56
Heinz Graafsma ([email protected]) DESY-Hamburg; Germany University of Mid Sweden X-ray, Electron and Ion-imager developments at DESY-Hamburg

X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Heinz Graafsma ([email protected])

DESY-Hamburg; Germany

University of Mid Sweden

X-ray, Electron and Ion-imager

developments at DESY-Hamburg

Page 2: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 2

Layout

>Storage Rings and Free-Electron Lasers

>Detectors for Storage Rings

>Free-Electron Laser Challenge and Solutions

>New Sources and Detectors

>The Data Challenge

Page 3: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 3

Storage Rings (SR)

and

Free-Electron Lasers (FEL)

Page 4: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 4

Photon Sources in Hamburg

FLASH

PETRA III

EuropeanXFEL

Page 5: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 5

Storage Rings

brill

ianc

e

PETRA-3

Second generation

First generation

X-ray tubes

ESRF (2000)

ESRF (1994)

Free-Electron lasers

RotatingAnodes

Third generation

1900 1960 1980 2000

1900 1920 1940 1960 1980 2000

ESRF (1994)

2ème generation

1ère génération

Tubes àrayons X

Années

ESRF (futur)

Limite de diffraction

ESRF (2000)3èmegeneration

Lasers àélectrons libres

Rayonnementsynchrotron

1020

1018

1016

1014

1012

1010

108

102110221023

1019

1017

1015

1013

1011

109

107

106

Brillance(photons/s/mm 2/mrad2/0.1%B.F.)

X-ray Source development: a continuing success story

Page 6: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 6

Photon Science: from fundamental to applied

Study of extremely charged ions Structure of viruses

Authentication of paintings

Page 7: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 7

Photon Science: many different techniques

ERSFGrenoble, France

Page 8: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 8

Storage Rings and FELs: two very different sources

Both SRs and FELs use undulators

to generate the radiation

> Storage Rings (circular accelerator; recirculating):

§equilibrium source ==> large electron bunches / low electron density

• è electrons emit photons incoherently: I a ne è low intensity per pulse§many stored electron bunches è quasi continuous source (nsec)

> Free-Electron Lasers (linear accelerator; single pass):

§non equilibrium source è small electron bunches / high electron density

• è electrons emit photons coherently: I a ne2 è high intensity per pulse§ few electron bunches è pulsed source (10’s msec – 100’s nsec)

Page 9: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 9

Detectors

for

Storage Rings

Page 10: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Hybrid Pixel Array Detector (HPAD)

Diode Detection Layer• Fully depleted, high resistivity

• Direct x-ray conversion• Si, GaAs, CdTe, etc.

Connecting Bumps• Solder or indium

• 1 per pixel

CMOS Layer• Signal processing

• Signal storage & output

Gives enormous flexibility!

X-rays

Page 11: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 11

Storage Ring: Photon Counting Detectors

> Used the Medipix-3 readout chip as a basis for system development: Large Area Medipix Based Detector Array, LAMBDA

> Modular system è very versatile; single chip to multi mega-pixels

> Successfully deployed at PETRA III @ DESY

> Large interest from other Synchrotron Sources== > create spinoff: X-Spectrum GmbH

courtesy of X-Spectrum GmbH

LAMBDA 10M for SAXS in-vacuum for electrons and ions

Page 12: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 12

DESY development of a Timepix4 based system

Timepix3 (2013) Timepix4 (2021)Technology IBM 130 nm – 8 metal TSMC 65 nm – 10 metalPixel size 55 x 55 µm 55 x 55 µmPixel arrangement 3-side buttable

256 x 2564-side buttable (TSV)

512 x 448Sensitive area 1.98 cm2 6.94 cm2

Rea

dout

mod

es

Data driven(tracking)

Mode ToT and TOAEvent packet 48-bit 64-bitMax rate < 43 Mhits/cm2/s 357.6 Mhits/cm2/sPix rate equiv. 1.3 kHz/pix average 10.8 kHz/pix average

