180
Wild twistor D -modules Claude Sabbah Centre de Math ´ ematiques Laurent Schwartz UMR 7640 du CNRS ´ Ecole polytechnique, Palaiseau, France Wild twistor D-modules – p. 1/28

Wild twistor D-modules

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Wild twistor D-modulesClaude Sabbah

Centre de Mathematiques Laurent Schwartz

UMR 7640 du CNRS

Ecole polytechnique, Palaiseau, France

Wild twistor D-modules – p. 1/28

Introduction

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question:

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?Problem:

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?Problem: Irregularity of M at τ =∞.

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?Problem: Irregularity of M at τ =∞.Analogue for ℓ-adic sheaves: Results of Deligne andLaumon.

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?Problem: Irregularity of M at τ =∞.Analogue for ℓ-adic sheaves: Results of Deligne andLaumon.General problem:

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?Problem: Irregularity of M at τ =∞.Analogue for ℓ-adic sheaves: Results of Deligne andLaumon.General problem: Hodge theory in presence ofirregular singularities.

Wild twistor D-modules – p. 2/28

Introduction

(V,∇) an alg. vect. bundle with connection on A1rP ,P = a finite set of points.

→ a holonomic module M on C[t]〈∂t〉.

Fourier-Laplace transform of M : a C[τ ]〈∂τ 〉-module,τ = ∂t, ∂τ = −t.

Assume that (V,∇) underlies a variation of polarizedHodge structure on A1 r P .

Question: What kind of a structure does M underlie?Problem: Irregularity of M at τ =∞.Analogue for ℓ-adic sheaves: Results of Deligne andLaumon.General problem: Hodge theory in presence ofirregular singularities. Cf. Deligne’s notes (1984, 2006).

Wild twistor D-modules – p. 2/28

Conjecture of Kashiwara (regular case)

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.

Semi-simple perverse

sheaf on Y

Semi-simple perverse

sheaf onX

Conjecture of Kashiwara

regular case

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Semi-simple perverse

sheaf on Y

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Semi-simple perverse

sheaf on Y

Polarized regular twistor

D-module onX

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition

theorem (C.S.)

Polarized regular twistor

D-module onX

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition

theorem (C.S.)

Simpson

+ Hamm-Le D.T.

Polarized regular twistor

D-module onX

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition

theorem (C.S.)

Simpson

+ Hamm-Le D.T.

Corlette

+ Simpson

(smooth case)

Polarized smooth twistor

D-module onX

Semi-simple local

system onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition

theorem (C.S.)

Simpson

+ Hamm-Le D.T.

Polarized regular twistor

D-module onXT. Mochizuki

(NCD)

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 3/28

Conjecture of Kashiwara (regular case)

f : X −→ Y : a morphism between smooth complexprojective varieties.Sketch of the analytic proof :

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition

theorem (C.S.)

Simpson

+ Hamm-Le D.T.

Polarized regular twistor

D-module onXT. Mochizuki

(NCD)

Semi-simple perverse

sheaf onX

Conjecture of Kashiwara

regular case

Wild twistor D-modules – p. 3/28

Twistor structures(C. Simpson)

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structures

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugation

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗H

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Pure Hodge structurew=0 H ≃ OdP1

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Pure Hodge structurew=0 H ≃ OdP1

Vector space H Γ(P1,H )

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Pure Hodge structurew=0 H ≃ OdP1

Vector space H Γ(P1,H )

H ≃ H∗ H ≃ H ∗ := H ∨

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Pure Hodge structurew=0 H ≃ OdP1

Vector space H Γ(P1,H )

H ≃ H∗ H ≃ H ∗ := H ∨

→ Γ(P1,H ) ≃ Γ(P1,H )∗

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Pure Hodge structurew=0 H ≃ OdP1

Vector space H Γ(P1,H )

H ≃ H∗ H ≃ H ∗ := H ∨

→ Γ(P1,H ) ≃ Γ(P1,H )∗

Positivity Positivity on Γ(P1,H )

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Hodge structures Twistor structuresFiltered vect. sp. (H,F •H) Holom. vect. bundle on P1

Conjugation H→H Twistor conjugationH→H = σ∗Hσ : z 7→−1/z (z=−1/z)

