78
Data Sheet V2.0 2017-10 Microcontrollers XMC1300 AB-Step Microcontroller Series for Industrial Applications XMC1000 Family ARM ® Cortex ® -M0 32-bit processor core

XMC1300 Data Sheet - Infineon Technologies

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: XMC1300 Data Sheet - Infineon Technologies

Data SheetV2.0 2017-10

Microcontrol lers

XMC1300 AB-StepMicrocontroller Seriesfor Industrial Applications

XMC1000 Family

ARM® Cortex®-M032-bit processor core

Page 2: XMC1300 Data Sheet - Infineon Technologies

Edition 2017-10Published byInfineon Technologies AG81726 Munich, Germany© 2017 Infineon Technologies AGAll Rights Reserved.

Legal DisclaimerThe information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

InformationFor further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WarningsDue to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Page 3: XMC1300 Data Sheet - Infineon Technologies

Data SheetV2.0 2017-10

Microcontrol lers

XMC1300 AB-StepMicrocontroller Seriesfor Industrial Applications

XMC1000 Family

ARM® Cortex®-M032-bit processor core

Page 4: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Data Sheet V2.0, 2017-10

TrademarksC166™, TriCore™, XMC™ and DAVE™ are trademarks of Infineon Technologies AG.ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited.Cortex™, CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded TraceBuffer™ are trademarks of ARM, Limited.

XMC1300 Data Sheet

Revision History: V2.0 2017-10Previous Version: V1.9 2017-03Page SubjectsPage 10,Page 13

Add marking option for XMC1302-T28X0032, XMC1302-T28X0064, XMC1302-T28X0128, XMC1302-T28X0200.

We Listen to Your CommentsIs there any information in this document that you feel is wrong, unclear or missing?Your feedback will help us to continuously improve the quality of this document.Please send your proposal (including a reference to this document) to:[email protected]

Page 5: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Table of Contents

Data Sheet 5 V2.0, 2017-10

1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.2 Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3 Device Type Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1 Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2 Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2.1 Package Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2.2 Port I/O Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2.3 Hardware Controlled I/O Function Description . . . . . . . . . . . . . . . . . . . 27

3 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1.1 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.1.3 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.1.4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.2 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.2.1 Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.2.2 Analog to Digital Converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.2.3 Out of Range Comparator (ORC) Characteristics . . . . . . . . . . . . . . . . . 463.2.4 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.2.5 Temperature Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.6 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.2.7 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.3 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.3.1 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.3.2 Power-Up and Supply Monitoring Characteristics . . . . . . . . . . . . . . . . 573.3.3 On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.3.4 Serial Wire Debug Port (SW-DP) Timing . . . . . . . . . . . . . . . . . . . . . . . 613.3.5 SPD Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623.3.6 Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633.3.6.1 Synchronous Serial Interface (USIC SSC) Timing . . . . . . . . . . . . . . 633.3.6.2 Inter-IC (IIC) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.3.6.3 Inter-IC Sound (IIS) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.1.1 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.2 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table of Contents

Page 6: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Table of Contents

Data Sheet 6 V2.0, 2017-10

5 Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Page 7: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

About this Document

Data Sheet 7 V2.0, 2017-10

About this DocumentThis Data Sheet is addressed to embedded hardware and software developers. Itprovides the reader with detailed descriptions about the ordering designations, availablefeatures, electrical and physical characteristics of the XMC1300 series devices.The document describes the characteristics of a superset of the XMC1300 seriesdevices. For simplicity, the various device types are referred to by the collective termXMC1300 throughout this document.

XMC1000 Family User DocumentationThe set of user documentation includes:• Reference Manual

– decribes the functionality of the superset of devices.• Data Sheets

– list the complete ordering designations, available features and electricalcharacteristics of derivative devices.

• Errata Sheets– list deviations from the specifications given in the related Reference Manual or

Data Sheets. Errata Sheets are provided for the superset of devices.Attention: Please consult all parts of the documentation set to attain consolidated

knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.Please refer to http://www.infineon.com/xmc1000 to get access to the latest versionsof those documents.

Page 8: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 8 V2.0, 2017-10

1 Summary of FeaturesThe XMC1300 devices are members of the XMC1000 Family of microcontrollers basedon the ARM Cortex-M0 processor core. The XMC1300 series addresses the real-timecontrol needs of motor control, digital power conversion. It also features peripherals forLED Lighting applications.

Figure 1 System Block Diagram

CPU Subsystem• CPU Core

– High-performance 32-bit ARM Cortex-M0 CPU– Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set– Single cycle 32-bit hardware multiplier – System timer (SysTick) for Operating System support

16k SRAM

200k + 0.5k1)

Flash

8k ROM

PRNG

Memories

Flash SFRs

1) 0.5kbytes of sector 0 (readable only).

AHB-Lite Bus

16-b

it AP

B B

us

AHB to APB Bridge

PAU

Cortex-M0 CPU

Debug system

SPD

SWD

NVICEVR

Temperature sensor

2 x DCO

Analog system

ANACTRL SFRs

SCU

WDT

MATH

PORTS

RTC

CCU40

USIC0

VADC

ERU0

ACMP & ORC

BCCU0

CCU80

POSIF0

Page 9: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 9 V2.0, 2017-10

– Ultra low power consumption• Nested Vectored Interrupt Controller (NVIC)• Event Request Unit (ERU) for processing of external and internal service requests• MATH Co-processor (MATH)

– CORDIC unit for trigonometric calculation – division unit

On-Chip Memories• 8 kbytes on-chip ROM• 16 kbytes on-chip high-speed SRAM• up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals• Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI,

quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals• A/D Converters

– up to 12 analog input pins– 2 sample and hold stages with 8 analog input channels each– fast 12-bit analog to digital converter with adjustable gain

• Up to 8 channels of out of range comparators (ORC)• Up to 3 fast analog comparators (ACMP)• Temperature Sensor (TSE)

Industrial Control Peripherals• Capture/Compare Units 4 (CCU4) as general purpose timers • Capture/Compare Units 8 (CCU8) for motor control and power conversion• Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning• Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control• Window Watchdog Timer (WDT) for safety sensitive applications• Real Time Clock module with alarm support (RTC)• System Control Unit (SCU) for system configuration and control• Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines• Tri-stated in input mode• Push/pull or open drain output mode

Page 10: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 10 V2.0, 2017-10

• Configurable pad hysteresis

On-Chip Debug Support• Support for debug features: 4 breakpoints, 2 watchpoints• Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering InformationThe ordering code for an Infineon microcontroller provides an exact reference to aspecific product. The code “XMC1<DDD>-<Z><PPP><T><FFFF>” identifies:• <DDD> the derivatives function set• <Z> the package variant

– T: TSSOP– Q: VQFN

• <PPP> package pin count• <T> the temperature range:

– F: -40°C to 85°C– X: -40°C to 105°C

• <FFFF> the Flash memory size.For ordering codes for the XMC1300 please contact your sales representative or localdistributor.This document describes several derivatives of the XMC1300 series, some descriptionsmay not apply to a specific product. Please see Table 1.For simplicity the term XMC1300 is used for all derivatives throughout this document.