FrameBased(imaging)

Mode Count: 10 bit + iToT Count: 8 or 16 bit CRWFrame Zero suppressed (with pix addr) Full frame (no pix addr)Max countrate

82 Ghits/cm2/s ~ 800 Ghits/cm2/s

Max frame rate

N/A (worst case: 0.8ms readout) 80 kHz CRW

TOT energy resolution < 2 keV < 1 keVTime resolution 1.56 ns ~ 200 psReadout bandwidth ≤ 5.12 Gbps (8 x 640 Mbps) ≤163.8 Gbps (16 x 10.2 Gbps)

Target minimum threshold < 500 e- < 500 e-

3.5 x TPX3

8 x TPX3

10 x TPX3

2 x TPX38 x TPX3

32 x TPX3

40 x LAMBDA

Page 13: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 13

Ion detection (Controlled Molecule Imaging, Küpper)

Electric field

Molecule in prepared state

Detector

Thanks to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper

Page 14: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 14

Ion detection (Controlled Molecule Imaging, Kupper)

Electric field

Laser destroys molecule

Detector

Trajectory

Time of flight (m/q ratio)

Thanks to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper

Page 15: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 15

Coulomb explosion imaging of Pyrrole

~2 ns (std dev) time resolution

Page 16: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 16

Correlation experiments – XPCS, XCCA

> Measure per-pixel autocorrelation of X-ray signal

> Event rate at PETRA-III: ~2e7 hits/s in Maxipix detector

> 2e9 hits/s at PETRA-IV should be possible with multi-chip Timepix4

Colloidsample

Coherent X-rays

Speckle pattern on detector

10 ns timescale

Proof-of-principle test with Timepix3 at P10(most pixels masked to reduce data rate)

10-6 10-5 10-4 10-3 10-2 10-1 100 1010.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Taus [s]

G2

func

tion

Thanks to Fabian Westermeier, Michael Sprung

Page 17: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 17

TimePix-4 System Development

> First iteration of chip already produced by CERN§ Pixel-level performance confirmed§ Some bugs with high-speed readout –

revised version coming in Spring 2021 (Michael any update?)

> Currently developing single-chip system§ Readout based on FPGA evaluation

board§ Should be available for first experiments

late 2021

Page 18: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 18

Free-Electron Lasers

Page 19: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 19

The Free-Electron Laser revolution

• Fast science 100 fsec

• “Single shot” science

• High Rep-rate science

• Completely new science

x109

Page 20: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 20

Injector at DESY campus

Linear Accelerator1.9 km17.5 GeV

Undulator/Photon Tunnels

Experiment Hallin Schenefeld

Inauguration 1. September 2017

The European XFEL (a small addition to the ILC)

Page 21: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 21

The European XFEL: a Burst-Mode machine

Page 22: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 22

4.5 MHz

Thedetectorchallenge

Page 23: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 23

The Adaptive Gain Integrating Pixel DetectorDESY, PSI, University Hamburg and University Bonn

Page 24: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 24

The Adaptive Gain Integrating Pixel Detector

C1

C2

C3

Discr.

Con

trol

logi

c

TrimDAC

Vthr @ VADCmax

Ana

logu

e en

codi

ng

Normal Charge sensitive amplifier

High dynamic range:Dynamically gain switching system

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 5000 10000 15000Number of 12.4 KeV - Photons

Out

put V

olta

ge [V

]

Cf=100fF Cf=1500fF Cf=4800fF

Sensor

Page 25: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 25

Looking at the direct beam at PETRA

photons/secondLogarithmic color scale

Gain switching experimentally provenØ 104 photons / pulseØ Single photon sensitivity

220 nsec rep-rate è in-pixel storage of images

Page 26: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 26

AGIPD: Analog Storage Memory

Sensor Electronics per pixel

ASIC periphery

Chipoutputdriver

Mux

HV

+-

THR

DACSWCTRL

Analog Mem

Analog Mem

CDS

RO Amp

Calibration circuitry

Adaptive gain amplifier

352 analog memory cells

……R

O b

us (p

er c

olum

n)

Pixel matrix

Page 27: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 27

AGIPD Pixel Electronics: > 80% frame storage area

• 200x200micron2 pixels• 352storage cells +vetopossibilities.

