfjord,WestNorway.Nor.Geol.Unders.323:87pp.

Hurrell,J.W.1995:DecadaltrendsintheNorthAtlanticOscillation:regionaltemperaturesandprecipita‐tion.Science269,676‐79.

Hurrell,J.W.,Kushnir,Y.,Ottersen,G.andVisbeck,M.(eds.)2003:TheNorthAtlanticOscillation–ClimaticSignificanceandEnvironmentalImpact.Geophysi‐calMonograph134.AmericanGeophysicalUnion,Washington,DC.

Jørstad,F.1968:WavesgeneratedbylandslidesinNorwe‐gianfjordsandlakes.NorwegianGeotechnicalInsti‐tutePublication79.20pp.

Klakegg,O.&Nordahl‐Olsen,T.1985:Nordfjordeid.De‐scriptionoftheQuaternarygeologicalmap1218I(scale1:50000).Nor.Geol.Unders.71:29pp.

Klakegg,O.&Nordahl‐Olsen,T.,1986.Nordfjordeid.1218I.Quaternarymap.Scale1:50000.Nor.Geol.Unders.

Klakegg,O.&Rye,N.1990:TiltingoflakeshorelinesinJøl‐stravatnet,westernNorway,causedbyglacioi‐sostaticrebound.NorskGeologiskTidsskrift70,47‐59.

Kristiansen,I.L.,Mangerud,J.&Lømo,L.1988:LateWeich‐selian/EarlyHolocenepollen‐andlithostratigraphyinlakesintheÅlesundarea,westernNorway.Re‐viewofPalaeobotanyandPalynology53,185‐231.

Larsen,E.&Mangerud,J.1981:ErosionrateofaYoungerDryascirqueglacieratKråkenes,WesternNorway.AnnalsGlaciol.2:153‐158.

Larsen,E.,Attig,J.W.,Aa,A.R.&Sønstegaard,E.1998:Late‐glacialcirqueglaciationinpartsofwesternNor‐way.J.Quat.Sci.13:17‐27.

Luterbacher,J.,Xoplaki,E.,Dietrich,D.,Jones,P.D.,Davies,T.D.,Portis,D.,Gonzales,Rouco,J.F.,vonStorch,H.,Gyalistras,D.,Casty,C.andWanner,H.2002:Ex‐tendingNorthAtlanticOscillationreconstructions

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   43 

Page 44: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

backto1500.AtmosphericScienceLettersdoi:10.1006/asle.2001.0044.

Lohne,Ø.,Bondevik,S.,Mangerud,J.&Svendsen,J.I.,2007:Sea‐levelfluctuationsimplythattheYoungerDryasice‐sheetexpansioninwesternNorwaycommencedduringtheAllerød.QuaternaryScienceReviews26,2128‐2151.

Longva,O.,Larsen,E.&Mangerud,J.1983:Stad,Beskrivel‐setilkvartærgeologiskkart1019II.NGU393.

Mangerud,J.1970:LateWeichselianvegetationandice‐frontvariationsintheBergendistrict,westernNorway.NorGeogr.Tidsskr.24,121‐148.

Mangerud,J.1980:Ice‐frontvariationsofdifferentpartsoftheScandinavianicesheet13,000‐10,000yearsB.P.InLowe,J.J.,Gray,J.M.&Robinson,J.E.(eds.):StudiesintheLate‐GlacialoftheNorth‐WestEurope,23‐30.PergamonPress,Oxford.

Mangerud,J.,2000.WasHardangerfjorden,westernNor‐way,glaciatedduringtheYoungerDryas?NorskGeologiskTidsskrift80,229‐234.

Mangerud,J.,2004.IcesheetlimitsonNorwayandtheNor‐wegiancontinentalshelf.In:J.Ehlers&P.Gibbard(Eds.),QuaternaryGlaciations‐ExtentandChronol‐ogy.Vol.1Europe.Elsevier,Amsterdam,271‐294.

Mikalsen,G&Sejrup,H.P.2000:OxygenIsotopeComposi‐tionofFjordandRiverWaterintheSognefjordenDrainageArea,WesternNorway.ImplicationsforPaleoclimateStudies.Estuarine,CoastalandShelfScience50:441‐448

Nesje,A.2005:BriksdalsbreeninwesternNorway:AD1900‐2004frontalfluctuationsasacombinedef‐fectofvariationsinwinterprecipitationandsum‐mertemperature.TheHolocene15,1245‐1252.

Nesje,A.&Whillans,I.M.1994:ErosionofSognefjord,Nor‐way.Geomorphology9:33‐45.

