4
1/3/18 1 PV Thinking and the Dynamic Tropopause Jim Steenburgh University of Utah [email protected] Supplemental Reading: Lackmann (2011) Chapter 4 What is PV Thinking? The use of potential vorticity conservation and “invertability” for understanding large-scale atmospheric dynamics and the evolution of synoptic weather systems Potential Vorticity Conserved following fluid motion for adiabatic, frictionless flow Components Absolute vorticity Static Stability ! = ! ! + ! !" !" !" !" = ! ! + ! !" !" q+Dq p q Potential Vorticity Units of K kg -1 m 2 s -1 Define 1 PVU = 10 -6 K kg -1 m 2 s -1 PV is typically higher in the stratosphere (>2 PVU) and lower in the troposphere (< 2 PVU) Dynamic Tropopause – Tropopause defined using PV (I use 2 PVU, others 1.5) 2 PVU Stratosphere ( > 2 PVU) Troposphere ( < 2 PVU) Dynamic Tropopause Example Stratospheric Reservoir Troposphere Dynamic Tropopause PV WallTropopause Undulation Not quite a fold Key Features Dynamic tropopause – tropopause defined using potential vorticity (i.e., 1.5 or 2.0 PV surface) Stratospheric reservoir – region of high PV in the stratosphere Tropopause undulation – wave-like undulation in the tropopause Tropopause fold – area where stratospheric air folds under tropospheric air

What is PV Thinking? PV Thinking and the Dynamic Tropopause · PV on an Isentropic Surface (315 K) Conserved for adiabatic, frictionless flow (can use advection to explain/anticipate

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • 1/3/18

    1

    PVThinkingandtheDynamicTropopause

    JimSteenburghUniversityofUtah

    [email protected]

    SupplementalReading:Lackmann (2011)Chapter4

    WhatisPVThinking?Theuseofpotentialvorticity conservationand“invertability”forunderstandinglarge-scaleatmosphericdynamicsandtheevolutionofsynopticweathersystems

    PotentialVorticity• Conservedfollowingfluidmotionforadiabatic,

    frictionlessflow

    • Components– Absolutevorticity

    – StaticStability

    ! = −! !+ ! !"!" !!!!!!!!!!!!!!!"!" = !!

    !+ !!

    −!"!"!!

    q+Dq

    p

    q

    PotentialVorticity• UnitsofKkg-1 m2 s-1

    • Define1PVU=10-6 Kkg-1 m2 s-1

    • PVistypicallyhigherinthestratosphere(>2PVU)andlowerinthetroposphere(<2PVU)

    • DynamicTropopause – Tropopause definedusingPV(Iuse2PVU,others1.5)

    2 PVU

    Stratosphere ( > 2 PVU)

    Troposphere ( < 2 PVU)

    DynamicTropopause

    Example

    Stratospheric Reservoir

    Troposphere

    DynamicTropopause

    PV “Wall”Tropopause Undulation

    Not quite a fold

    KeyFeatures• Dynamictropopause – tropopause definedusing

    potentialvorticity (i.e.,1.5or2.0PVsurface)

    • Stratosphericreservoir– regionofhighPVinthestratosphere

    • Tropopause undulation– wave-likeundulationinthetropopause

    • Tropopause fold– areawherestratosphericairfoldsundertroposphericair

  • 1/3/18

    2

    MeanDistributionofPV• DTheightishighintropics,

    lowinhighlatitudes

    • DTpressureislowintropics,highinhighlatitudes

    • DTpotentialtemperatureishighintropics,lowinhighlatitudes

    • Onanisentropicsurface(e.g.,320K)PVincreasestowardthepoles

    Bluestein(1993)

    DynamicTropopause (DT)Analysis• Ananalysisofvariables(e.g.,wind,pressure)onthe

    dynamictropopause

    • Advantages– Jets(subtropicalandpolar)arefrequentlyatdifferingpressurelevels,butaretypicallynearthedynamictropopause