1.2 Device TypesThese device types are available and can be ordered through Infineon’s direct and/ordistribution channels.

Table 1 Synopsis of XMC1300 Device TypesDerivative Package Flash

KbytesSRAM Kbytes

XMC1301-T016F0008 PG-TSSOP-16-8 8 16XMC1301-T016F0016 PG-TSSOP-16-8 16 16XMC1301-T016F0032 PG-TSSOP-16-8 32 16XMC1301-T016X0008 PG-TSSOP-16-8 8 16XMC1301-T016X0016 PG-TSSOP-16-8 16 16XMC1302-T016X0008 PG-TSSOP-16-8 8 16

Page 11: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 11 V2.0, 2017-10

XMC1302-T016X0016 PG-TSSOP-16-8 16 16XMC1302-T016X0032 PG-TSSOP-16-8 32 16XMC1302-T028X0016 PG-TSSOP-28-8 16 16XMC1302-T028X0032 PG-TSSOP-28-8 32 16XMC1302-T028X0064 PG-TSSOP-28-8 64 16XMC1302-T028X0128 PG-TSSOP-28-8 128 16XMC1302-T028X0200 PG-TSSOP-28-8 200 16XMC1301-T038F0008 PG-TSSOP-38-9 8 16XMC1301-T038F0016 PG-TSSOP-38-9 16 16XMC1301-T038F0032 PG-TSSOP-38-9 32 16XMC1301-T038X0032 PG-TSSOP-38-9 32 16XMC1301-T038F0064 PG-TSSOP-38-9 64 16XMC1302-T038X0016 PG-TSSOP-38-9 16 16XMC1302-T038X0032 PG-TSSOP-38-9 32 16XMC1302-T038X0064 PG-TSSOP-38-9 64 16XMC1302-T038X0128 PG-TSSOP-38-9 128 16XMC1302-T038X0200 PG-TSSOP-38-9 200 16XMC1301-Q024F0008 PG-VQFN-24-19 8 16XMC1301-Q024F0016 PG-VQFN-24-19 16 16XMC1302-Q024F0016 PG-VQFN-24-19 16 16XMC1302-Q024F0032 PG-VQFN-24-19 32 16XMC1302-Q024F0064 PG-VQFN-24-19 64 16XMC1302-Q024X0016 PG-VQFN-24-19 16 16XMC1302-Q024X0032 PG-VQFN-24-19 32 16XMC1302-Q024X0064 PG-VQFN-24-19 64 16XMC1301-Q040F0008 PG-VQFN-40-13 8 16XMC1301-Q040F0016 PG-VQFN-40-13 16 16XMC1301-Q040F0032 PG-VQFN-40-13 32 16XMC1302-Q040X0016 PG-VQFN-40-13 16 16XMC1302-Q040X0032 PG-VQFN-40-13 32 16

Table 1 Synopsis of XMC1300 Device Types (cont’d)

Derivative Package Flash Kbytes

SRAM Kbytes

Page 12: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 12 V2.0, 2017-10

1.3 Device Type FeaturesThe following table lists the available features per device type.

XMC1302-Q040X0064 PG-VQFN-40-13 64 16XMC1302-Q040X0128 PG-VQFN-40-13 128 16XMC1302-Q040X0200 PG-VQFN-40-13 200 16

Table 2 Features of XMC1300 Device Types1)

1) Features that are not included in this table are available in all the derivatives

Derivative ADC channel ACMP BCCU MATHXMC1301-T016 11 2 - -XMC1302-T016 11 2 1 1XMC1302-T028 14 3 1 1XMC1301-T038 16 3 - -XMC1302-T038 16 3 1 1XMC1301-Q024 13 3 - -XMC1302-Q024 13 3 1 1XMC1301-Q040 16 3 - -XMC1302-Q040 16 3 1 1

Table 3 ADC Channels 1)

1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the PortI/O Function table.

Package VADC0 G0 VADC0 G1PG-TSSOP-16 CH0..CH5 CH0..CH4PG-TSSOP-28 CH0..CH7 CH0 .. CH4, CH7PG-TSSOP-38 CH0..CH7 CH0..CH7PG-VQFN-24 CH0..CH7 CH0..CH4PG-VQFN-40 CH0..CH7 CH0..CH7

Table 1 Synopsis of XMC1300 Device Types (cont’d)

Derivative Package Flash Kbytes

SRAM Kbytes

Page 13: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 13 V2.0, 2017-10

1.4 Chip Identification NumberThe Chip Identification Number allows software to identify the marking. It is a 8 wordsvalue with the most significant 7 words stored in Flash configuration sector 0 (CS0) ataddress location : 1000 0F00H (MSB) - 1000 0F1BH (LSB). The least significant word andmost significant word of the Chip Identification Number are the value of registersDBGROMID and IDCHIP, respectively.

Table 4 XMC1300 Chip Identification Number Derivative Value MarkingXMC1301-T016F0008 00013032 01CF00FF 00001FF7 0000100F

00000C00 00001000 00003000 201ED083H

AB

XMC1301-T016F0016 00013032 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083H

AB

XMC1301-T016F0032 00013032 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083H

AB

XMC1301-T016X0008 00013033 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083H

AB

XMC1301-T016X0016 00013033 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-T016X0008 00013033 01FF00FF 00001FF7 0000900F 00000C00 00001000 00003000 201ED083H

AB

XMC1302-T016X0016 00013033 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-T016X0032 00013033 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-T028X0016 00013023 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-T028X0032 00013023 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-T028X0064 00013023 01FF00FF 00001FF7 0000900F 00000C00 00001000 00011000 201ED083H

AB

XMC1302-T028X0128 00013023 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083H

AB

XMC1302-T028X0200 00013023 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083H

AB

XMC1301-T038F0008 00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083H

AB

Page 14: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 14 V2.0, 2017-10

XMC1301-T038F0016 00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083H

AB

XMC1301-T038F0032 00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083H

AB

XMC1301-T038X0032 00013013 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083H