• Minumum signal ~300e- =0.1photon of12.4keV

• Maximumsignal ~33106 e- =104 photons of12.4keV

• 4.5MHzframe rate• 64x64pixels perASIC• 2x8ASICspermodule (128x512pixels,no dead area)

• 4modules perquadrant

200

mic

ron

Page 28: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 28

AGIPD 1Mpix Systems: SPB and MID Beamlines at European XFEL

Independently movable

quadrants

External electronics

Image plane out of vessel

Modules of 2x8 chips

Arbitrary hole in

size & shape

• SPB & MID User operation

Page 29: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 29

In first run solved lysozyme and the unknown structure of B-lactamase CTX-M14

2Fo-Fcmap(at1.5σ)overthecorrespondingpartofthemodelofß-lactamaseCTX-M14frommultidrugresistantKlebsiellapneumoniae.

Detailedviewofthebindingoftheß-lactamaseinhibitoravibactamtoSer70.Theinhibitorisboundcovalentlytotheprotein(hemiacetal).

ResultsfromXFEL2012_2,initialrefinement:P3221UnitCell:41.8441.84233.289090120Rwork/Rfree:0.184/0.201AverageBISO:29.3RMSDbonds(Å):0.007RMSDangles(°):0.851

Page 30: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 30

More recently: super hot liquid water

Felix Lehmkuhler et al.

„Proceedings of the National Academy of Sciences“ (PNAS), 2020; DOI: 10.1073/pnas.2003337117

Page 31: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 31

The DEPFET Sensor with Signal CompressionDESY, EuXFEL, MPG-HLL, PNSensors, PolyTech Milano, INFN, Universities Heidelberg, Bergamo,

Courtesy: Matteo Porro

Page 32: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 32

Output voltage as function of charge

injected charge

DEPFET Sensor with Signal Compression DEPFET: Electrons are collected in a storage well

⇒Influence current from source to drain

source draingate

Fully depleted silicone-

Storage well

injected charge

DSSC

Non-Linear DEPFET

Page 33: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 33

§ 1 Megapixel camera 4.5 MHz peak frame rateØ 4 quadrants (512 x 512) Ø 16 ladders (512 x 128)Ø 32 monolithic sensors 128x256Ø 256 Readout ASICS 64 x 64 Hexagonal

§ Sensors:Ø MiniSDD arrays 1st camera: limited DRØ DEPFET arrays 2nd camera

§ Readout conceptØ In pixel analog to digital conversionØ In pixel digital storage (800 frames) with the

possibility to overwrite non-valid frames (VETO)Ø Output average data rate: 134.4 Gbit/s

DSSC Detector System Overview

256 x 128 256 x 128

detector ladder

Page 34: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 34

DSSC 1 Megapixel Camera (with mini-SDD iso non-linear DEPFETs)

§ In May 2019, DSSC has beeninstalled and commissioned at theSpectroscopy and CoherentScattering (SCS) Instrument

§ 1-Megapixel diffraction image of pinholes with 707 eV photons

Page 35: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 35

DEPFET sensors for the second camera

§ In the second DSSC camera the MiniSDD sensors will be replaced by DEPFET arrays

§ DEPFETs are active pixels that provide a non linear responseØ Low noise for single photon

detectionØ High dynamic range

§ The DEPFET arrays are compatible with the existing DSSC system

§ A maximum signal > 104 ph / pixel is achievable for E ≥ 800 eV, assuming an 8-bit ADC and single photon detection capability