Nesje,A.,Aa,A.R.,Kvamme,M.&Sønstegaard,E.1994:ArecordoflateHoloceneavalancheactivityinFru‐dalen,Sogndalsdalen,westernNorway.NorwegianJournalofGeology7471‐76

Nesje,A.,Johannessen,T.andBirks,H.J.B.1995:Briksdals‐breen,westernNorway:climaticeffectsontheterminalresponseofatemperateglacierbetweenAD1901and1994.TheHolocene5,343‐47.

Nesje,A.,Lie,Ø.andDahl,S.O.2000:IstheNorthAtlanticOscillationreflectedinScandinavianglaciermassbalancerecords?JournalofQuaternaryScience15,587‐601.

Nygård,A.,Sejrup,H.P.,Haflidason,H.,Cecchi,M.&Ottesen,D.2004:DeglaciationhistoryofthesouthwesternFennoscandianIceSheetbetween15and13C‐14kaBP.Boreas33,1‐17

NorwegianNomination.2004:TheWestNorwegianFjords.NorwegianMinistryoftheEnvironment,Oslo.159pp.

Orheim,O.1970:GlaciologicalinvestigationsofStoreSup‐phellebre,West‐Norway.NorskPolarinstituttSkrifter151,48pp.

Ottesen,D.,Dowdeswell,J.A.&Rise,L.2005:Submarinelandformsandreconstructionoffast‐flowingicestreamswithinalargeQuaternaryicesheet:The2500‐km‐longNorwegian‐Svalbardmargin(570‐800N).GSABulletin117,1033‐1050.

Paetzel,M.&Schrader,H.1992:RecentenvironmentalchangesrecordedinanoxicBarsnesfjordsedi‐ments:westernNorway.MarineGeology105:23‐36.

Pedersen,K.1976:Brigsdalsbreen,Vest‐Norge.Glasiologis keogglasialgeologiskeundersøkelser.Thesis, UniversityofBergen.Reusch,H.1901:Noglebidragtilforstaaelsenavhvorledes

Norgesdaleogfjoirdeerblevnetil.Norgesgeolo‐giskeundersøkelse32.124‐217,218‐263.

Roaldset,E.Pettersen,E.,Longva,O.&Mangerud,J.1982:RemnantsofpreglacialweatheringinwesternNorway.Nor.Geol.Tidsskr.62,169‐178.

Rye,N.,Nesje,A.,Lien,R.andAnda,E.1987:TheWeich‐selianicesheetintheNordfjord‐SunnmøreareaanddeglaciationcronologyforNordfjord,westernNorway.NorskGeogr.Tidsskr.41:23‐43.

Sejrup,H.P.,King,E.L.,Aarseth,I.,Haflidason,H.&Elverhøi,A.1996:Quaternaryerosionanddepositionalprocesses:westernNorwegianfjords,NorwegianChannelandNorthSeaFan.InM.DebatistandP.Jacobs(eds.)GeologyofSiliclasticShelfSeas.Geo‐logicalSocietySpecialPublicationNo.117.

Strøm,K.M.1936:Land‐lockedwater.HydrographyandbottomdepositsinbadlyventilatedNorwegianfjords,withremarksuponsedimentationunderanaerobicconditions.Skr.Nor.Vidensk.Akad.Oslo,Mat.Naturv.Klasse,7:85pp.

Svendsen,J.I.andMangerud,J.1987:LateWeichselianandHolocenesea‐levelhistoryforacross‐sectionofwesternNorway.JournalofQuaternaryScience2,113‐132.

Sønstegaard,E.,Aa,A.R.&Klagegg,O.1999:YoungerDryasglaciationintheÅlfotenarea,westernNorway;evidencefromlakesedimentsandmarginalmo‐raines.NorskGeologiskTidsskrift79,33‐45.

Taylor,J.H.&Price,N.B.1983:ThegeochemistryofironandmanganeseinthewatersandsedimentsofBolstadfjord,S.W.Norway.Est.CoastShelfSci.17:1‐19.

Winkler,S.&Nesje,A..1999:Moraineformationatanad‐vancingtemperateglacier:Brigsdalsbreen,west‐ernNorway.GeografiskaAnnaler81A,17‐30.

44   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 

Page 45: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3  West Norwegian Fjords‐   45 

Page 46: WEST NORWEGIAN FJORDS - Geologi€¦ · UNESCO heritage site: “West Norwegian Fjords ‐ Nærøy‐ fjord and Geirangerfjord” as well as the fjord areas in be‐ tween. On the

  

   NGF     Geological Guides      Number 3, 2014 

46   ‐   West Norwegian Fjords  GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3