AB

XMC1301-T038F0064 00013012 01CF00FF 00001FF7 0000100F 00000C00 00001000 00011000 201ED083H

AB

XMC1302-T038X0016 00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-T038X0032 00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-T038X0064 00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00011000 201ED083H

AB

XMC1302-T038X0128 00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083H

AB

XMC1302-T038X0200 00013013 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083H

AB

XMC1301-Q024F0008 00013062 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083H

AB

XMC1301-Q024F0016 00013062 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-Q024F0016 00013062 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-Q024F0032 00013062 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-Q024F0064 00013062 01FF00FF 00001FF7 0000900F 00000C00 00001000 00011000 201ED083H

AB

XMC1302-Q024X0016 00013063 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-Q024X0032 00013063 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-Q024X0064 00013063 01FF00FF 00001FF7 0000900F 00000C00 00001000 00011000 201ED083H

AB

Table 4 XMC1300 Chip Identification Number (cont’d)

Derivative Value Marking

Page 15: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Summary of Features

Data Sheet 15 V2.0, 2017-10

XMC1301-Q040F0008 00013042 01CF00FF 00001FF7 0000100F 00000C00 00001000 00003000 201ED083H

AB

XMC1301-Q040F0016 00013042 01CF00FF 00001FF7 0000100F 00000C00 00001000 00005000 201ED083H

AB

XMC1301-Q040F0032 00013042 01CF00FF 00001FF7 0000100F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-Q040X0016 00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00005000 201ED083H

AB

XMC1302-Q040X0032 00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00009000 201ED083H

AB

XMC1302-Q040X0064 00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00011000 201ED083H

AB

XMC1302-Q040X0128 00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00021000 201ED083H

AB

XMC1302-Q040X0200 00013043 01FF00FF 00001FF7 0000900F 00000C00 00001000 00033000 201ED083H

AB

Table 4 XMC1300 Chip Identification Number (cont’d)

Derivative Value Marking

Page 16: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 16 V2.0, 2017-10

2 General Device InformationThis section summarizes the logic symbols and package pin configurations with adetailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

XMC13XX

TSSOP-38

VDDP

(2)VSSP

(2)

Port 016 bit

Port 16 bit

Port 24 bit

XMC13XX

TSSOP-28

VDDP

(1)VSSP

(1)

XMC13XX

TSSOP-16

VDDP

(1)VSSP

(1)

Port 28 bit

Port 012 bit

Port 14 bit

Port 24 bit

Port 26 bit

Port 08 bit

Port 23 bit

Port 23 bit

Page 17: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 17 V2.0, 2017-10

Figure 3 XMC1300 Logic Symbol for VQFN-24 and VQFN-40

XMC1300

VQFN-40

VDD

(1)VSS

(1)

Port 016 bit

Port 17 bit

Port 24 bit

Port 28 bit

VDDP

(2)VSSP

(1)

XMC1300

VQFN-24

VDDP

(1)VSSP

(1)

Port 010 bit

Port 14 bit

Port 24 bit

Port 24 bit

Page 18: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 18 V2.0, 2017-10

2.2 Pin Configuration and DefinitionThe following figures summarize all pins, showing their locations on the differentpackages.

Figure 4 XMC1300 PG-TSSOP-38 Pin Configuration (top view)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

37

36

35

34

33

32

31

30

29

38

P2.5

P2.6

P2.7

P0.10

VSSP/VSS

VDDP/VDD

P0.13

P0.14

P2.1

P2.0

P2.2

P0.11

P0.12

P1.4 P0.8

P0.9

P2.10

P2.9

P2.3P2.4

P2.11

VDDPP1.3

P1.2 VSSP

15

16

17

18

19

24

23

22

21

20

P2.8

P1.5

P1.0

P0.0

P0.1

P1.1

P0.2

P0.6

P0.7

P0.4

P0.5

P0.3

P0.15

Top View

Page 19: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 19 V2.0, 2017-10

Figure 5 XMC1300 PG-TSSOP-28 Pin Configuration (top view)

Figure 6 XMC1300 PG-TSSOP-16 Pin Configuration (top view)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

18

17

16

15

27

26

25

24

23

22

21

20

19

28P2.6

P2.7

VSSP/VSS

VDDP/VDD

P2.10

P2.9

P2.11

P1.3

P1.2

P2.8

P1.0

P0.0

P1.1

P0.4

Top View

P0.10

P0.13

P0.14

P2.1

P2.0

P2.2

P0.12

P0.8

P0.9

P2.5

P0.6

P0.7

P0.5

P0.15

1

2

3

4

5

6

7

8

15

14

13

12

11

10

9

16P2.7/P2.8

VSSP/VSS

VDDP/VDD

P2.10

P2.9

P2.11

P0.5

P0.0

Top View

P0.14

P2.0

P0.8

P0.9

P2.6

P0.6

P0.7

P0.15

Page 20: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 20 V2.0, 2017-10

Figure 7 XMC1300 PG-VQFN-24 Pin Configuration (top view)

1 2 3 4 5 6

7

9

10

11

16 15 14 1312

24

23

22

21

20

1918 17

P2.0

VDDP

P1.2

P0.

5

P0.

6

P0.

0

P1.

1

P1.

0

P0.13

8

P2.1

P2.2

P2.6

P2.7/P2.8

P2.9

P2.10

P2.11

VSSP

P0.

7

P0.12

P0.9

P0.8

P1.3

P0.15

P0.14

/V DD

/V SS

Page 21: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 21 V2.0, 2017-10

Figure 8 XMC1300 PG-VQFN-40 Pin Configuration (top view)

1 2 3 4 5 6 7 8 9 10

11

13

14

15

24 23 22 2120

19

18

17

16

36

35

34

33

32

3130 29 28 27 26 25

37

38

39

40

P0.13

P0.12

P2.0

VDDP

VSSP

VDDP

P1.6

P1.5

P1.4

P0.

1

P0.

2

P0.

0

P1.

1

P1.

0

P0.11

12

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

P2.8

P2.9

P2.10

P2.11

VSS

VDD

P1.3

P1.2P

0.6

P0.

7

P0.

5

P0.

3

P0.

