12
1 Industry and Agriculture An Innovative Partnership David J. Mayonado, Ph.D Technology Development Rep. Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline Technology in Agriculture - Historic - Current - Future Working in Industry Monsanto Company

Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

1

Industry and AgricultureAn Innovative Partnership

David J. Mayonado, Ph.DTechnology Development Rep.

Who is this Guy?

DAVID MAYONADOTECHNOLOGY

DEVELOPMENT REP.HEBRON, MD

Outline

• Technology in Agriculture- Historic- Current- Future

• Working in Industry• Monsanto Company

Page 2: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

2

The Glory Days of Agriculture?

The Glory Days of Agriculture?

The Glory Days of Agriculture?

Page 3: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

3

The Glory Days of Agriculture?

Land Grant Universities

• The Morrill Acts of 1862 and 1890 established the raising of funds (via granting federally controlled lands to the states) to established land‐grant colleges.

• The mission of these institutions was to focus on the teaching of practical agriculture, science, military science and engineering.

Agricultural Experiment Stations

New York

North Carolina

• The Hatch Act of 1887 authorized the establishment of agricultural experiment stations to be affiliated with the land grant college of  agriculture in each state.

• The Smith‐Lever Act of 1914 created the Cooperative Extension Service to disseminate information gleaned from the experiment station’s research.

Page 4: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

4

Intensive Research and Adoption of Technology Improves Production

Univ. of MissouriUniv. of Missouri

Science based research and development by government and private industry over the past 100 years has resulted in huge increases in US crop production via 

improved agronomic practices and the adoption of ever improving mechanical, chemical and biological tools.  

The Rural Environment in the Mid-Atlantic Seems to be Well Suited for Wildlife

Maryland Dept. of Natural Resources

Applying rigorous scientific principles to the development of agricultural technologies and techniques has allowed Mid‐Atlantic farmers to produce steadily larger crops while at the 

same time improving soil quality and fostering an environment that supports a thriving wildlife population.

Applying rigorous scientific principles to the development of agricultural technologies and techniques has allowed Mid‐Atlantic farmers to produce steadily larger crops while at the 

same time improving soil quality and fostering an environment that supports a thriving wildlife population.

The Rural Environment in the Mid-Atlantic Seems to be Well Suited for Wildlife

Applying rigorous scientific principles to the development of agricultural technologies and techniques has allowed Mid‐Atlantic farmers to produce steadily larger crops while at the 

same time improving soil quality and fostering an environment that supports a thriving wildlife population.

Page 5: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

5

Changing Tools for Agricultural Pest Management

Time

Efficiency

GMO

RNAi

No-till

What are GMOs?

Biotechnology in plant agriculture has come to mean the process of intentionally making a copy of a gene for a desired trait from one plant or organism and using it in another plant. The result is a GMO (genetically

modified organism).

Biotechnology in plant agriculture has come to mean the process of intentionally making a copy of a gene for a desired trait from one plant or organism and using it in another plant. The result is a GMO (genetically

modified organism).

Commercial Products of Biotechnology

• Roundup Ready® Crops – allow growers more effective and efficient control of weeds

• YieldGard® Corn – allows growers to manage yield robbing insects without the need to spray.  This provides more effective control without harming beneficial and non‐threatening insects.

• DroughtGard® Corn – Enhancing drought tolerance in corn for tough environments.

• Vistive Gold®/Plenish® Soybeans – Soybeans that produce a vegetable oil that is more healthy (similar to Olive oil) for consumers.

Page 6: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

6

Genes and Proteins

• Genes are the information packets for making proteins.

• The nature of one’s proteins determines one’s nature.

• Proteins are not generally stable outside the confines of living cells.

• Proteins are generally rapidly biodegraded and rapidly digested.

Proteins have the potential to be powerful tools for enhancing agricultural production while being highly biodegradable and 

being produced in the very plants that need them. 

Proteins have the potential to be powerful tools for enhancing agricultural production while being highly biodegradable and 

being produced in the very plants that need them. 

