43
www.efda-taskforce-itm.or Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS ader & Deputies: A. Bécoulet, P. Strand and M. Roma EFDA CSU Contact Person: K. Thomsen Presented by Alain Bécoulet Acknowledgements to G. Giruzzi, D. Campbell and L.G. Eriksson

Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

Embed Size (px)

Citation preview

Page 1: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

THE WAY TOWARDSTHERMONUCLEAR FUSION SIMULATORS

TF Leader & Deputies: A. Bécoulet, P. Strand and M. Romanelli

EFDA CSU Contact Person: K. Thomsen

Presented by Alain Bécoulet

Acknowledgements to G. Giruzzi, D. Campbell and L.G. Eriksson

Page 2: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

• ITER: a brief introduction

• The major physics issues of magnetic fusion modelling

• Towards Magnetic Fusion Simulators

• Conclusion

OUTLINE

Page 3: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

ITER is a major international collaboration in fusion energy research involving the EU (plus Switzerland, Romania, Bulgaria), China, India, Japan, the Russian Federation, South Korea and the United States

• The overall programmatic objective:• to demonstrate the scientific and technological

feasibility of fusion energy for peaceful purposes

• The principal goal:• to design, construct and operate a tokamak

experiment at a scale which satisfies this objective

• ITER is designed to confine a DT plasma in which -particle heating dominates all other forms of plasma heating:

a burning plasma experimentCourtesy D. Campbell, EFDA

Page 4: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Cadarache (France)

• On 28 June 2005, a Ministerial Agreement was reached between the project’s partners to build ITER at Cadarache in France:

“As a project of unprecedented complexity spanning more than a generation, ITER marks a major step forward in international science cooperation. This decision today demonstrates the recognition of the parties concerned that working together is the best way to find responses to the challenges faced by all of us” - J Potocnik, EU Commissioner for Research

The ITER Site

Page 5: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

A detailed engineering design for ITER was delivered in July 2001

ITER Design Parameters

ITER

Major radius 6.2 m

Minor radius 2.0 m

Plasma current 15 MA

Toroidal magnetic field 5.3T

Elongation / triangularity 1.85 / 0.49

Fusion power amplification ³ 10

Fusion power ~400 MW

Plasma burn duration ~400 s

Page 6: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

ITER Main Features

Page 7: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Fusion power amplification:

Present devices: Q ≤ 1

ITER: Q ≥ 10

“Controlled ignition”: Q ≥ 30

Plasma Fusion Performance

Temperature (Ti): 1-2 108 °C (10-20 keV)(~10 temperature of sun’s core)

Density (ni): 1 1020 m-3 (~10-6 of atmospheric particle

density)

Energy confinement time (E): few seconds(plasma pulse duration ~1000s)

Q ~ Fusion PowerInput Power

~ niTiE

Page 8: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

A plasma discharge scenario

Fusion Power

Plasma Current

Inductive Flux

D-T Fuelling

Plasma Density

-particle Fraction

Additional Power

Time(s)

400 MW fusion400 seconds

Page 9: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

A Q=10 scenario with:Ip=15MA, Paux=40MW, H98(y,2)=1

An ITER Plasma

Te

Ti

ne

10nHe

Zeff

fHe

q

e

ke

V%

MA

/m2

10

19m-3

m2s

-1

Current Ramp-up Phase

Page 10: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Basic ingredients of a tokamak simulator

• Geometry: magnetic equilibrium at least 2-D (plasma shaping, separatrix) self-consistent with current and pressure

• Fluid equations (1-D) time evolution of ne, ni,Te,Ti, j, V, impurities

• Sources heat, injected matter, current, momentum, wall

• Losses diffusion/convection of heat and particles pumping / neutralisation radiation (bremsstrahlung, synchrotron, line radiation) viscosity

• Limit conditions & Plasma-Structure interaction• Link to tokamak data bases

Page 11: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Transport coefficients

Fusion power, particle dynamics

NBI deposition & distrib. function

ICRF wave propagation, resonating ion distrib.

function

LH wave propag. & absorp., el. distrib. func.