4

P0.10

P0.9

P0.8

P0.15

P0.14

Page 22: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 22 V2.0, 2017-10

2.2.1 Package Pin SummaryThe following general building block is used to describe each pin:

The table is sorted by the “Function” column, starting with the regular Port pins (Px.y),followed by the supply pins.The following columns, titled with the supported package variants, lists the package pinnumber to which the respective function is mapped in that package.The “Pad Type” indicates the employed pad type:• STD_INOUT(standard bi-directional pads)• STD_INOUT/AN (standard bi-directional pads with analog input)• High Current (high current bi-directional pads)• STD_IN/AN (standard input pads with analog input)• Power (power supply)Details about the pad properties are defined in the Electrical Parameters.

Table 5 Package Pin Mapping DescriptionFunction Package A Package B ... Pad TypePx.y N N Pad Class

Table 6 Package Pin MappingFunction VQFN

40TSSOP 38

TSSOP 28

VQFN 24

TSSOP 16

Pad Type

Notes

P0.0 23 17 13 15 7 STD_INOUT

P0.1 24 18 - - - STD_INOUT

P0.2 25 19 - - - STD_INOUT

P0.3 26 20 - - - STD_INOUT

P0.4 27 21 14 - - STD_INOUT

P0.5 28 22 15 16 8 STD_INOUT

P0.6 29 23 16 17 9 STD_INOUT

Page 23: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 23 V2.0, 2017-10

P0.7 30 24 17 18 10 STD_INOUT

P0.8 33 27 18 19 11 STD_INOUT

P0.9 34 28 19 20 12 STD_INOUT

P0.10 35 29 20 - - STD_INOUT

P0.11 36 30 - - - STD_INOUT

P0.12 37 31 21 21 - STD_INOUT

P0.13 38 32 22 22 - STD_INOUT

P0.14 39 33 23 23 13 STD_INOUT

P0.15 40 34 24 24 14 STD_INOUT

P1.0 22 16 12 14 - High Current

P1.1 21 15 11 13 - High Current

P1.2 20 14 10 12 - High Current

P1.3 19 13 9 11 - High Current

P1.4 18 12 - - - High Current

P1.5 17 11 - - - High Current

P1.6 16 - - - - STD_INOUT

P2.0 1 35 25 1 15 STD_INOUT/AN

Table 6 Package Pin Mapping (cont’d)

Function VQFN 40

TSSOP 38

TSSOP 28

VQFN 24

TSSOP 16

Pad Type

Notes

Page 24: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 24 V2.0, 2017-10

P2.1 2 36 26 2 - STD_INOUT/AN

P2.2 3 37 27 3 - STD_IN/AN

P2.3 4 38 - - - STD_IN/AN

P2.4 5 1 - - - STD_IN/AN

P2.5 6 2 28 - - STD_IN/AN

P2.6 7 3 1 4 16 STD_IN/AN

P2.7 8 4 2 5 1 STD_IN/AN

P2.8 9 5 3 5 1 STD_IN/AN

P2.9 10 6 4 6 2 STD_IN/AN

P2.10 11 7 5 7 3 STD_INOUT/AN

P2.11 12 8 6 8 4 STD_INOUT/AN

VSS 13 9 7 9 5 Power Supply GND, ADC reference GND

VDD 14 10 8 10 6 Power Supply VDD, ADC reference voltage/ ORC reference voltage

VDDP 15 10 8 10 6 Power When VDD is supplied, VDDP has to be supplied with the same voltage.

Table 6 Package Pin Mapping (cont’d)

Function VQFN 40

TSSOP 38

TSSOP 28

VQFN 24

TSSOP 16

Pad Type

Notes

Page 25: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 25 V2.0, 2017-10

2.2.2 Port I/O Function DescriptionThe following general building block is used to describe the I/O functions of each PORTpin:

VSSP 31 25 - - - Power I/O port groundVDDP 32 26 - - - Power I/O port supplyVSSP Exp.

Pad- - Exp.

Pad- Power Exposed Die

PadThe exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter.

Table 7 Port I/O Function DescriptionFunction Outputs Inputs

ALT1 ALTn Input InputP0.0 MODA.OUT MODC.INAPn.y MODA.OUT MODA.INA MODC.INB

Table 6 Package Pin Mapping (cont’d)

Function VQFN 40

TSSOP 38

TSSOP 28

VQFN 24

TSSOP 16

Pad Type

Notes

Page 26: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 26 V2.0, 2017-10

Figure 9 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it.As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUTdefines the output value. Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single portpin, selected by Pn_IOCR.PC. The output value is directly driven by the respectivemodule, with the pin characteristics controlled by the port registers (within the limits ofthe connected pad).The port pin input can be connected to multiple peripherals. Most peripherals have aninput multiplexer to select between different possible input sources. The input path is also active while the pin is configured as output. This allows to feedbackan output to on-chip resources without wasting an additional external pin.Please refer to the Port I/O Functions table for the complete Port I/O function mapping.

XMC1000

Pn.y

VDDP

GND

Pn.y

ALT1...ALTn

HWO0HWO1

SW

Control Logic

Input 0

Input n...

PAD

HWI0HWI1

MODB.OUT

MODBMODA

MODA.INA

Page 27: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

General Device Information

Data Sheet 27 V2.0, 2017-10

2.2.3 Hardware Controlled I/O Function DescriptionThe following general building block is used to describe the hardware I/O and pull controlfunctions of each PORT pin:

By Pn_HWSEL, it is possible to select between different hardware “masters”(HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s).Hardware control overrules settings in the respective port pin registers. Additionalhardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by theperipherals can be used to control the pull devices of the pin.Please refer to the Hardware Controlled I/O Functions table for the complete hardwareI/O and pull control function mapping.

Table 8 Hardware Controlled I/O Function DescriptionFunction Outputs Inputs Pull Control

HWO0 HWI0 HW0_PD HW0_PUP0.0 MODB.OUT MODB.INAPn.y MODC.OUT MODC.OUT

Page 28: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Data Sheet 2-28 V2.0, 2017-10Ports, V2.3

Tabl

e2-

1Po

rt I/

O F

unct

ions

Func

tion

Out

puts

Inpu

ts

ALT

1A

LT2

ALT

3A

LT4

ALT

5A

LT6

ALT

7In

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tP0

.0ER

U0.

PD

OU

T0E

RU

0.

GO

UT0

CC

U40

. O

UT0

CC

U80

. O

UT0

0U

SIC

0_C

H0.

SELO

0

US

IC0_

CH

1.S

ELO

0

BC

CU

0.

TRAP

INB

CC

U40

. IN

0CU

SIC

0_C

H0.

DX2

AU

SIC

0_C

H1.

DX

2A

P0.1

ERU

0.

PDO

UT1

ER

U0.

G

OU

T1C

CU

40.