    – Tropopause pressureorpotentialtemperaturecanbeusedtoidentifyPV“anomalies”&upper-leveltroughsandridges

    – Containahugeamountofinformationabouttheupper-levelsonasinglemap

    Note how jet cores all intersect same PV isosurface: Dynamic tropopause

    The Dynamic Tropopause

    GFS144-hforecastvalid12UTC10Feb2010

    FromLackmann (2011)LectureNotes

    500-mbheightandPV

    DynamicTropopause Pressure

    Conceptuallystraightforward,butnotconserved

    Correspondencewith500mb DynamicTropopause Theta

    Conservedforadiabatic,frictionlessflow(canuseadvectiontoexplain/anticipatechanges)

  • 1/3/18

    3

    PVonanIsentropicSurface(315K)

    Conservedforadiabatic,frictionlessflow(canuseadvectiontoexplain/anticipatechanges)

    PVThinking• Underadiabaticconditions,theevolutionofPViscontrolledbyadvection

    – ChangesinDTpotentialtemperature(orPVonanisentropicsurface)canbeanticipatedbasedonadvection

    • PVcanbe“inverted”todeducethethewindandthermodynamicfields– Changesinthelarge-scaleflowcanbeanticipatedbasedontheseadvective

    changesinDTpotentialtemperature

    • Non-conservationofPV(i.e.,changesinDTpotentialtemperaturenotexplainedbyadvection)canbeusedtounderstandhowdiabatic processesinfluencelarge-scalesystems

    • Phenomenathatcanbediagnosedinthismannerincludecyclogenesis,troughandridgeamplification,troughfracture,troughmerger,downstreamdevelopment,etc.

    PVInversion• PVcanbeinverted

    assumingasuitablebalancecondition

    • CyclonicPVanomalies(i.e.,locallyhighPV)induceacycloniccirculation

    • Anticyclonic PVanomalies(i.e.,locallylowPV)induceananticyclonic circulation

    +-

    -+

    Hoskinsetal.(1985)

    PVInversion• Theinducedcyclonic

    circulationandtemperatureanomaliesarestrongestnearthePVanomalyandspreadhorizontallyandvertically

    • Verticalpenetrationisinverselyproportionaltostability– Highstability=weak

    penetration– Lowstability=strong

    penetration

    +-

    -+

    Hoskinsetal.(1985)

    SynopticApplication• RegionsoflowDTpotentialtemperature(highDTpressure)arecyclonicPV

    anomaliesandaccompaniedbyupper-leveltroughs/cyclones

    • RegionsofhighDTpotentialtemperature(lowDTpressure)areanticyclonic PVanomaliesandaccompaniedbyupper-levelridges/anticyclones

    • Amplification(weakening)ofacyclonicPVanomalyisanindicationofadeveloping(decaying)trof

    • Amplification(weakening)ofananticyclonic PVanomalyisanindicationofadeveloping(decaying)ridge

    • Strongjetsareusuallyfoundinregionsoflargetropopause pressuregradients(a.k.a.thePVWall)

    • Coveredinafuturelecture:CyclogenesisfromaPVperspective

    ClassActivity:Real-TimeExamples

    • weather.utah.edu graphics

    • IDV

    Bundles->Real-Time-WX->Diagnostics->PV-Thinking

  • 1/3/18

    4

    ClassActivity:Real-TimeExamples• IdentifythefollowingonaDTpressureandDTtheta

    analysis/forecastlooporusingIDV3-Dvisualization– AcyclonicPVanomalyandupper-leveltrough– Ananticlonic PVanomalyandupper-levelridge– APVwall– Atropopausefold– Asubtropicaljet– Apolarjet– Anupper-levelcyclonicPVthatcontributestosurfacecyclogenesis

    – AnexampleofPVfilamentformingduetodeformation– Anexampleofridgedevelopmentamplifiedbynon-conservativeprocesses