Measurements on DEPFET pixel prototypes

Page 36: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 36

Future Sources

and

Detectors

Page 37: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 37

Requirements for future sources

CW-XFEL (>2028)PETRA-IV (~2028)

• Diffraction-Limited Storage Ring• Approx continuous X-ray beams• x 100 increase in X-ray brilliance• Measurements from atomic to

macroscopic scale, 10µs resolution

• Free electron laser• Extremely intense X-ray pulses• 100 kHz to 1MHz continuous

bunch rate (source)• “Flash photography” on atomic

scales

Page 38: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 38

Experiments at PETRA-IV

More than100-fold increase in coherent flux

Page 39: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 39

Example – coherence-based imaging (e.g. ptychography)

x 100 acquisition speedè high frame rates

Single photonsè low noise

Direct beamè large DR

Large, seamlessdetectorè 4 side buttable

Page 40: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 40

§ ≥ 132 kHz continuous frame rate (PETRA revolution frequency)

§ ≤ 100 µm pixel size

§ Multi-megapixel (modular design)

§ Minimal dead area

§ Single photon sensitivity at 6 keV

§ ≥104 ph/pixel/image dynamic range (109 ph/pixel/s)

§Noise below Poisson statistics

§ Compatible with different sensors

§Standard Si sensors

§High-Z (e.g. CdTe) for hard X-ray detection

§Amplifying sensors for soft X-ray detection

High-speed imager – target specifications

Page 41: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 41

Integrating pixel detectors

> Existing integrating pixel detectors provide a strong starting point

AGIPD (DESY / PSI) Jungfrau (PSI)

3520 images per second352-image bursts at 5 MHz200 µm pixel size

2200 images per second16-image bursts at 1 MHz possible75 µm pixel size

Page 42: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 42

Achieving >100 kHz frame rate

>Overhaul of entire readout chain needed!

A-D converter

Ultrascale+FPGA serializer

Firefly multi-link fiber

New chip

New Readout board

Fast (5-10G)digital outputs Firefly multi-link fiber

Page 43: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 43

High Frame Rate Integrating ASIC design?

> AGIPD provides solid basis for analog pixel

§ High sensitivity and dynamic range through gain switching

> Digital side: fast digitization

§ used in DSSC detector for EuXFEL

§ presented in design papers by Italian PIXFEL consortium

§ Shared ADC between multiple pixels?

> Digitial side: high-speed off-chip drivers

§ 10 Gbit/s off-chip drivers should be possible in 65 nm CMOS!

§ Implemented in Timepix4 (65 nm CMOS, CERN, NIKHEF)

Inv. ampDyn. gain

switch

Adaptive gain preamp

Correlated double sampling

Hold

In

Analogpixel

Shared digital

ADC (e.g. 10 bit SAR, 1MHz)

10 Gigabit off-chip drivers

Memory

Page 44: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 44

Chip-level speed improvements

A-D converter

Ultrascale+FPGA serializer

Firefly multi-link fiber

New chip

Readout board

Fast (5-10G)digital outputs Firefly multi-link fiber

>On-chip analog to digital conversion

§Distributed ADCs throughout pixel matrix

> High-speed off-chip data transmission

§ Up to 10 Gigabit per signal pair (TBC)

Page 45: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 45

Readout board improvements

A-D converter

Ultrascale+FPGA serializer

Firefly multi-link fiber

New chip

New Readout board

Fast (5-10G)digital outputs Firefly multi-link fiber

96 x 5 Gigabit or48 x 10 Gigabit 24 x 25 Gigabit optical lanes

3 x 100 Gbit per fiber

> Improvements in FPGAs and optical links allow sufficiently fast readout tomeet specs

> Possible module design (using currently-advertised components)

§1000 x 250 pixels of 100 µm (100 mm x 25 mm)

§14 bit depth x 132,000 fps -> 462 Gbit/s

Page 46: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 46

Dynamic Range: Adaptive Gain (AGIPD & JUNGFRAU)