OU

T1C

CU

80.

OU

T01

BC

CU

0.

OU

T8S

CU

. V

DR

OP

CC

U40

. IN

1C

P0.2

ERU

0.

PDO

UT2

ER

U0.

G

OU

T2C

CU

40.

OU

T2C

CU

80.

OU

T02

VAD

C0.

E

MU

X02

CC

U80

. O

UT1

0C

CU

40.

IN2C

P0.3

ERU

0.

PDO

UT3

ER

U0.

G

OU

T3C

CU

40.

OU

T3C

CU

80.

OU

T03

VAD

C0.

E

MU

X01

CC

U80

. O

UT1

1C

CU

40.

IN3C

P0.

4B

CC

U0.

O

UT0

CC

U40

. O

UT1

CC

U80

. O

UT1

3V

ADC

0.

EM

UX0

0W

WD

T.

SER

VIC

E_O

UT

CC

U80

. IN

0B

P0.

5B

CC

U0.

O

UT1

CC

U40

. O

UT0

CC

U80

. O

UT1

2A

CM

P2.

OU

TC

CU

80.

OU

T01

CC

U80

. IN

1B

P0.

6B

CC

U0.

O

UT2

CC

U40

. O

UT0

CC

U80

. O

UT1

1U

SIC

0_C

H1.

MC

LKO

UT

US

IC0_

CH

1.D

OU

T0

CC

U40

. IN

0BU

SIC

0_C

H1.

DX0

C

P0.

7B

CC

U0.

O

UT3

CC

U40

. O

UT1

CC

U80

. O

UT1

0U

SIC

0_C

H0.

SCLK

OU

T

US

IC0_

CH

1.D

OU

T0

CC

U40

. IN

1BU

SIC

0_C

H0.

DX1

CU

SIC

0_C

H1.

DX

0DU

SIC

0_C

H1.

DX1

C

P0.

8B

CC

U0.

O

UT4

CC

U40

. O

UT2

CC

U80

. O

UT2

0U

SIC

0_C

H0.

SCLK

OU

T

US

IC0_

CH

1.S

CLK

OU

T

CC

U40

. IN

2BU

SIC

0_C

H0.

DX1

BU

SIC

0_C

H1.

DX

1B

P0.

9B

CC

U0.

O

UT5

CC

U40

. O

UT3

CC

U80

. O

UT2

1U

SIC

0_C

H0.

SELO

0

US

IC0_

CH

1.S

ELO

0

CC

U40

. IN

3BU

SIC

0_C

H0.

DX2

BU

SIC

0_C

H1.

DX

2B

P0.

10BC

CU

0.

OU

T6A

CM

P0.

OU

TC

CU

80.

OU

T22

US

IC0_

CH

0.SE

LO1

US

IC0_

CH

1.S

ELO

1

CC

U80

. IN

2BU

SIC

0_C

H0.

DX2

CU

SIC

0_C

H1.

DX

2C

P0.

11BC

CU

0.

OU

T7U

SIC

0_C

H0.

MC

LKO

UT

CC

U80

. O

UT2

3U

SIC

0_C

H0.

SELO

2

US

IC0_

CH

1.S

ELO

2

US

IC0_

CH

0.D

X2D

US

IC0_

CH

1.D

X2D

P0.

12BC

CU

0.

OU

T6C

CU

80.

OU

T33

US

IC0_

CH

0.SE

LO3

CC

U80

. O

UT2

0B

CC

U0.

TR

APIN

AC

CU

40.

IN0A

CC

U40

. IN

1AC

CU

40.

IN2A

CC

U40

. IN

3AC

CU

80.

IN0A

CC

U80

. IN

1AC

CU

80.

IN2A

CC

U80

. IN

3AU

SIC

0_C

H0.

DX

2E

P0.1

3W

WD

T.

SER

VIC

E_O

UT

CC

U80

. O

UT3

2U

SIC

0_C

H0.

SELO

4

CC

U80

. O

UT2

1C

CU

80.

IN3B

PO

SIF

0.

IN0B

US

IC0_

CH

0.D

X2F

Page 29: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Data Sheet 2-29 V2.0, 2017-10Ports, V2.3

P0.

14BC

CU

0.

OU

T7C

CU

80.

OU

T31

US

IC0_

CH

0.D

OU

T0

US

IC0_

CH

0.S

CLK

OU

T

PO

SIF

0.

IN1B

US

IC0_

CH

0.D

X0A

US

IC0_

CH

0.D

X1A

P0.

15BC

CU

0.

OU

T8C

CU

80.

OU

T30

US

IC0_

CH

0.D

OU

T0

US

IC0_

CH

1.M

CLK

OU

T

PO

SIF

0.

IN2B

US

IC0_

CH

0.D

X0B

P1.

0B

CC

U0.

O

UT0

CC

U40

. O

UT0

CC

U80

. O

UT0

0A

CM

P1.

OU

TU

SIC

0_C

H0.

DO

UT

0

PO

SIF

0.

IN2A

US

IC0_

CH

0.D

X0C

P1.1

VAD

C0.

E

MU

X00

CC

U40

. O

UT1

CC

U80

. O

UT0

1U

SIC

0_C

H0.

DO

UT

0

US

IC0_

CH

1.S

ELO

0

PO

SIF

0.

IN1A

US

IC0_

CH

0.D

X0D

US

IC0_

CH

0.D

X1D

US

IC0_

CH

1.D

X2E

P1.2

VAD

C0.

E

MU

X01

CC

U40

. O

UT2

CC

U80

. O

UT1

0A

CM

P2.

OU

TU

SIC

0_C

H1.

DO

UT

0

PO

SIF

0.

IN0A

US

IC0_

CH

1.D

X0B

P1.3

VAD

C0.

E

MU

X02

CC

U40

. O

UT3

CC

U80

. O

UT1

1U

SIC

0_C

H1.

SCLK

OU

T

US

IC0_

CH

1.D

OU

T0

US

IC0_

CH

1.D

X0A

US

IC0_

CH

1.D

X1A

P1.4

VAD

C0.

E

MU

X10

US

IC0_

CH

1.SC

LKO

UT

CC

U80

. O

UT2

0U

SIC

0_C

H0.

SELO

0

US

IC0_

CH

1.S

ELO

1

US

IC0_

CH

0.D

X5E

US

IC0_

CH

1.D

X5E

P1.5

VAD

C0.

E

MU

X11

US

IC0_

CH

0.D

OU

T0

BC

CU

0.

OU

T1C

CU

80.