ECRF wave propagation

Equilibrium solver

MHD stability

Sawteeth, ELMs, recon-

nections

Simulationoutput

Model of plasmafor edge+SOL

Pellet /gasinjection

Impurities, radiations

Inputparameters

Transport solver tt+t

(1.5D)Linear stability,gyrokinetics,

Page 12: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Possible structure of a tokamak simulator

Pilot; t t+t; communication and repository of data

Input wave forms

Fusion power; alpha particle source

NBI deposition

ICRF wave propagation

LH wave propagation

ECRF wave propagation

Bulk Plasma transport controller

Equilibrium solver

Fast ion transport coeff

Bulk plasma transport coeff

MHD stability

Parallel computing

Transport coefficients

Core confinement solver (1.5D)

Solver of non-thermal electron distribution

Solver of non-thermal ion distributions

Dielectric tensor contributions

Dielectric tensor contributions

Simulation output

Plasma wall interaction

Plasma transport in edge/SOL (2D)

Neutral transport

Page 13: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Equilibrium: the internal plasma geometry

• Solution of Grad-Shafranov equation- 2D PDE

• Method of solution: Finite Elements (FEM)- Typically bi-cubic (third order) Hermite elements

• Typical CPU requirement: 20 Gflop /t(/ t, indicates per time step, i.e. per equilibrium in this case).

ITER Equil. rev. shear

Fluxsurface

Page 14: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Core confinement: the diffusion equations

• A set of coupled parabolic PDEs (typically >4) for flux surface averaged bulk plasma quantities (ni, ne, Ti, Te, V

etc.), i.e. one independent coordinate, the flux surface label.

• Method of solution: FEM, FD. Numerically difficult since the transport coefficients often depend strongly on the calculated quantities (the profiles of the plasma quantities tend to be such that the instabilities causing the transport are near marginal stability.

• Typical CPU requirement: 15 Tflop / simulated second of discharge (based on GLF23)

Page 15: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

The turbulent nature of transport

Ion turbulence

MHD at plasma boundary

MHD in Core Plasma,Plasma Disruption

Turbulence in Peripheral Plasma

Page 16: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Linear MHD: the overall plasma stability

• Solution of linear Magnetohydrodynamic equations.- Two coupled PDEs for ideal incompressible model (8 for resistive MHD)

• Method of solution: Finite Elements (FEM)- Typically bi-cubic (third order) Hermite elements

• Typical CPU requirement: 30 Gflop / t and toroidal mode number (16 for resistive MHD).

• Required toroidal mode numbers 1-3 for the core; 10-30 in steps of ~5 for

the edge; i.e. ~8 in total

N=1 resistive kink mode near separatrix

Courtesy G. Huysmans

Page 17: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Non linear MHD: plasma performance & heat losses

Edge Localized Modes : – non-linear evolution of

ballooning modes– Full toroidal geometry– Full time evolution

Courtesy G. Huysmans

Page 18: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Plasma transport in the plasma edge region

ne after MARF event

B2-Eirene code

• A set of coupled 2D PDEs for bulk plasma quantities. Coupled to Neutral particle transport code.

• Method of solution: FEM/FD, Finite Volume.

• Typical CPU requirement: 10-500 Tflop /t (includes coupling to Neutral particle transport code) .

• The CPU requirement depends strongly on the model assumptions; the field is developing rapidly.

See S. Kuhn, I-29

Page 19: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Non-thermal ions

• Fokker-Planck equation 5D+time (gyro-averaged), can be reduced to 3D+time by orbit averaging. Should take into account collisions, wave-particle interaction and finite orbit width effects.

• Method of solution: Orbit following Monte Carlo, or FEM/FD and Monte Carlo for 3D equation.

• Typical CPU requirement: 15 Tflop / simulated second (Monte Carlo, ~ 5000 MC particles and acceleration scheme).

-part. driven curr. dens.

M. Schneider,SPOT code.

-part. orbits in ITER

Page 20: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Non-thermal electrons

• Relativistic Fokker-Planck equation 3D (gyro and guiding centre orbit averaged). Should take into account collisions, wave-particle interaction, bootstrap current etc.

• Method of solution: FD/FEM • Typical CPU requirement: 1

Tflop/t(succession of semi steady-states).

fe(r, p||, p), r/a 0.3

p||/pth.p

/pth

Courtesy, Y. Peysson, DKE code

Page 21: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

ICRF wave propagation

• Maxwell’s equations, toroidal Fourier decomposition three coupled 2D PDEs. Wave length comparable to machine size necessitates full wave solution.

