25
 1   Building, Running and Analy zing  Different Ty pes of Fluid Model s (Dry Gas, Wet Gas, Gas Condensate) (Volatile Oil, Black Oil, Heavy Oil) Using WinProp

WinProp Tutorial

Embed Size (px)

DESCRIPTION

winprop tutorial

Citation preview

Page 1: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 1/25

  1

 

 Building, Running and Analyzing

 Different Types of Fluid Models

(Dry Gas, Wet Gas, Gas Condensate)(Volatile Oil, Black Oil, Heavy Oil)

Using

WinProp

Page 2: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 2/25

  2

 Exercise 1 (Required File: Five Fluid Types Data.xls)

Objective: Modelling of five fluid type i.e. Dry gas, wet gas, Gas condensate, volatile oiland Black oil.

.   Double click on the WinProp icon in the Launcher and open the WinProp

interface.

.   Double click on “Titles/EOS/Units”   and write “Dry gas/Wet gas/Gas

condensate/Volatile oil/Black oil” in the comments and the Title1  section

depending on the case you are modelling. Select PR 1978 and the equation of state

to be used in characterizing the fluid model, select “Psia & deg F” as the units

and Feed as mole. Click “OK ”.

٣.  Open “ component selection” form and insert the library components in the

 following order: CO2 , N 2 , C 1 , C 2 , C 3 , IC 4 , NC 4 , IC 5 , NC 5 , and FC 6 . (The order

of selection in important!).

٤.   In all cases except  “Dry Gas”   also, characterize the C 7 +

  fraction with a single

 pseudocomponent by inserting a user defined component. Click on “ options”

button in the “ component definition form” and select “insert own component”

based on specific gravity (SG), boiling point (TB) and molecular weight (MW).

Use the properties given in the file: “ Five Fluid Types Data.xls”. Your

component definition form should look like Figure1  for Dry gas and Figure 2  in

case of other fluid types.

 Figure1: Component definition for case of Dry Gas 

Page 3: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 3/25

  3

٥.  Open the "composition form"  and input the mole fractions of the primary

composition as mentioned in the file: “Five Fluid Types Data.xls”. The

“secondary” corresponds to the injection fluid (if applicable).

٦.   Insert “two phase flash calculation form" into the WinProp interface. Open this

 form by double clicking on it and under the comments section type “Standard

 condition flash” . We are planning to perform a flash at 14.7  Psia and 60 deg.F.

 Leave other calculation options as default. The feed composition is subjected to

mixed i.e. primary and secondary composition. The “two-phase flash calculation

 form should look like as shown in Figure 3.

٧.   Insert “Saturation pressure calculation Form"  into the WinProp Interface to

 perform a saturation pressure calculation at the reservoir temperature.

٨.   Double click and open the saturation pressure calculation form. Under thecomments type “ Psat at reservoir temperature”. Also, input the reservoir

temperature and saturation pressure estimate as 180 ºF and 1000 Psia respectively.

The input value of “saturation pressure estimate” is used as an initial guess by

WinProp during the iteration processes for calculating the actual saturation

 pressure.

٩.  We would also like to generate a pressure-temperature phase diagram. Insert a

“two-phase Envelope” form in the Main WinProp interface. Open the form by

double clicking on it and type in “P-T envelope” under the comments section.

 Input the data as shown in Figure 4.

 Figure 2: Component definition for other fluid types 

Page 4: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 4/25

  4

  Figure 3: Two phase flash calculation at standard condition. 

 Figure 4: Input data for two-phase envelop calculation.