OU

T21

US

IC0_

CH

0.SE

LO1

US

IC0_

CH

1.S

ELO

2

US

IC0_

CH

1.D

X5F

P1.6

VAD

C0.

E

MU

X12

US

IC0_

CH

1.D

OU

T0

US

IC0_

CH

0.SC

LKO

UT

BC

CU

0.

OU

T2U

SIC

0_C

H0.

SELO

2

US

IC0_

CH

1.S

ELO

3

US

IC0_

CH

0.D

X5F

P2.0

ERU

0.

PDO

UT3

CC

U40

. O

UT0

ER

U0.

G

OU

T3C

CU

80.

OU

T20

US

IC0_

CH

0.D

OU

T0

US

IC0_

CH

0.S

CLK

OU

T

VAD

C0.

G

0CH

5E

RU

0.0B

0U

SIC

0_C

H0.

DX0

EU

SIC

0_C

H0.

DX

1EU

SIC

0_C

H1.

DX2

F

P2.1

ERU

0.

PDO

UT2

CC

U40

. O

UT1

ER

U0.

G

OU

T2C

CU

80.

OU

T21

US

IC0_

CH

0.D

OU

T0

US

IC0_

CH

1.S

CLK

OU

T

AC

MP2

.IN

PVA

DC

0.

G0C

H6

ER

U0.

1B0

US

IC0_

CH

0.D

X0F

US

IC0_

CH

1.D

X3A

US

IC0_

CH

1.D

X4A

P2.2

AC

MP2

.IN

NVA

DC

0.

G0C

H7

ER

U0.

0B1

US

IC0_

CH

0.D

X3A

US

IC0_

CH

0.D

X4A

US

IC0_

CH

1.D

X5A

OR

C0.

AI

N

P2.3

VAD

C0.

G

1CH

5E

RU

0.1B

1U

SIC

0_C

H0.

DX5

BU

SIC

0_C

H1.

DX

3CU

SIC

0_C

H1.

DX4

CO

RC

1.A

IN

P2.4

VAD

C0.

G

1CH

6E

RU

0.0A

1U

SIC

0_C

H0.

DX3

BU

SIC

0_C

H0.

DX

4BU

SIC

0_C

H1.

DX5

BO

RC

2.A

IN

Tabl

e2-

1Po

rt I/

O F

unct

ions

(con

t’d)

Func

tion

Out

puts

Inpu

ts

ALT

1A

LT2

ALT

3A

LT4

ALT

5A

LT6

ALT

7In

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

t

Page 30: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Data Sheet 2-30 V2.0, 2017-10Ports, V2.3

P2.5

VAD

C0.

G

1CH

7E

RU

0.1A

1U

SIC

0_C

H0.

DX5

DU

SIC

0_C

H1.

DX

3EU

SIC

0_C

H1.

DX4

EO

RC

3.A

IN

P2.6

AC

MP1

.IN

NVA

DC

0.

G0C

H0

ER

U0.

2A1

US

IC0_

CH

0.D

X3E

US

IC0_

CH

0.D

X4E

US

IC0_

CH

1.D

X5D

OR

C4.

AI

N

P2.7

AC

MP1

.IN

PVA

DC

0.

G1C

H1

ER

U0.

3A1

US

IC0_

CH

0.D

X5C

US

IC0_

CH

1.D

X3D

US

IC0_

CH

1.D

X4D

OR

C5.

AI

N

P2.8

AC

MP0

.IN

NVA

DC

0.

G0C

H1

VAD

C0.

G

1CH

0E

RU

0.3B

1U

SIC

0_C

H0.

DX3

DU

SIC

0_C

H0.

DX

4DU

SIC

0_C

H1.

DX5

CO

RC

6.A

IN

P2.9

AC

MP0

.IN

PVA

DC

0.

G0C

H2

VAD

C0.

G

1CH

4E

RU

0.3B

0U

SIC

0_C

H0.

DX5

AU

SIC

0_C

H1.

DX

3BU

SIC

0_C

H1.

DX4

BO

RC

7.A

IN

P2.1

0ER

U0.

PD

OU

T1C

CU

40.

OU

T2E

RU

0.

GO

UT1

CC

U80

. O

UT3

0A

CM

P0.

OU

TU

SIC

0_C

H1.

DO

UT

0

VAD

C0.

G

0CH

3V

ADC

0.

G1C

H2

ER

U0.

2B0

US

IC0_

CH

0.D

X3C

US

IC0_

CH

0.D

X4C

US

IC0_

CH

1.D

X0F

P2.1

1ER

U0.

PD

OU

T0C

CU

40.

OU

T3E

RU

0.

GO

UT0

CC

U80

. O

UT3

1U

SIC

0_C

H1.

SCLK

OU

T

US

IC0_

CH

1.D

OU

T0

AC

MP.

RE

FVA

DC

0.

G0C

H4

VAD

C0.

G

1CH

3E

RU

0.2B

1U

SIC

0_C

H1.

DX0

EU

SIC

0_C

H1.

DX

1E

Tabl

e2-

1Po

rt I/

O F

unct

ions

(con

t’d)

Func

tion

Out

puts

Inpu

ts

ALT

1A

LT2

ALT

3A

LT4

ALT

5A

LT6

ALT

7In

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

tIn

put

Inpu

t

Page 31: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Data Sheet 2-31 V2.0, 2017-10Ports, V3.1

Tabl

e2-

2H

ardw

are

Con

trol

led

I/O F

unct

ions

Func

tion

Out

puts

Inpu

tsPu

ll C

ontr

ol

HW

O0

HW

O1

HW

I0H

WI1

HW

0_PD

HW

0_PU

HW

1_PD

HW

1_PU

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P0.8

P0.9

P0.1

0

P0.1

1

P0.1

2

P0.1

3

P0.1

4

P0.1

5

P1.

0U

SIC

0_C

H0.

DO

UT0

US

IC0_

CH

0.H

WIN

0B

CC

U0.

OU

T2B

CC

U0.

OU

T2

P1.

1U

SIC

0_C

H0.

DO

UT1

US

IC0_

CH

0.H

WIN

1B

CC

U0.

OU

T3B

CC

U0.

OU

T3

P1.

2U

SIC

0_C

H0.

DO

UT2

US

IC0_

CH

0.H

WIN

2B

CC

U0.

OU

T4B

CC

U0.

OU

T4

P1.

3U

SIC

0_C

H0.

DO

UT3

US

IC0_

CH

0.H

WIN

3B

CC

U0.

OU

T5B

CC

U0.