Pure Hodge structurew=0 H ≃ OdP1

Vector space H Γ(P1,H )

H ≃ H∗ H ≃ H ∗ := H ∨

→ Γ(P1,H ) ≃ Γ(P1,H )∗

Positivity Positivity on Γ(P1,H )

Tate twist (k), k ∈ Z ⊗ OP1(−2k) (k ∈ 12Z)

Wild twistor D-modules – p. 4/28

Twistor structures(C. Simpson)

Wild twistor D-modules – p. 5/28

Twistor structures(C. Simpson)

Holomorphic vector bundle on P1

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Twistor adjoint H ∗ = H ∨

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Twistor adjoint (H ′,H ′′, C)∗ = (H ′′,H ′, C∗),C∗(v,u) := C(u,v).

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Twistor adjoint (H ′,H ′′, C)∗ = (H ′′,H ′, C∗),C∗(v,u) := C(u,v).

Tate twist H (k) := H ⊗ OP1(−2k)

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Twistor adjoint (H ′,H ′′, C)∗ = (H ′′,H ′, C∗),C∗(v,u) := C(u,v).

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Twistor adjoint (H ′,H ′′, C)∗ = (H ′′,H ′, C∗),C∗(v,u) := C(u,v).

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Polarization in weight 0

Wild twistor D-modules – p. 6/28

Twistor structures(C. Simpson)

H ′,H ′′ holomorphic on A1, “gluing”:C : H ′

|S ⊗OSH′′|S −→ OS , S = |z| = 1.

Twistor adjoint (H ′,H ′′, C)∗ = (H ′′,H ′, C∗),C∗(v,u) := C(u,v).

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

H ′ = H ′′ and existence of a global frame ε of H ′

such that, on S, C(εi,εj) = δij .

Wild twistor D-modules – p. 6/28

Variation of twistor structures(C. Simpson)

Wild twistor D-modules – p. 7/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Wild twistor D-modules – p. 7/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Twistor conjugation: ordinary conjugation on X andtwistor conjugation on P1.

Wild twistor D-modules – p. 8/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Twistor conjugation: ordinary conjugation on X andtwistor conjugation on P1.

H ′,H ′′ holomorphic bdles on X × A1, “gluing”:C : H ′

|X×S ⊗OSH′′|X×S −→ C

∞,anX×S .

Wild twistor D-modules – p. 8/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Twistor conjugation: ordinary conjugation on X andtwistor conjugation on P1.

H ′,H ′′ holomorphic bdles on X × A1, “gluing”:C : H ′

|X×S ⊗OSH′′|X×S −→ C

∞,anX×S .

Flat holomorphic relative connections∇′,∇′′:

H ′(′′) −→1

zΩ1

X /A1 ⊗H ′(′′), compatibility with C:

d′XC(u,v)=C(∇′u,v), d′′XC(u,v)=C(u,∇′′v).

Wild twistor D-modules – p. 8/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Twistor conjugation: ordinary conjugation on X andtwistor conjugation on P1.

H ′,H ′′ holomorphic bdles on X × A1, “gluing”:C : H ′

|X×S ⊗OSH′′|X×S −→ C

∞,anX×S .

Flat holomorphic relative connections∇′,∇′′:

H ′(′′) −→1

zΩ1

X /A1 ⊗H ′(′′), compatibility with C:

d′XC(u,v)=C(∇′u,v), d′′XC(u,v)=C(u,∇′′v).

Twistor adjoint (H ′,H ′′, C)∗ = (H ′′,H ′, C∗),C∗(v,u) := C(u,v).

Wild twistor D-modules – p. 8/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Wild twistor D-modules – p. 9/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Hermitian pairing in weight 0:(H ′,H ′′, C) ≃ (H ′,H ′′, C)∗.

Wild twistor D-modules – p. 9/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Hermitian pairing in weight 0:(H ′,H ′′, C) ≃ (H ′,H ′′, C)∗.

Polarization in weight 0: the restriction to any xo ∈ Xof the Hermitian pairing is a polarization of therestricted twistor structure.

Wild twistor D-modules – p. 9/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Hermitian pairing in weight 0:(H ′,H ′′, C) ≃ (H ′,H ′′, C)∗.