Page 5: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 5/25

  5

 ٠. Create plots of phase properties vs. pressure at the reservoir temperature using

the 2-phase flash calculation. Examples of properties which may be plotted are:

 Z-factors, phase fractions, densities, molecular weights, K-values, etc. This can be

done by adding another Two-phase Flash calculation from. Type in comments as

“Phase properties as function of pressure”. Input the reservoir temperature as

180  deg F, temperature step as 0  and No. of temperature step as 1. Input the

reservoir pressure as 250 Psia, pressure step of 250 Psia and No. of pressure steps

as 12  for dry and wet gas case whereas 24  for gas condensate, volatile oil and

black oil. The reservoir temperature would also change depending on the case

 you are modelling as mentioned in the file: “Five Fluid Types Data.xls”

.  In the plot control tab of “two-phase calculation” form select the properties

depending on the case as follows:

 No. Case Plot Property1   Dry Gas  Z compressibility factor2  Wet gas  Z compressibility factor3  Gas Condensate, Volatile Oil & Black oil Phase volume fraction,

 Z factor, K-values (y/x)

. For all the oil cases, add a single-stage separator calculation with separator

 pressure of 100 psia and separator temperature of 75 F.

٣. The final WinProp interface should look like Figure 5.

 Figure 5: WinProp interface for modeling Dry Gas case.

Page 6: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 6/25

  6 

 ٤. Save the WinProp file as ‘drygas.dat’ and run it

٥.  Repeat Items 1 to 14 and build a dat file for other types of fluid and save them as

‘wetgas.dat’, ‘gascondensate.dat’, ‘volatileoil.dat’, ‘blackoil.dat’ files

respectively and then run.

 Note: You are now able to analyze the results in terms of the criteria for definition of

each of the fluid types. The plots for different cases are shown in Figures 6 to 14.

Dry Gas 

P-T envelope : P-T Diagram 

200 

400 

600 

800 

1000 

1200 

1400 

-100.0 -80.0 -60.0 -40.0 -20.0 0.0 20.0  

Temperature (deg F) 

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

2-Phase boundary Critical  

 Figure 6 : 2-Phase P-T diagram for Dry Gas case.

Dry Gas 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

0.84 

0.86 

0.88 

0.90 

0.92 

0.94 

0.96 

0.98 

0 500 1000 1500 2000 2500 3000 3500  

Pressure (psia) 

   V  a  p  o  r   Z  -   F  a  c   t  o  r

180.00 deg F 

  Figure 7 : Vapor Z factor for Dry gas case.

Page 7: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 7/25

  7 

 

Wet gas 

P-T envelope : P-T Diagram 

500 

1000 

1500 

2000 

2500 

3000 

-100 -50 0 50 100 150 200 250  

Temperature (deg F) 

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

2-Phase boundary 

  Figure 8: 2-Phase P-T diagram for Wet Gas case.

Wet gas 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

0.90 

0.92 

0.94 

0.96 

0.98 

0 500 1000 1500 2000 2500 3000 3500  

Pressure (psia) 

   V  a  p  o  r   Z  -   F  a  c   t  o  r

220.00 deg F 

  Figure 9: Vapor Z factor for wet gas case

Page 8: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 8/25

  8

 

Gas condensate 

P-T envelope : P-T Diagram 

2,000 

4,000 

6,000 

8,000 

10,000 

12,000 

-100 0 100 200 300 400 500 600  

Temperature (deg F) 

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

2-Phase boundary Critical 

  Figure 10: 2-Phase P-T diagram for Gas condensate case.

Gas condensate 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

0 1000 2000 3000 4000 5000 6000 7000  

Pressure (psia) 

   L   i  q  u   i   d   P

   h  a  s  e   V  o   l  u  m  e   %

280.00 deg F 

Gas condensate 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

65 

70 

75 

80 

85 

90 

95 

100 

105 

0 1000 2000 3000 4000 5000 6000 7000  

Pressure (psia) 

   V  a  p  o  r   P   h  a  s  e   V  o   l  u  m  e   %

280.00 deg F 

Gas condensate 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

0 1000 2000 3000 4000 5000 6000 7000  

Pressure (psia) 

   L   i  q  u   i   d   Z  -   F  a  c   t  o  r

280.00 deg F 

Gas condensate 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

0.90 

0.95 

1.00 

1.05 

1.10 

1.15 

0 1000 2000 3000 4000 5000 6000 7000  

Pressure (psia) 