OU

T5

P1.4

BC

CU

0.O

UT6

BC

CU

0.O

UT6

P1.5

BC

CU

0.O

UT7

BC

CU

0.O

UT7

P1.6

BC

CU

0.O

UT8

BC

CU

0.O

UT8

P2.0

BC

CU

0.O

UT1

BC

CU

0.O

UT1

P2.1

BC

CU

0.O

UT6

BC

CU

0.O

UT6

P2.2

BC

CU

0.O

UT0

BC

CU

0.O

UT0

CC

U40

.OU

T3C

CU

40.O

UT3

P2.3

AC

MP

2.O

UT

AC

MP2

.OU

T

P2.4

BC

CU

0.O

UT8

BC

CU

0.O

UT8

Page 32: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Data Sheet 2-32 V2.0, 2017-10Ports, V3.1

P2.5

AC

MP

1.O

UT

AC

MP1

.OU

T

P2.6

BC

CU

0.O

UT2

BC

CU

0.O

UT2

CC

U40

.OU

T3C

CU

40.O

UT3

P2.7

BC

CU

0.O

UT8

BC

CU

0.O

UT8

CC

U40

.OU

T3C

CU

40.O

UT3

P2.8

BC

CU

0.O

UT1

BC

CU

0.O

UT1

CC

U40

.OU

T2C

CU

40.O

UT2

P2.9

BC

CU

0.O

UT7

BC

CU

0.O

UT7

CC

U40

.OU

T2C

CU

40.O

UT2

P2.1

0B

CC

U0.

OU

T4B

CC

U0.

OU

T4

P2.1

1B

CC

U0.

OU

T5B

CC

U0.

OU

T5

Tabl

e2-

2H

ardw

are

Con

trol

led

I/O F

unct

ions

(con

t’d)

Func

tion

Out

puts

Inpu

tsPu

ll C

ontr

ol

HW

O0

HW

O1

HW

I0H

WI1

HW

0_PD

HW

0_PU

HW

1_PD

HW

1_PU

Page 33: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 33 V2.0, 2017-10

3 Electrical ParametersThis section provides the electrical parameters which are implementation-specific for theXMC1300.

3.1 General Parameters

3.1.1 Parameter InterpretationThe parameters listed in this section represent partly the characteristics of the XMC1300and partly its requirements on the system. To aid interpreting the parameters easilywhen evaluating them for a design, they are indicated by the abbreviations in the“Symbol” column:• CC

Such parameters indicate Controller Characteristics, which are distinctive feature ofthe XMC1300 and must be regarded for a system design.

• SRSuch parameters indicate System Requirements, which must be provided by theapplication system in which the XMC1300 is designed in.

Page 34: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 34 V2.0, 2017-10

3.1.2 Absolute Maximum RatingsStresses above the values listed under “Absolute Maximum Ratings” may causepermanent damage to the device. This is a stress rating only and functional operation ofthe device at these or any other conditions above those indicated in the operationalsections of this specification is not implied. Exposure to absolute maximum ratingconditions may affect device reliability.

Table 9 Absolute Maximum Rating ParametersParameter Symbol Values Unit Note /

Test Condition

Min.

Typ. Max.

Junction temperature TJ SR -40 – 115 °C –Storage temperature TST SR -40 – 125 °C –Voltage on power supply pin with respect to VSSP

VDDP SR -0.3 – 6 V –

Voltage on digital pins with respect to VSSP

1)

1) Excluding port pins P2.[1,2,6,7,8,9,11].

VIN SR -0.5 – VDDP + 0.5 or max. 6

V whichever is lower

Voltage on P2 pins with respect to VSSP

2)

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

VINP2 SR -0.3 – VDDP + 0.3 V –

Voltage on analog input pins with respect to VSSP

VAINVAREF SR

-0.5 – VDDP + 0.5 or max. 6

V whichever is lower

Input current on any pin during overload condition

IIN SR -10 – 10 mA –

Absolute maximum sum of all input currents during overload condition

ΣIIN SR -50 – +50 mA –

Page 35: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 35 V2.0, 2017-10

3.1.3 Pin Reliability in OverloadWhen receiving signals from higher voltage devices, low-voltage devices experienceoverload currents and voltages that go beyond their own IO power supplies specification.Table 10 defines overload conditions that will not cause any negative reliability impact ifall the following conditions are met:• full operation life-time is not exceeded• Operating Conditions are met for

– pad supply levels (VDDP)– temperature

If a pin current is outside of the Operating Conditions but within the overloadconditions, then the parameters of this pin as stated in the Operating Conditions can nolonger be guaranteed. Operation is still possible in most cases but with relaxedparameters.Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overloadcurrent is sufficient to handle failure situations like short to battery.

Figure 10 shows the path of the input currents during overload via the ESD protectionstructures. The diodes against VDDP and ground are a simplified representation of theseESD protection structures.

Table 10 Overload ParametersParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.Input current on any port pin during overload condition

IOV SR -5 – 5 mA

Absolute sum of all input circuit currents during overload condition

IOVS SR – – 25 mA

Page 36: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 36 V2.0, 2017-10

Figure 10 Input Overload Current via ESD structures

Table 11 and Table 12 list input voltages that can be reached under overload conditions.Note that the absolute maximum input voltages as defined in the Absolute MaximumRatings must not be exceeded during overload.

Table 11 PN-Junction Characterisitics for positive OverloadPad Type IOV = 5 mAStandard, High-current, AN/DIG_IN

VIN = VDDP + 0.5 VVAIN = VDDP + 0.5 VVAREF = VDDP + 0.5 V

P2.[1,2,6:9,11] VINP2 = VDDP + 0.3 V

Table 12 PN-Junction Characterisitics for negative OverloadPad Type IOV = 5 mAStandard, High-current, AN/DIG_IN

VIN = VSS - 0.5 VVAIN = VSS - 0.5 VVAREF = VSS - 0.5 V

P2.[1,2,6:9,11] VINP2 = VSS - 0.3 V

Pn.y IOVx

GNDESD Pad

GND

VDDPVDDP

Page 37: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 37 V2.0, 2017-10

3.1.4 Operating ConditionsThe following operating conditions must not be exceeded in order to ensure correctoperation and reliability of the XMC1300. All parameters specified in the following tablesrefer to these operating conditions, unless noted otherwise.

Table 13 Operating Conditions ParametersParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.Ambient Temperature TA SR -40 − 85 °C Temp. Range F

-40 − 105 °C Temp. Range XDigital supply voltage1)

1) See also the Supply Monitoring thresholds, Chapter 3.3.2.