GMO Safety

Scientific Institutions and Organizations that Recognize the Safety of GM Crops and their Potential Benefits

International  North America  Europe  Latin America 

World Health Organization (WHO)  Royal Society of Canada Biology Centre of the Academy of Sciences of the 

Czech Republic Nutrition Society of Argentina (SAN) 

Food and Agriculture Organization of the United Nations (FAO) 

Health Canada  French Academy of Sciences  International Life Sciences Institute (ILSI) 

Thirld  Word Academy of Sciences (TWAS)  National Academy of Sciences (NAS) 

National Academy of Sciences (Leopoldina) | German Academy of Science and Engineering (acatech) | Berlin‐Brandenburg Academy of 

Sciences and Humanities 

Brazilian Academy of Sciences 

International Council for Science (ICSU)* Institute of Medicine (IOM) & National Research 

Council (NRC) of the National Academies. Union of the German Academies of Science and 

Humanities (8 academies) Brazilian Association of Nutrition* 

International Union of Food Science and Technology (IUFoST) 

National Academies (IOM, NRC, NAS, NAE)  Federal Ministry of Education and Research  Chilean Academy of Sciences 

International Seed Federation (ISF)  American Medical Association (AMA)  National Academy of Science | Lincean Academy  Chilean Academy of Agricultural Sciences 

International Union of Nutritional Sciences (IUNS) 

American Association for the Advancement of Science (AAAS) 

Joint statement of 14 scientific intitutions of Italy  Mexican Academy of Sciences 

Consultative Group for International Agricultural Research (CGIAR) 

American Council of Science and Health (ACSH)  Joint statement of 21 scientific intitutions of Italy Peruvian Association for the Development of 

Biotechnology (PeruBiotec) 

United Nations Development Programme (UNDP) 

Society of Toxicology (SOT)  Plant Research International – Wageningen UR  Nutrition Society of Argentina (SAN) 

AgBioWorld Foundation   American Dietetic Association Declaration promoted by the Spanish Bioindustry 

Association (ASEBIO)   

Organisation for Economic Co‐operation and Development (OECD) 

Genetics Society of America Declaration promoted by the National Association 

of Plant Breeders (ANOVE) and signed by 14 Spanish institutions 

Oceania 

World Health Organization (WHO)  American Society for Cell Biology (ASCB)  Royal Society of London  Biotechnology Ministerial Council 

  American Society of Plant Biology (ASPB)  Royal Society of Medicine Commonwealth Scientific and Industrial Research 

Organization (CSIRO) 

Asia  American Society for Microbiology (ASM)  Royal Society of Edinburgh  National Farmers’ Federation (NFF) 

Chinese Academy of Sciences  American Phytopathological Society (APS)  Biochemical Society UK Australia’s Biotechnology Organization 

(AusBiotech) 

Indian National Academy of Sciences  Society for In Vitro Biology (SIVB)    Food Standards Australia – New Zealand 

Indian National Academy of Agricultural Sciences 

Crop Science Society of America  Africa  New Zealand Royal Commission 

National Academy of Science and Technology (NAST) 

Council for Agricultural Science and Technology (CAST) 

Academy of Science of South Africa   

Chinese Academy of Sciences   

Academies of Sciences from Cameroon, Ethiopia, Ghana, Kenya, Mozambique, Nigeria, Senegal, South Africa, Sudan, Tanzania, Uganda and 

Zimbabwe. 