Polarization in weight 0: the restriction to any xo ∈ Xof the Hermitian pairing is a polarization of therestricted twistor structure.

C. Simpson: Variations of pol. twistor struct. of weight 0

Wild twistor D-modules – p. 9/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Hermitian pairing in weight 0:(H ′,H ′′, C) ≃ (H ′,H ′′, C)∗.

Polarization in weight 0: the restriction to any xo ∈ Xof the Hermitian pairing is a polarization of therestricted twistor structure.

C. Simpson: Variations of pol. twistor struct. of weight 0z=1←→ holom. vector bundle on X with flat connection∇and Hermitian metric h which is harmonic

Wild twistor D-modules – p. 9/28

Variation of twistor structures(C. Simpson)

X: complex manifold, X = X × A1.

Tate twist (H ′,H ′′, C)(k) = (H ′,H ′′, (iz)−2kC).

Hermitian pairing in weight 0:(H ′,H ′′, C) ≃ (H ′,H ′′, C)∗.

Polarization in weight 0: the restriction to any xo ∈ Xof the Hermitian pairing is a polarization of therestricted twistor structure.

C. Simpson: Variations of pol. twistor struct. of weight 0z=1←→ holom. vector bundle on X with flat connection∇and Hermitian metric h which is harmonicz=0←→ holom. vector bundle on X with a Higgs field θ, andHermitian metric h which is harmonic .

Wild twistor D-modules – p. 9/28

Twistor D-modules

X: complex manifold, X = X × A1.

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

H ′,H ′′ holomorphic on X × A1 with flatholomorphic relative connections∇′,∇′′:

H −→1

zΩ1

X /A1 ⊗H (H = H ′,H ′′).

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : H ′|X×S ⊗OS

H′′|X×S −→ C

∞,anX×S

compatible with ∇′,∇′′:d′XC(u,v)=C(∇′u,v), d′′XC(u,v)=C(u,∇′′v).

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Problem:

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Problem: How to define the restriction to xo ∈ X?

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Problem: How to define the restriction to xo ∈ X?Answer:

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Problem: How to define the restriction to xo ∈ X?Answer: Use iterated nearby cycle functors.

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Problem: How to define the restriction to xo ∈ X?Answer: Use iterated nearby cycle functors.

Kashiwara-Malgrange V -filtration for M ′,M ′′ → ψfM .

Wild twistor D-modules – p. 10/28

Twistor D-modules

X: complex manifold, X = X × A1.

M ′,M ′′ holonomic RX -modules,RX = OX 〈ðx1

, . . . , ðxn〉, ðxi

= z∂xi.

“gluing”: C : M ′|X×S ⊗OS

M′′|X×S −→ DbX×S/S

compatible with the RX ⊗RX -action.

Twistor adjoint (M ′,M ′′, C)∗ = (M ′′,M ′, C∗).

. . . Strictness

Problem: How to define the restriction to xo ∈ X?Answer: Use iterated nearby cycle functors.

Kashiwara-Malgrange V -filtration for M ′,M ′′ → ψfM .Barlet Hermitian form on nearby cycles→ ψfC.

Wild twistor D-modules – p. 10/28

Polarized pure twistor D-modules

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Category MH6d(X,w) Category MT6d(X,w)

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Category MH6d(X,w) Category MT6d(X,w)

∀ holom. germ f : (X,xo) −→ C, constraint onψf (M,F•M,FQ) ψfT

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Category MH6d(X,w) Category MT6d(X,w)

∀ holom. germ f : (X,xo) −→ C, constraint onψf (M,F•M,FQ) ψfT

∀ℓ ∈ Z, grMℓ ψf (M,F•M,FQ) ∈ MH6d−1(X,w)

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Category MH6d(X,w) Category MT6d(X,w)

∀ holom. germ f : (X,xo) −→ C, constraint onψf (M,F•M,FQ) ψfT

∀ℓ ∈ Z, grMℓ ψfT ∈MT6d−1(X,w)

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Category MH6d(X,w) Category MT6d(X,w)

∀ holom. germ f : (X,xo) −→ C, constraint onψf (M,F•M,FQ) ψfT

∀ℓ ∈ Z, grMℓ ψfT ∈MT6d−1(X,w)