   V  a  p  o  r   Z  -   F  a  c   t  o  r

280.00 deg F 

  Figure 11: Phase volume fractions and Z factors for gas condensate

Page 9: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 9/25

  9

 

Gas condensate 

Phase properties as fn(P) : Phase Properties (Solvent

Mole Fraction = 0.0000) 

1.00E-03 

1.00E-02 

1.00E-01

1.00E+00 

1.00E+01

1.00E+02 

0 1000 2000 3000 4000 5000 6000 7000  

Pressure (psia) 

   K  v  a   l .   (  v  a  p  o  r   /   l   i  q .   )

   (   T  e  m  p  e  r  a   t  u  r  e  =   2   8   0 .   0

   0

   d  e  g   F   )

CO2 N2 C1 C2 C3 IC4 NC4  

IC5 NC5 FC6 C7+  

  Figure 12: K value for gas condensate case.

Volatile oil 

P-T envelope : P-T Diagram 

5,000 

10,000 

15,000 

20,000 

-200 0 200 400 600 800  

Temperature (deg F) 

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

2-Phase boundary Critical  

  Figure 13: 2-Phase P-T diagram for Volatile oil case.

Page 10: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 10/25

  10 

Black oil 

P-T envelope : P-T Diagram 

500 

1000 

1500 

2000 

2500 

3000 

-200 0 200 400 600 800 1000 1200  

Temperature (deg F) 

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

2-Phase boundary Cr itical  

.

 Figure 14: 2-Phase P-T diagram for Black oil case. 

 Additional Practice:

For the black oil data case, investigate the effect on the simulated separator

calculation induced by changing the following parameters:

   Apply the volume shift correlations•  Set the hydrocarbon binary interaction parameters to zero

•   Reduce the C 7 + Pc by 20% 

٦. To set volume shift to correlations, double click ‘Component

Selection/Properties’  and click on ‘VolumeShift’  tab, choose ‘Reset to

correlation values’ then save as 'blackoil1_volshift correlation value.dat' file. Go

back to the VolumeShift tab again and click on "Reset to Zero's" and save as

'blackoil1_volshift set to zer.dat' file. Run both data files and compare the results

on Separator calculation. It should look like to the following outputs:

Separator output with Volshift set to zero:

Oil FVF = vol of saturated oil at 2877.86  psia and 170.0 deg F per vol of stock tank

oil at STC(4) = 1.111 

 API gravity of stock tank oil at STC(4) = 58.10 

Separator output with Volshift set to correlation value:

Oil FVF = vol of saturated oil at 2877.86  psia and 170.0 deg F per vol of stock tank

oil at STC(4) = 1.137  

 API gravity of stock tank oil at STC(4) = 32.77  

Page 11: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 11/25

  11 

٧. Open ‘blackoil.dat’ again and set hydrocarbon binary interaction parameter to

 zero, by double clicking at ‘Component Selection/Properties’ . Click on ‘Int.Coef.’ tab and click on ‘HC-HC Group / Apply value to multiple non HC-HC

 pair…’ Check on 'HC-HC' and change Exponent value to zero and press 'OK'

twice. Save as a new name and see the result at Separator calculation. It should

be like following:

Oil FVF = vol of saturated oil at 2027.10 psia and 170.0 deg F per vol of stock tank

oil at STC(4)= 1.115 

 API gravity of stock tank oil at STC(4) = 58.15 .

٨. To reduce the C 7 + Pc by 20% , double click ‘Component Selection/Properties’ and change the Pc value of C 7 + to 12.36  and see the result again it should be

like:( make sure to save the file in new name).