 

Indian National Academy of Sciences    International Society of African Scientists   

International  North America  Europe  Latin America 

World Health Organization (WHO)  Royal Society of Canada Biology Centre of the Academy of Sciences of the 

Czech Republic Nutrition Society of Argentina (SAN) 

Food and Agriculture Organization of the United Nations (FAO) 

Health Canada  French Academy of Sciences  International Life Sciences Institute (ILSI) 

Thirld  Word Academy of Sciences (TWAS)  National Academy of Sciences (NAS) 

National Academy of Sciences (Leopoldina) | German Academy of Science and Engineering (acatech) | Berlin‐Brandenburg Academy of 

Sciences and Humanities 

Brazilian Academy of Sciences 

International Council for Science (ICSU)* Institute of Medicine (IOM) & National Research 

Council (NRC) of the National Academies. Union of the German Academies of Science and 

Humanities (8 academies) Brazilian Association of Nutrition* 

International Union of Food Science and Technology (IUFoST) 

National Academies (IOM, NRC, NAS, NAE)  Federal Ministry of Education and Research  Chilean Academy of Sciences 

International Seed Federation (ISF)  American Medical Association (AMA)  National Academy of Science | Lincean Academy  Chilean Academy of Agricultural Sciences 

International Union of Nutritional Sciences (IUNS) 

American Association for the Advancement of Science (AAAS) 

Joint statement of 14 scientific intitutions of Italy  Mexican Academy of Sciences 

Consultative Group for International Agricultural Research (CGIAR) 

American Council of Science and Health (ACSH)  Joint statement of 21 scientific intitutions of Italy Peruvian Association for the Development of 

Biotechnology (PeruBiotec) 

United Nations Development Programme (UNDP) 

Society of Toxicology (SOT)  Plant Research International – Wageningen UR  Nutrition Society of Argentina (SAN) 

AgBioWorld Foundation   American Dietetic Association Declaration promoted by the Spanish Bioindustry 

Association (ASEBIO)   

Organisation for Economic Co‐operation and Development (OECD) 

Genetics Society of America Declaration promoted by the National Association 

of Plant Breeders (ANOVE) and signed by 14 Spanish institutions 

Oceania 

World Health Organization (WHO)  American Society for Cell Biology (ASCB)  Royal Society of London  Biotechnology Ministerial Council 

  American Society of Plant Biology (ASPB)  Royal Society of Medicine Commonwealth Scientific and Industrial Research 

Organization (CSIRO) 

Asia  American Society for Microbiology (ASM)  Royal Society of Edinburgh  National Farmers’ Federation (NFF) 

Chinese Academy of Sciences  American Phytopathological Society (APS)  Biochemical Society UK Australia’s Biotechnology Organization 

(AusBiotech) 

Indian National Academy of Sciences  Society for In Vitro Biology (SIVB)    Food Standards Australia – New Zealand 

Indian National Academy of Agricultural Sciences 

Crop Science Society of America  Africa  New Zealand Royal Commission 

National Academy of Science and Technology (NAST) 

Council for Agricultural Science and Technology (CAST) 

Academy of Science of South Africa   

Chinese Academy of Sciences   

Academies of Sciences from Cameroon, Ethiopia, Ghana, Kenya, Mozambique, Nigeria, Senegal, South Africa, Sudan, Tanzania, Uganda and 

Zimbabwe. 

 

Indian National Academy of Sciences    International Society of African Scientists   

To date, more than 2000 scientific studies have assessed the safety of these crops in terms of human health and environmental impact. These studies together with several reviews performed on a case by case from regulatory agencies around the world, have enabled a solid and clear scientific consensus: GM crops have

no more risk than those that have been developed by conventional breeding techniques.

To date, more than 2000 scientific studies have assessed the safety of these crops in terms of human health and environmental impact. These studies together with several reviews performed on a case by case from regulatory agencies around the world, have enabled a solid and clear scientific consensus: GM crops have

no more risk than those that have been developed by conventional breeding techniques.

http://www.siquierotransgenicos.cl/2015/06/13/more-than-240-organizations-and-scientific-institutions-support-the-safety-of-gm-crops

Page 7: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

7

BioDirect™ is Based on New Applications of RNAi Technology

RNAi is A Natural

Mechanism to Control

the Expression

of a Gene

DNA

Gen

e

RNAProtein Produced“Transfers information from gene to

construct a protein”

Gen

e

DNA

RNA

When cells make RNAi it specifically targets an RNA

RNA broken up Protein

Not Produced

X

“Trigger”

Gene Silenced

Gene silencing presents the possibility of turning off specific genes, which might have many practical agricultural applications ‐ including pest control.