Polarization condition by “restriction” to any xo

Wild twistor D-modules – p. 11/28

Polarized pure twistor D-modules

Hodge Modules(M. Saito)

Twistor D-modules

Filtered D-mod. (M,F•M) Triple T = (M ′,M ′′, C)Q-structure: perverse FQ

C⊗Q FQ ≃ DRM Hermitian pairing T ≃ T ∗

Category MH6d(X,w) Category MT6d(X,w)

∀ holom. germ f : (X,xo) −→ C, constraint onψf (M,F•M,FQ) ψfT

∀ℓ ∈ Z, grMℓ ψfT ∈MT6d−1(X,w)

Polarization condition by “restriction” to any xo

Category MH6d(X,w)(p) Category MT6d(X,w)(p)

Wild twistor D-modules – p. 11/28

Regularity (tameness)

Wild twistor D-modules – p. 12/28

Regularity (tameness)

Hodge D-modules are regular holonomic D-modules.

Wild twistor D-modules – p. 12/28

Regularity (tameness)

Hodge D-modules are regular holonomic D-modules.

Twistor D-modules need not be regular, in the sensethat the associated D-module M = M/(z − 1)M ,which is holonomic, need not be regular.

Wild twistor D-modules – p. 12/28

Regularity (tameness)

Hodge D-modules are regular holonomic D-modules.

Twistor D-modules need not be regular, in the sensethat the associated D-module M = M/(z − 1)M ,which is holonomic, need not be regular.

This is an advantage of this generalized framework

Wild twistor D-modules – p. 12/28

Regularity (tameness)

Hodge D-modules are regular holonomic D-modules.

Twistor D-modules need not be regular, in the sensethat the associated D-module M = M/(z − 1)M ,which is holonomic, need not be regular.

This is an advantage of this generalized frameworkcf. the original problemGeneral problem: Hodge theory in presence ofirregular singularities.

Wild twistor D-modules – p. 12/28

Regularity (tameness)

Hodge D-modules are regular holonomic D-modules.

Twistor D-modules need not be regular, in the sensethat the associated D-module M = M/(z − 1)M ,which is holonomic, need not be regular.

This is an advantage of this generalized frameworkcf. the original problemGeneral problem: Hodge theory in presence ofirregular singularities.

Nevertheless, the first results for twistor D-modulesare obtained in the regular case.

Wild twistor D-modules – p. 12/28

The decomposition theorem

Wild twistor D-modules – p. 13/28

The decomposition theorem

f : X −→ Y : a morphism between smooth complexprojective varieties,T : a pol. regular twistor D-module on X, weight w.

Wild twistor D-modules – p. 13/28

The decomposition theorem

f : X −→ Y : a morphism between smooth complexprojective varieties,T : a pol. regular twistor D-module on X, weight w.

Polarized regular twistor

D-module on Y

Semi-simple perverse

sheaf on Y

decomposition

theorem (C.S.)

Polarized regular twistor

D-module onX

Semi-simple perverse

sheaf onX

Wild twistor D-modules – p. 13/28

The decomposition theorem

f : X −→ Y : a morphism between smooth complexprojective varieties,T : a pol. regular twistor D-module on X, weight w.

The categories MT(r)(X,w)(p), MT(r)(Y,w′)(p) aresemi-simple,

Wild twistor D-modules – p. 14/28

The decomposition theorem

f : X −→ Y : a morphism between smooth complexprojective varieties,T : a pol. regular twistor D-module on X, weight w.

The categories MT(r)(X,w)(p), MT(r)(Y,w′)(p) aresemi-simple,

each fk+T is a polarizable twistor D-module on Y ofweight w + k,

Wild twistor D-modules – p. 14/28

The decomposition theorem

f : X −→ Y : a morphism between smooth complexprojective varieties,T : a pol. regular twistor D-module on X, weight w.

The categories MT(r)(X,w)(p), MT(r)(Y,w′)(p) aresemi-simple,

each fk+T is a polarizable twistor D-module on Y ofweight w + k,

f+T ≃⊕k f

k+T [−k]

Wild twistor D-modules – p. 14/28

The decomposition theorem

f : X −→ Y : a morphism between smooth complexprojective varieties,T : a pol. regular twistor D-module on X, weight w.