• Method of solution: FEM• Typical CPU requirement: 60 Gflop /

t and toroidal mode number (to resolve fast wave, for mode converted Bernstein wave multiply by ~100).

• Toroidal mode numbers needed ~ 40

Full wave solution, E+

Rz

LION code

Page 22: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Actuators

Plasma

Non linear coupling with various timescales: MHD stability, energy confinement, plasma current resistive diffusion, equilibrium with wall, …

• Sustaining performant regimes (improved energy confinement)

• Controlling (Avoiding) MHD instabilitiesProfile Control

Current Diffusion

Heat Diffusion

Real Time Control of a Tokamak Discharge

Page 23: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Example of an ITER basic simulation

• The most CPU intensive part of an ITER simulation will be the start-up phase (significant evolution of many parameter). The example below should be representative of this phase.

• Assume that boundary conditions for the core transport can be found from a simplified model, i.e. no need for plasma wall interaction module.

• Only core MHD is considered, i.e. only three mode numbers needed.

• The reacting species (D and T) are assumed to have Maxwell distributions, and the only non-thermal species is alpha particles.

• We assume that a general time step of t= 0.1 sec. will be sufficient.

Page 24: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

• A basic simulation of a minute of an ITER ohmic discharge will then require:

• Equilibrium 60 10 20 ~ 1.2 Tflop• Linear MHD (non-resistive): 60 10 90 ~

50 Tflop• Core confinement: 60 15 ~ 850 Gflop.• Non-thermal ions: 60 1500 ~ 85 Tflop.• In total: ~ 150 Tflop.• On a typical workstation of 1Gflops/s, this

translates into about 1.7 day of CPU.

Page 25: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

• A basic simulation of a minute of an ITER heated discharge will then require:

• Equilibrium 60 10 20 ~ 1.2 Tflop• Linear MHD (non-resistive): 60 10 90 ~ 50 Tflop• Core confinement: 60 15 ~ 850 Gflop.• Non-thermal ions: 60 1500 ~ 85 Tflop.• H&CD source terms: 60 10 20 60+1500 ~ 700

Tflop• In total: ~ 800 Tflop.• On a typical workstation of 1.0 Gflops/s, this translates

into about 10 days of CPU.• Consequently, there is a great interest to utilize parallel

computing for many of the sub-problems.

NOT TO MENTION DATA STORAGE ISSUE

Page 26: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

InstrumentalMeasurements(diagnostics)

Inte

rpre

tativ

e s

imu

latio

n

Geometry&

waveforms

PILOT

Codes&

physics quantities (Te, ne, …)

SIMULATION

Experiment

EXPERIMENT

a long term scope: the fusion simulator

Page 27: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

EFDA(03)-21/4.9.2 (June 24th, 2003) Executive summary:

The aim of the task force is to co-ordinate the development of a coherent set of validated simulation tools for the purpose of benchmarking on existing tokamak experiments, with the ultimate aim of providing a comprehensive simulation package for ITER plasmas.

The remit of the Task Force would extend to the development of the necessary standardized software tools for interfacing code modules and for accessing experimental data.

In the medium term, this task force’s work would support the development of ITER-relevant scenarios in current experiments, while in the long term it would aim to provide a validated set of European modelling tools for ITER exploitation

A European Task Force

EFDA recently approved a three year extension to the TF

Page 28: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

General structure of TF’s activities

(2005-6 work programme)

The initial ITM Project structure covers:

- The Integrated Modelling Projects (IMPs), addressing modelling issues of fusion plasma physics which require a sufficiently high degree of integration.

- The Code Platform Project (CPP), responsible for developing, maintaining and operating the code platform structure. Support to IMPs is included.

- The Data Coordination Project (DCP), supporting IMPs and CPP for Verification and Validation aspects and standardisation of data interfaces and access.