Gene Silencing for Corn Rootworm Control

Graphic from Genetic Weapon Against Insects Raises Hope and Fear in Farming New York Times Online, Andrew Pollack, January 27, 2014

Pre-LaunchPhase 4

• Designed to provide added product durability for control of corn rootworm

• Offering an essential mode of action for corn rootworm control through a natural process (RNAi) which is unique from Bt

• Field and lab studies continue to demonstrate superior root protection through more complete control of corn rootworm larvae

Newton, Iowa – 2014

SmartStax® PRO

SmartStax PRO

Non-Bt VT3 SSX SSX PRO

Roo

t D

amag

e R

atin

g

SmartStaxSmartStax® PRO Corn

VT Triple PRO®

SmartStax® PRO1 Corn Provides a Novel Third Mode of Action for Corn Rootworm Control

ControlVT

Triple PRO® SmartStax

1. Pending regulatory approvals

Page 8: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

8

BioDirect™ Technology Provides Plant Protection Against Colorado Potato Beetle Infestations

• A highly destructive defoliator, Colorado Potato Beetle (CPB) can cause significant economic yield loss

• Field trials with BioDirect™ across potato growing areas of the U.S. continue to demonstrate reductions in CPB larvae infestation, adult emergence and plant defoliation

0

20

40

60

80

100

120

140

160

3 6 9 12 15

Untreated Control

BioDirect

Commercial Standard

Days after Treatment

CP

Bla

rge

larv

ae

Early DevelopmentPhase 2Untreated 

BioDirect™ Technology Treated                           

Field trials at multiple locations in 2014 demonstrate the potential of BioDirect™ Technology in potato 

production systems

Eastern Shore of Virginia ‐ 2014

Proof of ConceptPhase 1

• BioDirect™ Technology for Improved Plant Health by Targeting Tomato Spotted Wilt Virus (TSWV)

• BioDirect™ Technology treated plants have shown consistent protection from TSWV which may provide growers with a very specific and precise tool to protect their crops

• Activity has been identified on strains that are not currently managed through conventional breeding traits for resistance

• Greenhouse trials with an aggressive strain of TSWV on a commercial tomato hybrid show early progress towards tospovirus control

including TSWV

Plant protection with BioDirect™ Technology

0%

20%

40%

60%

80%

100%

Virus-Infested PlantsUntreated Control

Virus-Infested Plants Non-Specific

BioDirect™ Treatment

Virus-Infested Plants Virus-Specific

BioDirect™ Treatment

Healthy PlantsUntreated Control

Percentage of Healthy Plants (not showing vegetative virus symptoms)

• Virus-Infested

• Plants

• Untreated Control

Virus-Infested Plants

Formulated Control

Virus-Infested Plants

BioDirect ™ Treatment

California - 2014

Healthy PlantUntreated Control

Proof of ConceptPhase 1

– We continue to see the BioDirect™ Technology working with herbicide chemistries in addition to glyphosate, providing additional modes of action for more effective weed control

– Targeting gene sequences common to both Palmer amaranth and waterhemp allows for effective control of both problem weed species

• Alternative Herbicide

Herbicide-Resistant Palmer Amaranth

• Roundup WeatherMax® Herbicide

Alternative Herbicide + BioDirect™ Technology

• Roundup WeatherMax® Herbicide+ BioDirect™ Technology

Glyphosate-Resistant Palmer AmaranthIllinois - 2014

BioDirect™ Technology Targeting Herbicide Resistant Weeds to Provide a More Effective Spectrum of Control

Alternative Herbicide

Page 9: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

9

Private Industry and Scientific Innovation

• The US has been the world leader in technical innovation and product development for more than a century.