The categories MT(r)(X,w)(p), MT(r)(Y,w′)(p) aresemi-simple,

each fk+T is a polarizable twistor D-module on Y ofweight w + k,

f+T ≃⊕k f

k+T [−k] (⇐= rel. Hard Lefschetz).

Wild twistor D-modules – p. 14/28

Conjecture of Kashiwara (general case)?

Wild twistor D-modules – p. 15/28

Conjecture of Kashiwara (general case)?

f : X −→ Y : a morphism between smooth complexprojective varieties.

Wild twistor D-modules – p. 15/28

Conjecture of Kashiwara (general case)?

f : X −→ Y : a morphism between smooth complexprojective varieties.Semi-simple holonomic

D-module onX

Conjecture of Kashiwara

general case ??

Semi-simple holonomic

D-module on Y

Wild twistor D-modules – p. 15/28

Conjecture of Kashiwara (general case)?

f : X −→ Y : a morphism between smooth complexprojective varieties.Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Wild twistor D-modules – p. 15/28

Holonomic D-modules on curves

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on D

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

ψtM = ψtM = ψtMreg←→ Mreg,

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

ψtM = ψtM = ψtMreg←→ Mreg, and

ψtMirr = 0.

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

ψtM = ψtM = ψtMreg←→ Mreg, and

ψtMirr = 0.

M ←→ ψt′(E−η ⊗ ρ+M), q ≫ 0,

∀ η ∈ t′−1C[t′−1].

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

ψtM = ψtM = ψtMreg←→ Mreg, and

ψtMirr = 0.

M ←→ ψt′(E−η ⊗ ρ+M), q ≫ 0,

∀ η ∈ t′−1C[t′−1]. = ψt′Rη

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

ψtM = ψtM = ψtMreg←→ Mreg, and

ψtMirr = 0.

M ←→ ψt′(E−η ⊗ ρ+M), q ≫ 0,

∀ η ∈ t′−1C[t′−1]. = ψt′Rη

Wild twistor D-modules – p. 16/28

Holonomic D-modules on curves

D: disc with coordinate t

M : holonomic D-module on DM = C[[t]]⊗CtM the formalized module.

Turrittin-Levelt: M = Mreg ⊕ Mirr and

∃ ρ : D′t′→7→

Dt=t′q

, ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ),

Rϕ regular, E ϕ = (C((t′)), d+ dϕ).

ψtM = ψtM = ψtMreg←→ Mreg, and

ψtMirr = 0.

M ←→ ψt′(E−η ⊗ ρ+M), q ≫ 0,

∀ η ∈ t′−1C[t′−1]. = ψt′Rη

M ←→ M + Stokes structure.Wild twistor D-modules – p. 16/28

Meromorphic Higgs bundles on curves

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Higgs field: θ = Θdt

t, Θ ∈ EndC(t)(M).

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Higgs field: θ = Θdt

t, Θ ∈ EndC(t)(M).

M = Mreg ⊕Mirr holds over C(t).

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Higgs field: θ = Θdt

t, Θ ∈ EndC(t)(M).

M = Mreg ⊕Mirr holds over C(t).

The decomposition ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ)

holds over C(t′),

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Higgs field: θ = Θdt

t, Θ ∈ EndC(t)(M).

M = Mreg ⊕Mirr holds over C(t).

The decomposition ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ)

holds over C(t′),Rϕ regular (ΘRϕ

is holomorphic),

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Higgs field: θ = Θdt

t, Θ ∈ EndC(t)(M).

M = Mreg ⊕Mirr holds over C(t).

The decomposition ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ)

holds over C(t′),Rϕ regular (ΘRϕ

is holomorphic),E ϕ = (C(t′), dϕ).

Wild twistor D-modules – p. 17/28

Meromorphic Higgs bundles on curves

M : a free C(t)-module of finite rank

Higgs field: θ = Θdt

t, Θ ∈ EndC(t)(M).

M = Mreg ⊕Mirr holds over C(t).

The decomposition ρ+Mirr ≃⊕

ϕ∈t′−1C[t′−1]

(E ϕ ⊗Rϕ)

holds over C(t′),Rϕ regular (ΘRϕ

is holomorphic),E ϕ = (C(t′), dϕ).