Oil FVF = vol of saturated oil at 2142.23 psia and 170.0 deg F per vol of stock tank

oil at STC(4) = 1.100 

 API gravity of stock tank oil at STC(4) =104.78 

Page 12: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 12/25

  12 

WinProp Exercise 2 

Objective: To determine the MMP and MME for a rich gas injection flood into thereservoir (Like CO2 Flooding)

Starting with the black oil data set from Exercise 1 , create P-X phase diagrams at the

reservoir temperature for the following injection fluids:

.   Addition of secondary stream with the following compositions:

•  Pure N 2 

•  Pure CO2 

•   Dry gas (from Exercise 1)

•   A rich gas stream with the composition (in mole %):

CO2  1.4 

 N 2  1.0 C 1  33.2 

C 2  23.3 

C 3  25.3 

 IC 4  3.8 

 NC 4  9.6  

 IC 5  2.1 

 NC 5  0.3 

The required forms and their arrangement of the calculation options in WinProp

interface should look like as shown in Figure 15  for this case. Save this file as

‘blackoil_richgas_MMP_MME.dat’

 Figure 15: Addition of solvents in black oil and calculation of MMP and MME

Page 13: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 13/25

  13 

.   Run a multi-contact miscibility calculation to determine the MMP for pure rich

gas injection. Insert a Multiple-contact miscibility calculation form and input the

data shown in Figures 16  and 17  presented below.

 Figure 16 : Input data for calculation of MMP.

 Figure 17 : Rich gas (make-up gas) composition for calculation of MMP.

Page 14: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 14/25

  14 

 Analyze the output file for results of single contact miscibility and multi-contact

miscibility pressures and mole fraction of make-up gas.

SUMMARY OF MULTIPLE CONTACT MISCIBILITY in *.OUT file

CALCULATIONS AT TEMPERATURE = ٧٠.٠٠ ٠ deg F

 ______________________________________________

FIRST CONTACT MISCIBILITY ACHIEVED

AT PRESSURE ٠.٤٩ ٨ ٠ ٠ E+٠٤  Psia

MAKE UP GAS MOLE FRACTION = ٠. ٠٠ ٠ ٠ E+٠

MULTIPLE CONTACT MISCIBILITY ACHIEVED

AT PRESSURE = ٠.٣ ٨ ٤ ٠ ٠ E+٠٤ Psia

MAKE UP GAS MOLE FRACTION = ٠. ٠٠ ٠ ٠ E+٠

BY BACKWARD CONTACTS - CONDENSING GAS DRIVE

3. Run a multi-contact miscibility calculation to determine the minimum amount of rich

gas necessary to add to the dry gas to achieve miscibility at 4500 psi (MME calculation).

For this insert the “Multiple-contact miscibility calculation” form and input the

 following parameters. Notice that in this case only one pressure value is used at which

the miscibility is desired. In the composition form the starting point for the make-up gas

 fraction is from 50%.

 Figure 18: Input data for calculation of MME calculation.

Page 15: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 15/25

  15 

 Figure 19: Rich gas (make-up gas) composition for calculation of MME.

 Analyze the output file for results of single contact miscibility and multi-contact

miscibility pressures and mole fraction of make-up gas.

SUMMARY OF RICH GAS MME CALCULATIONS AT TEMPERATURE = ٧٠.٠٠ ٠ deg F

FIRST CONTACT MISCIBILITY PRESSURE

(FCM) IS GREATER THAN ٠.٤٥ ٠ ٠ ٠ E+٠٤  psia

MULTIPLE CONTACT MISCIBILITY ACHIEVED

AT PRESSURE = ٠.٤ ٥ ٠ ٠ ٠ E+٠٤ psia

MAKE UP GAS MOLE FRACTION = ٠.٩ ٠ ٠ ٠ E+٠٠ 

BY BACKWARD CONTACTS - CONDENSING GAS DRIVE

Page 16: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 16/25

  16  

 Exercise 3: Raleigh Oil(Required File:  Raleigh black oil-data.xls)

Objective:  Plus fraction splitting, matching experimental constant composition

expansion, separator test and differential liberation tests.

.   Initialize WinProp through CMG launcher.

.   Insert a title: “plus fraction characterization” and select PR (1978), Psia & deg

F, feed as moles in the “specify titles, EOS and unit system” form.

٣.   In the component selection/Properties form add the following library components

and compositions as given in the file: “Raleigh black oil-data.xls”.

 Figure 20: black oil composition for Raleigh oil.