• The combination of public and private investment in the development of technical solutions to critical needs has been hugely successful: - The Department of Defense and Lockheed Martin, Boeing,

Northrop Grumman, etc.- National Institute of Health (NIH) and pharmaceutical

companies- U.S. Defense Advanced Research Projects Agency

(DARPA)/U.S. National Science Foundation (NSF) and private internet companies

The identification and initial funding of research to address important technical needs is often the role of the government.  Once potential solutions are established, private investment into developing and 

marketing potential solutions generally bring products to the consumer much more rapidly and less expensively than could be done publically.   

The identification and initial funding of research to address important technical needs is often the role of the government.  Once potential solutions are established, private investment into developing and 

marketing potential solutions generally bring products to the consumer much more rapidly and less expensively than could be done publically.   

Working in Industry

• To survive, private companies must create products or services that bring new value to their customers. 

• New value can come from decreasing operating costs or increasing income (i.e. higher yields). 

• When this new value is quantified, companies share part of that value with customers to encourage them to purchase the product and keep the remaining as compensation.

• New value is the product of discovery and/or innovative thinking. 

Working in Industry

• Because of the competitive nature of the free market system, private companies are challenged daily for their survival.

• This makes for an exciting and potentially uncertain future.

• Companies must turn cash and innovation into products customers want and are willing to pay for. 

• For those who work for successful companies, working in industry can be an exciting and financially rewarding career. 

Page 10: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

10

Working in Industry

• Conduct research studies for Monsanto in the Mid‐Atlantic region to determine which of our products make sense to market here and how they should be used.

• Train Monsanto salesman, retail customers and growers on the technical attributes of our products and their use.

• Maintain relationships with colleagues in academia and keep them abreast of our products via hands on experience prior to commercialization.

• Am occasionally involved with training government regulators and congressional staffers on the nature of new technologies.

MONSANTO IS FOUNDED BY JOHN F. QUEENY

MONSANTO SCIENTISTS ARE THE 1ST TO GENETICALLY 

MODIFY A PLANT CELL

1901 1960 1976 1987 1996 1997 1998 2000

AGRICULTURE DIVISION IS ESTABLISHED

MONSANTO CONDUCTS THE FIRST U.S. FIELD TRIALS WITH GENETICALLY MODIFIED PLANTS

ROUNDUP READY®SOYBEANS, CANOLA, AND BOLLGARD®

COTTON ARE PLANTED COMMERCIALLY

Monsanto History

1972

CELL BIOLOGY RESEARCH BEGAN

1982

National Medal of Technology from President Bill Clinton ‐ 1999

Monsanto Seed Brands

Cotton WheatVegetables

Page 11: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

11

MONSANTO

at a glance

Sales in more than

160 countries

Headquarters in

ST. LOUIS, MO

~ 400 facilities in over 60 countries

~ 20,000 Employees worldwide

$14.86 billion net sales in FY2013

+ $1B invested annually in R&D

The Mouse That Roared?

Bayer to Purchase Monsanto

Bayer CEO Werner Baumann and Monsanto Chairman and CEO Hugh Grant

Page 12: Who is this Guy?...Who is this Guy? DAVID MAYONADO TECHNOLOGY DEVELOPMENT REP. HEBRON, MD Outline • Technology in Agriculture - Historic - Current - Future • Working in Industry

12

Take Home Messages:• Science‐based agronomic research & development has led to huge 

increases in crop production efficiency and yield.

• Using protein based technology to manage pests allows the crop to protect itself without the added cost of petroleum based pesticides or their application.

• Proteins are inherently unstable outside the cell so are generally rapidly biodegraded and are generally rapidly digested in the acidic stomachs of humans.  

• GM crops are the most thoroughly studied foods in the world.  Their safety has been consistently demonstrated.

• RNA interference has great potential to improve pest management by very specifically turning off genes essential for pest survival.

• Working in industry can be an exciting and rewarding career path and the demand for agricultural scientists will continue to outstrip the supply of candidates!