No Stokes phenomenon .

Wild twistor D-modules – p. 17/28

Wild twistor D-modules on curves

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION:

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-defined

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:How to define the “C part” Cϕ of E−ϕ(t)/z ⊗ T ?

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:How to define the “C part” Cϕ of E−ϕ(t)/z ⊗ T ?Answer:

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:How to define the “C part” Cϕ of E−ϕ(t)/z ⊗ T ?Answer:Cϕ(u,v) = C(e−ϕ/zu,e−ϕ/zv) = e−ϕ/z+zϕC(u,v).

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:How to define the “C part” Cϕ of E−ϕ(t)/z ⊗ T ?Answer:Cϕ(u,v) = C(e−ϕ/zu,e−ϕ/zv) = e−ϕ/z+zϕC(u,v).Is this a distribution?

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:How to define the “C part” Cϕ of E−ϕ(t)/z ⊗ T ?Answer:Cϕ(u,v) = C(e−ϕ/zu,e−ϕ/zv) = e−ϕ/z+zϕC(u,v).Is this a distribution?z ∈ S, hence −1/z = −z, hence−ϕ/z + zϕ = 2i Im(zϕ).

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

DEFINITION: T = (M ′,M ′′, C) on X = D is a wildtwistor D-module of weight w at t = 0 if ∀ q,∀ϕ ∈ t′−1C[t′−1], ψt′(E−ϕ/z ⊗ ρ+T ) is well-definedand

∀ ℓ ∈ Z, grMℓ ψt′(E

−ϕ/z ⊗ ρ+T )

is a pure twistor structure of weight w + ℓ.Problem:How to define the “C part” Cϕ of E−ϕ(t)/z ⊗ T ?Answer:Cϕ(u,v) = C(e−ϕ/zu,e−ϕ/zv) = e−ϕ/z+zϕC(u,v).Is this a distribution?z ∈ S, hence −1/z = −z, hence−ϕ/z + zϕ = 2i Im(zϕ). OK

Wild twistor D-modules – p. 18/28

Wild twistor D-modules on curves

THEOREM 1:

Wild twistor D-modules – p. 19/28

Wild twistor D-modules on curves

THEOREM 1: Assume T is a polarized wild twistorD-module on D at t = 0.

Wild twistor D-modules – p. 19/28

Wild twistor D-modules on curves

THEOREM 1: Assume T is a polarized wild twistorD-module on D at t = 0. Then it is so at any to in someneighbourhood of t = 0.

Wild twistor D-modules – p. 19/28

Wild twistor D-modules on curves

THEOREM 1: Assume T is a polarized wild twistorD-module on D at t = 0. Then it is so at any to in someneighbourhood of t = 0.

REMARK: This is analogous to part of the Nilpotent OrbitTheorem (Schmid).

Wild twistor D-modules – p. 19/28

Wild twistor D-modules on curves

Wild twistor D-modules – p. 20/28

Wild twistor D-modules on curves

Wild twistor D-modules – p. 20/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1.

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

REMARK:

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

REMARK:

can define the Fourier-Laplace transformT = f0

+(E tτ /z ⊗ T ).

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

REMARK:

can define the Fourier-Laplace transformT = f0

+(E tτ /z ⊗ T ).

T is a pure twistor D-module on Cτ which is regularat τ = 0.

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

REMARK:

can define the Fourier-Laplace transformT = f0

+(E tτ /z ⊗ T ).

T is a pure twistor D-module on Cτ which is regularat τ = 0.

At τ =∞, one expects that T is a wild twistorD-module

Wild twistor D-modules – p. 21/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

REMARK:

can define the Fourier-Laplace transformT = f0

+(E tτ /z ⊗ T ).

T is a pure twistor D-module on Cτ which is regularat τ = 0.

At τ =∞, one expects that T is a wild twistorD-module (cf. the work of S. Szabo, 2005).

Wild twistor D-modules – p. 21/28

Irregular nearby cycles, after Deligne

Wild twistor D-modules – p. 22/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

Wild twistor D-modules – p. 22/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

M a holonomic DX -module.

Wild twistor D-modules – p. 22/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

M a holonomic DX -module.