٤.  To split the C 7 + fraction into pseudocomponents; double click on “ Plus fraction

Splitting"  form. on " General"  Tab; Specify Gamma distribution function, 4  pseudocomponents, The first single carbon number in plus fraction as7  and leave

others as default Go to "Sample 1" Tab.

Page 17: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 17/25

  17  

 Figure 21: Plus fraction splitting for Raleigh Oil .

٥.   Input the MW+ as 190 , SG+ as 0.8150 and Z+ (mole fraction of C 7 + fraction) as

0.2891. Make sure alpha is equal to 1.

٦.  Save the dataset as ‘raleigh oil.dat’ and run it. After running the data set, use the“Update component properties” in the File menu. And save the data set as

‘raleigh oil_plus fraction splitting.dat’. You will now notice that 4  hypothetical

 pseudo components have been added in the components form.

٧.   In order to match the CCE, Differential liberation and separator test, use the data

given in the file “Raleigh black oil-data1.xls”. then open "Saturation Pressure", "constant composition expansion", "separator" "differential liberation" forms

in sequence. Input the experimental data given in the file “Raleigh black oil-

data1.xls”.( you can also input all above forms, from another WinProp dataset).

٨.  On the “Component Selection/properties”   form, set the volume shifts to thecorrelation values. Save your model as ‘raleigh oil_experimental data.dat’ and

run it once to validate your model and check for errors in the input data.

Page 18: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 18/25

  18 

٩.  Click on Regression /start on top menu and open Open "Regression Parameters" 

 form before "Saturation Pressure" form( before any regression calculation) and

insert " End Regression "  form at end(after all forms that are supposed to be

included in regression process, i.e. CCE, Saturation Pressure, Differential

 Liberation and Separator ). This defines the “Regression Block.”

٠. Select the heaviest pseudocomponent’s Pc and Tc, volume shifts of all C 7 +

 pseudocomponents and C 1 , and the hydrocarbon interaction coefficient exponent

as regression variables. Set the convergence tolerance to 1.0 E-06   in "Regression

Controls" tab and then save and run the data set.

 Figure 22: Regression control for experimental data matching.

.  Adjust the weight of some key experimental data points. Try setting the weight for

separator API gravity to 5.0 , saturation pressure to 10.0 , and differential

liberation API gravity at std conditions to 0.0. Re-run the regression.

.  In some cases, you may have to change the lower and upper bounds of theregression parameters depending on whether these bounds are reached during

the regression. In this case the following bounds were used:

Page 19: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 19/25

  19 

 Figure 23: Variable bounds used during the regression.

٣.  Analyze the *.out file and refer to the  summary of Regression Results  for

comparison of the experimental versus calculated values.

٤.  After completing the match to the PVT data, update the component properties and

again save the file under a new name as ‘raleigh oil_experimental data_vis.dat’in preparation for viscosity matching.

٥. For viscosity matching, temporarily exclude the saturation pressure, constant

composition expansion and separator calculations from the data set by right-

clicking on each option and selecting “Exclude” from the pop-up menu.

٦.  In the "Differential Liberation" form, set the weight for the viscosity data to 1.0 ,

and all other weights to 0.0.

٧. On the viscosity parameters tab of the "  Regression Parameters" form, remove all

 previously selected parameters, and then select “Vc, vis(l/mol)” for C 1 and theC 7 + pseudo components as regression variables. Run the data set.

٨.  After completing the match to the viscosity data, update the component properties

and save the file under a new name ‘raleigh oil_Blackoil PVT.dat’ in preparation

 for generating the IMEX PVT table.

٩.  Remove the regression forms and include any options that had previously been

excluded. Add a “Black Oil PVT Data” option at the end of the data set.

Page 20: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 20/25

  20 

٠. On the ‘Black Oil PVT Data’ form, enter the saturation pressure data, desired

 pressure levels and the separator data. Enter mole fractions of 0.1 , 0.2 and 0.3 for

the swelling data.

 Figure 24: Black oil PVT export for IMEX .