Page 29: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

the 2005-2006 work programme schedule

IMP#1

CPP

DCP

IMP#2

IMP#3

IMP#4

IMP#5

prototype platform platform release

V&V proc.

co

de

ca

talo

gu

e

data management univ. access layer

V&V support

code identif. standardisation V&V, documentation

extend linear MHD codes

edge MHD, core MHD, disruptions

edge transport, core transport, integrated discharge evolutions

Linear stab, turbulence, neocl. transport

H&CD, fast particle instab. and losses

2005 2006 200X

Page 30: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Data Coordination Project (DCP)

Objectives:– Provide tools for data access and exploration, – Develop and manage databases needed for physics exploration and

validation activities.– Assessment and collection of experimental data for V&V– Definition of V&V and performance metrics

Project Structure – 5 topical areas:– Data and database management– Universal data access layer (transparent access to data)– Validation and verification activities (with IMP’s)– Taskforce Software Strategies– Monitoring and evaluating emerging technologies: Grids

Page 31: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Data models and database management

Short term storage system solution in place:– ~ 1Tb of storage available through MDS+ server hosted by ENEA a further

1Tb may be made available through other collaborations beginning 2006.• http://fusfis.frascati.ena.it/FusionCell

– Physics project storage needs are estimated for 4Tb end of 2006; more than 15 Tb longer term

Data structures:– Abstract description (XML schemas) of the data model for the Equilibrium

reconstruction project (IMP#1) – prototyping the TF wide data model.– Automatic generation of data descriptions in client languages (fortran,

matlab,...)– Provides unambiguous, standard description of data structures but hides

complexity from end user - http://crppwww.epfl.ch/~lister/euitmschemas

Database exploration tools - user access: Start up work defining needs for

– Logbook browser – finding and characterizing TF database entries– Relational search capabilities and graphical/plotting engines

Page 32: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Data Access methods

Interim data access system:– Simple C library with fortran bindings.

http://www.ipp.mpg.de/~Wolfgang.Suttrop/mdsplus/libitdb

– Further prototyping (IMP#1 efforts):• Improved memory handling (G. Huysmans)

• Tighter connectivity w datastructures (L. Appel)

Universal Access layer:– “Device independent” access to data– Extensible through plug-in technology

• MDS+, HDF5, …

• Single interface to many data sources

– Detailed specification being written– Needs further resources for implementation

ITM

DBsITPA

DBs

USER

FILES

Switch/Mapper

HD

F5

MD

S+

???

UAL API

Page 33: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Procedures, protocols and strategies Confidence in modelling results at the end user level can only be achieved through openness, accessibility, reproducibility and traceability throughout the V&V process.

DCP coordinates – Experimental data access and validation – Definition of performance metrics– Development of the V&V procedures

with the Integrated modelling projects

DCP is starting to evaluate software usage and needs within the fusion community to Formulate “Taskforce Software Strategies” defining the

– Use of commercial packages (Matlab, IDL,…)– Replacement strategies for commercial numerical libraries (NAG, IMSL,..)– Recommendations on code restructuring for increased portability, performance and compatibility.

Several associations are entering into GRID technology related activities: A study to evaluate the opportunities for TF has been initiated and a strategy for TF participation is being formulated

Page 34: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Integrated Modelling Project 1

• Objective:– To provide an integrated suite of self-consistent codes (modules) for

equilibrium reconstruction and linear MHD stability analysis

• Topic 1A : Experimental Equilibrium reconstruction– CEDRES, CLISTE, EFIT, EQUINOX

• Topic 1B : Equilibrium codes and linear MHD stability– Equilibrium : CAXE, CHEASE, DIVA, HELENA, VMEC, DINA– Mapping : COTRANS, JMC – MHD Stability : CAS3D, CASTOR, KINX, MISHKA,

TERPSICHORE • Also:

– Equilibrium toolbox : FLUSH

Page 35: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

IMP#1: equilibrium and MHD Stability

• Standardise contributed codes to become independent of machine /diagnostic data.

– Use only external geometry data (from database)

– Definition of interfaces between codes and machine and diagnostics

• Validation and Verification

– compare equilibrium and MHD stability codes on benchmark case

– Apply codes to a relevant experimental problem/data

• MHD Stability limits in plasmas with an internal transport barrier.

diagnostic(1)description

machine description

diagnostic(2)description

magnetics MSE

equilibrium description

equilibrium reconstruction

high resolution equilibrium

code spec.parameters

code spec.parameters

equilibrium description

MHD stability code spec.parameters

MHD output description

Page 36: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Machine independent EFIT_ITM• EFIT has been adapted to use the ITM

structures and to use external geometry information– A unique version of EFIT can now be used

for ITER, Tore Supra, JET, etc– Using only TF tools for

Data storage, accessand data structures

Validation effort underway

Page 37: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Code Platform Project