C+ -

+ -

+ -

Inv. amp

VoutQin

Dyn. gain

switch

~50 ph

~ 1200 ph

~ 10000 ph

>Maximum signal limited by capacitor size in pixel

>Charge removal circuitry could increase dynamic range

Page 47: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 47

Increasing dynamic range

>Charge removal schemes already developed by other groups

§Charge bucket removal – Cornell MMPAD

• M W Tate et al 2013, J. Phys.: Conf. Ser. 425 062004§Charge (Current) splitting – Femilab FASPAX

• T. Zimmerman and S. Junnarkar 2019, NIMA 923 p64

>Current strategy:

§First version of chip without charge removal (104 ph/px/image = 109 ph/px/s)

§ Investigate and prototype extended DR schemes for second version

Page 48: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 48

Reducing dead area using through-silicon vias (TSV)

Silicon pixel sensor

ASIC

Circuit board

ASIC

HD connectorMech. Mech.

Guard ring

Wire bonds

Dead area

Edgeless silicon pixel sensor

ASIC

Circuit board

ASIC Throughsiliconvias

HD connectorMech. Mech.

Page 49: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 49

Experience with TSV development

>Worked with Fraunhofer IZM on TSV development

§Using Medipix3 chip (TSV compatible but not fully optimised)

§Single chip TSV prototypes with sensors working

SEM image of viasSingle Medipix3 chip with TSVs and sensor

X-ray image takenwith chip

Page 50: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 50

The Data Challenge

Page 51: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 51

The Data rate and volume challenge

>Possible module design:

§1000 x 250 pixels of 100 µm (100 mm x 25 mm)

§14 bit depth x 132,000 fps -> 462 Gbit/s

>4 module (1 megapixel) -> 1848 Gbit/s, i.e. 231 Gbyte/s

Page 52: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 52

Real-time data processing and reduction

>Raw images must be converted to photons – preferably before saving

§Photon images can be compressed more effectively

§Long acquisitions require summing many shorter images

Raw AGIPD data

Corrected image

Page 53: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 53

Need for real-time image conversion

>Provide feedback during experiments

>Detector dynamic range is reliant on high frame rate

§For long exposures, sum multiple images together

>Photon images compress better than raw data

76 68 77 81

72 66 71 83

65 76 154 65

71 77 68 80

0 0 0 0

0 0 0 0

0 0 8 0

0 0 0 0

Raw data (ADUs) Photon image

Page 54: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 54

Real-time data processing, selection and reduction

> Plan to develop layer of hardware for image conversion and selection

>Different options will be investigated

§MicroTCA crate with FPGA cards

§PCs with accelerators (GPU, FPGA)

> Flexibility is an important factor (e.g. high-level synthesis of firmware)

>Work supported by collaboration projects with SLAC (Hir3x), China (CHILFEL) and within Helmholtz (Innovation Pool)

Page 55: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 55

Summary

> ”General purpose” readout chips (MediPix-3, TimePix-4,..) can find applications in many experiments at Storage Ring facilities

>Custom build readout chips (AGIPD, JUNGFRAU,..) needed for Free-Electron Laser facilities

> System aspects often more important than front-end chip performance

> Future Storage Rings (PETRA IV) and Free-Electron Lasers (CW-XFEL) more similar from detector point of view

>High-Speed Imager project well underway, feasibility of basic components studied and confirmed. Specific designs started.

>Data rate and Data volume need an online approach: data correction, data selection (trigger and veto), data compression.

>Usefulness of Machine Learning and Artificial Intelligence under study.

Page 56: X-ray, Electron and Ion-imager developments at DESY-Hamburg...Page 5 e Storage Rings PETRA-3 Second generation First generation X-ray tubes ESRF (2000) ESRF (1994) Free-Electron lasers

Page 56

Photon-Science Detector-Systems Group