 Figure 25: Pressure levels for back oil PVT  

Page 21: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 21/25

  21 

 Figure 26 : Water properties for back oil PVT

.  Leave the “Oil Properties” controls at the defaults, and then select “Use solution

gas composition…” for the swelling fluid specification on the “gas properties”

tab. Run the data set.

Page 22: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 22/25

  22 

 Exercise 4: Heavy Oil for STARS(Required file: “Heavy Oil for STARS-data.xls”)

Objective:  Plus fraction splitting, matching lab data and generation of fluid model for

STARS

.   Initialize WinProp through CMG launcher.

.   Insert a title: “Fluid Model for STARS” and select PR (1978), psia & degF, feed

as moles in the “specify titles, EOS and unit system” form.

٣.   In the component selection/Properties form add C 1  library component and

composition as given in the file: “Heavy Oil for STARS-Data.xls”.

٤.  Split the C 6 + fraction into pseudocomponents. In order to split the C 6 + fractions,

insert a “Plus fraction Splitting” form in the WinProp interface. The first single

carbon number in plus fraction should be 6 . Also, specify the number of Pseudo-

components to 4.

 Figure 27 : Plus fraction splitting for Heavy Oil .

٥.  Under the “sample1” tab, input SG+ as 0.989 and Mole fractions and Molecular

Weights for liquid component as given in the file: “Heavy Oil for STARS-

 Data.xls”.

Page 23: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 23/25

  23 

 Figure 28: Plus fraction splitting for Heavy Oil.

Page 24: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 24/25

  24 

٦.   Add ‘Saturation Pressure’  form. Save the dataset as ‘S 1-char.dat’ and run it.

 After running the data set, use the “Update component properties”   feature and

save the data set as ‘S 2-regression psat.dat’. You will now notice that 4 

hypothetical pseudo components have been added in the components form.

٧.  We will do regression to match the lab measured saturation pressure. On the

regression parameters form, select the heaviest pseudocomponent’s Pc, and the

hydrocarbon interaction coefficient exponent as regression variables.. Run the

dataset. After running the dataset, use the “Update component properties”

 feature and save the data set as ‘S 3-lumping.dat’.

٨.   Add a ‘Component Lumping’  form and lump last three heavy components.

‘Component Lumping’ form should look like Figure 29 

 Figure 29: ‘Component lumping’ form for Heavy Oil.

٩.   Run the dataset. After running the dataset, use the “Update component

 properties” feature and save the data set as ‘S 4-regression.dat’.

٠.  After lumping we need to open ‘Separator’ and 'Saturation Pressure' forms to do

another regression. Enter saturation pressure, reservoir temperature, GOR and

 API data from “Heavy Oil for STARS-Data.xls”.

Page 25: WinProp Tutorial

7/17/2019 WinProp Tutorial

http://slidepdf.com/reader/full/winprop-tutorial 25/25

  25 

. Select Pc and Tc of heaviest components, and Vol shift of two heavier components

as regression parameters. Run the dataset. After running the dataset, use the

“Update component properties” feature and save the data set as ‘S 5-

regression_visc.dat’.

. We will repeat regression to match viscosity at 10  and 100  deg C as given in

“Heavy Oil for STARS-Data.xls”. Insert two ‘Two phase Flash’ forms to input

experimental viscosity data. One of such ‘Two phase flash calculations’ form

would look lie as shown in figure 30.

 Figure 30: Experimental viscosity data for Heavy Oil .

٣.  On "Component definition"  form, set viscosity model type to Pedersen

Corresponding State Model. Select all check boxes on Viscosity Parameters tab

on ‘ Regression Parameters’ form. Run the dataset. After running the dataset, use

the “Update component properties” feature and save the data set as ‘S 6 -STARS

PVT.dat’.

٤.  It is now the time to generate fluid model for STARS. Insert two ‘CMG STARS

PVT Data’ forms. Select Basic STARS PVT data on one of the forms and Gas-

 Liquid K-Value table on the other then save and Run it . The file with *.STR

extension is ready to be input into STARS model through Builder.