• End User

•Tools to define the simulation

•Tools to run & monitor the simulation

•Tools for post-processing

• Developer

•Integrate the codes

•Component based

•Debug & test

• Administrator

•Deploy the simulator

•Monitor it

•Manage the archive

• Additional constraints

•Requirements: version (December 2005)

Page 38: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

CPP: Frameworks under consideration

Name comments pros cons

Cactushttp://www.cactuscode.org/

Complete framework

Investigating CCA

No component model, no PIC

Pyrehttp://www.cacr.caltech.edu/projects/pyre

Simple framework

Investigating CCA, WS-RF

No component model

Salomehttp://www.salome-platform.org

Complete framework

Corba

Kepler CCA

MpCCI Code coupling

Meshing No component model, not open source

Xcat3 Java & C++ frameworks

Both CCA & WS-RF models

TF applications range from loosely coupled to very tightly coupled - No single tool likely to be sufficient.

Need to explore different approaches for different applications

Page 39: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Integrated Modelling Projects 2 to 5

IMP2: Non linear MHD phenomenaInitial work on RWMs, sawteeth and ELMs has started

IMP3: To provide the computational basis for a modular transport code, taking account of the core, the pedestal and the scrape-off layer. Ultimately, to enable the simulation of complete tokamak scenarios, e.g. for ITER.A common interface to existing transport codes is underwayEdge code benchmarkingFast particle effects in edge codes underway

IMP4: To develop a suite of unified, validated codes to provide quantitative predictions for the linear properties of a range of instabilities, including: ion-temperature-gradient (ITG) modes, trapped electron modes (TEM), trapped ion modes (TIM), electron-temperature-gradient (ETG) modes, micro-tearing modes, etc. Large Benchmark exercises underway (Cyclone + Edge)

IMP5: develop the computational basis for a modular package of codes simulating heating, current drive and fast particle effects Goal: self-consistent calculations validated against experiments Priority: realistic modelling applicable to ITER standard and advanced scenarios

Page 40: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Progress on hardware issues

European 7th FP(2007 onward): the Petaflop’s world- massive parallel computing in Europe for Research purposes- UK; Germany; Spain; France willing to participate- scientific cases made in Barcelona in Dec 05- organisational issues in Cadarache in Feb 06

Fusion: EU vs Broader Approach- need for dedicated HPC in the very near future (~100Tflops permanently)- Infrastructure support for theory and modelling being discussed- IFERC proposal under study (broader approach)- GRID computing solutions?

ITM-TF: the gateway- need for unique entry point (platform tools, database repository, computer access, data storage capability ..)- mutualisation of support

Page 41: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

International collaborative activity

• ITER is the main customer for tokamak simulators, but not the only one (existing & new devices, DEMO).

• Other Integrated Fusion Initiatives exist around the world (USA, Japan, China, ….)

• There is a strong need for a joint effort in terms of standards, formats, V&V, for the various descriptions to be compatible

• A coordinated structure, initiated by EU-ITM-TF, has been put in place between the ITER partners in order to address these issues

Page 42: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

Conclusion

• The route towards magnetic thermonuclear fusion simulators is now open, mobilizing a large part of the world-wide research community.

• Two major lines are followed, one massively using first principle models at the forefront of new physics discoveries and one progressively integrating the existing knowledge into the most complete description of a fusion plasma within its environment.

• One can reasonably expect rapid progress on both lines, together with the necessary cross-fertilization, as well as the existence of validated simulators delivered to ITER prior to its first plasma

Page 43: Www.efda-taskforce-itm.org Conference on Computational Physics, Aug29-Sep1, 2006, Gyeongju, Korea THE WAY TOWARDS THERMONUCLEAR FUSION SIMULATORS TF Leader

www.efda-taskforce-itm.org

Con

fere

nce

on C

ompu

tatio

nal P

hysi

cs, A

ug29

-Sep

1, 2

006,

Gye

ongj

u, K

orea

www.efda-taskforce-itm.org

Public HomepagesWelcomeAgendaContactsLinksGeneral Documentation

Private Homepages(Password protected)Detailed DocumentationCode Server (FTP,CVS,…)

Discussion Forum(Password protected for write access)

Webmanager: M. Romanelli (ENEA)Webmaster: B. Knaepen (ULB)