Deligne (Letter to Malgrange, 1983):

ψDelf M :=

N

ψf(f+N ⊗M

),

Wild twistor D-modules – p. 22/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

M a holonomic DX -module.

Deligne (Letter to Malgrange, 1983):

ψDelf M :=

N

ψf(f+N ⊗M

),

N such that N is an irred. C((t))-module withconnection.

Wild twistor D-modules – p. 22/28

Irregular nearby cycles, after Deligne

Problem:

Wild twistor D-modules – p. 23/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

Wild twistor D-modules – p. 23/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

Wild twistor D-modules – p. 23/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Wild twistor D-modules – p. 23/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Then ψDelf M = 0 (M = E x/y).

Wild twistor D-modules – p. 23/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Then ψDelf M = 0 (M = E x/y).

Solution: Consider ψDelg M for various g in order to

recover information on M .

Wild twistor D-modules – p. 23/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Then ψDelf M = 0 (M = E x/y).

Solution: Consider ψDelg M for various g in order to

recover information on M .→MT

(s)6d(X,w) (‘s’ is for ‘sauvage’, i.e., ‘wild’).

Wild twistor D-modules – p. 23/28

Wild twistor D-modules

Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Wild twistor D-modules – p. 24/28

Wild twistor D-modules

Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Work of O. Biquard and Ph. Boalch on curves.

Wild twistor D-modules – p. 24/28

Wild twistor D-modules

Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Work of O. Biquard and Ph. Boalch on curves.

Recent work of T. Mochizuki.

Wild twistor D-modules – p. 24/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1.

Wild twistor D-modules – p. 25/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

Wild twistor D-modules – p. 25/28

Wild twistor D-modules on curves

T : a polarized regular twistor D-module of weight won P1. f : P1 −→ Spec C the constant map.

THEOREM 2: fk+(E t/z ⊗ T ) is a polarized pure twistorstructure of weight w + k.

Wild twistor D-modules – p. 25/28

Irregular nearby cycles, after Deligne

Wild twistor D-modules – p. 26/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

Wild twistor D-modules – p. 26/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

M a holonomic DX -module.

Wild twistor D-modules – p. 26/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

M a holonomic DX -module.

Deligne (Letter to Malgrange, 1983):

ψDelf M :=

N

ψf(f+N ⊗M

),

Wild twistor D-modules – p. 26/28

Irregular nearby cycles, after Deligne

X complex manifold, f : X −→ C.

M a holonomic DX -module.

Deligne (Letter to Malgrange, 1983):

ψDelf M :=

N

ψf(f+N ⊗M

),

N such that N is an irred. C((t))-module withconnection.

Wild twistor D-modules – p. 26/28

Irregular nearby cycles, after Deligne

Problem:

Wild twistor D-modules – p. 27/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

Wild twistor D-modules – p. 27/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

Wild twistor D-modules – p. 27/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Wild twistor D-modules – p. 27/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Then ψDelf M = 0 (M = E x/y).

Wild twistor D-modules – p. 27/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Then ψDelf M = 0 (M = E x/y).

Solution: Consider ψDelg M for various g in order to

recover information on M .

Wild twistor D-modules – p. 27/28

Irregular nearby cycles, after Deligne

Problem:

X = A2, coordinates x, y,

f : X −→ A1, (x, y) 7−→ y,

M = OA2[1/y],∇ = d+ d(x/y) = d+dx

y−xdy

y2.

Then ψDelf M = 0 (M = E x/y).

Solution: Consider ψDelg M for various g in order to

recover information on M .→MT

(s)6d(X,w) (‘s’ is for ‘sauvage’, i.e., ‘wild’).

Wild twistor D-modules – p. 27/28

Wild twistor D-modules

Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Wild twistor D-modules – p. 28/28

Wild twistor D-modules

Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Work of O. Biquard and Ph. Boalch on curves.

Wild twistor D-modules – p. 28/28

Wild twistor D-modules

Semi-simple holonomic

D-module onX

Polarized wild twistor

D-module onX

decomposition

theorem ??

Conjecture of Kashiwara

general case ??

Polarized wild twistor

D-module on Y??

Semi-simple holonomic

D-module on Y

??

Work of O. Biquard and Ph. Boalch on curves.

Recent work of T. Mochizuki.

Wild twistor D-modules – p. 28/28