VDDP SR 1.8 − 5.5 VMCLK Frequency fMCLK CC − − 33.2 MHz CPU clockPCLK Frequency fPCLK CC − − 66.4 MHz Peripherals

clockShort circuit current of digital outputs

ISC SR -5 − 5 mA

Absolute sum of short circuit currents of the device

ΣISC_D SR − − 25 mA

Page 38: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 38 V2.0, 2017-10

3.2 DC Parameters

3.2.1 Input/Output CharacteristicsTable 14 provides the characteristics of the input/output pins of the XMC1300.Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Note: Unless otherwise stated, input DC and AC characteristics, including peripheraltimings, assume that the input pads operate with the standard hysteresis.

Table 14 Input/Output Characteristics (Operating Conditions apply)Parameter Symbol Limit Values Unit Test Conditions

Min. Max.Output low voltage on port pins(with standard pads)

VOLP CC – 1.0 V IOL = 11 mA (5 V)IOL = 7 mA (3.3 V)

– 0.4 V IOL = 5 mA (5 V)IOL = 3.5 mA (3.3 V)

Output low voltage on high current pads

VOLP1 CC – 1.0 V IOL = 50 mA (5 V)IOL = 25 mA (3.3 V)

– 0.32 V IOL = 10 mA (5 V)– 0.4 V IOL = 5 mA (3.3 V)

Output high voltage on port pins(with standard pads)

VOHP CC VDDP - 1.0

– V IOH = -10 mA (5 V)IOH = -7 mA (3.3 V)

VDDP - 0.4

– V IOH = -4.5 mA (5 V)IOH = -2.5 mA (3.3 V)

Output high voltage on high current pads

VOHP1 CC VDDP - 0.32

– V IOH = -6 mA (5 V)

VDDP - 1.0

– V IOH = -8 mA (3.3 V)

VDDP - 0.4

– V IOH = -4 mA (3.3 V)

Input low voltage on port pins (Standard Hysteresis)

VILPS SR – 0.19 × VDDP

V CMOS Mode (5 V, 3.3 V & 2.2 V)

Page 39: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 39 V2.0, 2017-10

Input high voltage on port pins (Standard Hysteresis)

VIHPS SR 0.7 × VDDP

– V CMOS Mode(5 V, 3.3 V & 2.2 V)

Input low voltage on port pins (Large Hysteresis)

VILPL SR – 0.08 × VDDP

V CMOS Mode (5 V, 3.3 V & 2.2 V)18)

Input high voltage on port pins (Large Hysteresis)

VIHPL SR 0.85 × VDDP

– V CMOS Mode(5 V, 3.3 V & 2.2 V)18)

Rise time on High Current Pad1)

tHCPR CC – 9 ns 50 pF @ 5 V2)

– 12 ns 50 pF @ 3.3 V3)

– 25 ns 50 pF @ 1.8 V4)

Fall time on High Current Pad1)

tHCPF CC – 9 ns 50 pF @ 5 V2)

– 12 ns 50 pF @ 3.3 V3)

– 25 ns 50 pF @ 1.8 V4)

Rise time on Standard Pad1)

tR CC – 12 ns 50 pF @ 5 V5)

– 15 ns 50 pF @ 3.3 V6)

– 31 ns 50 pF @ 1.8 V7)

Fall time on Standard Pad1)

tF CC – 12 ns 50 pF @ 5 V5)

– 15 ns 50 pF @ 3.3 V6)

– 31 ns 50 pF @ 1.8 V7)

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont’d)

Parameter Symbol Limit Values Unit Test ConditionsMin. Max.

Page 40: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 40 V2.0, 2017-10

Input Hysteresis8) HYS CC 0.08 × VDDP

– V CMOS Mode (5 V), Standard Hysteresis

0.03 × VDDP

– V CMOS Mode (3.3 V), Standard Hysteresis

0.02 × VDDP

– V CMOS Mode (2.2 V), Standard Hysteresis

0.5 × VDDP

0.75 × VDDP

V CMOS Mode(5 V),Large Hysteresis

0.4 × VDDP

0.75 × VDDP

V CMOS Mode(3.3 V),Large Hysteresis

0.2 × VDDP

0.65 × VDDP

V CMOS Mode(2.2 V),Large Hysteresis

Pin capacitance (digital inputs/outputs)

CIO CC – 10 pF

Pull-up resistor on port pins

RPUP CC 20 50 kohm VIN = VSSP

Pull-down resistor on port pins

RPDP CC 20 50 kohm VIN = VDDP

Input leakage current9) IOZP CC -1 1 μA 0 < VIN < VDDP,TA ≤ 105 °C

Voltage on any pin during VDDP power off

VPO SR – 0.3 V 10)

Maximum current per pin (excluding P1, VDDP and VSS)

IMP SR -10 11 mA –

Maximum current per high currrent pins

IMP1A SR -10 50 mA –

Maximum current into VDDP (TSSOP16, VQFN24)

IMVDD1 SR – 130 mA 18)

Maximum current into VDDP (TSSOP38, VQFN40)

IMVDD2 SR – 260 mA 18)

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont’d)

Parameter Symbol Limit Values Unit Test ConditionsMin. Max.

Page 41: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 41 V2.0, 2017-10

Maximum current out of VSS (TSSOP16, VQFN24)

IMVSS1 SR – 130 mA 18)

Maximum current out of VSS (TSSOP38, VQFN40)

IMVSS2 SR – 260 mA 18)

1) Rise/Fall time parameters are taken with 10% - 90% of supply.2) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.150 ns/pF at 5 V supply voltage.3) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.4) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.5) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.225 ns/pF at 5 V supply voltage.6) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.7) Additional rise/fall time valid for CL = 50 pF - CL = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.8) Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot

be guaranteed that it suppresses switching due to external system noise.9) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.10) However, for applications with strict low power-down current requirements, it is mandatory that no active

voltage source is supplied at any GPIO pin when VDDP is powered off.

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont’d)

Parameter Symbol Limit Values Unit Test ConditionsMin. Max.

Page 42: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 42 V2.0, 2017-10

3.2.2 Analog to Digital Converters (ADC) Table 15 shows the Analog to Digital Converter (ADC) characteristics.Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Table 15 ADC Characteristics (Operating Conditions apply)1)

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

Supply voltage range (internal reference)

VDD_int SR 2.0 – 3.0 V SHSCFG.AREF = 11BCALCTR.CALGNSTC = 0CH

3.0 – 5.5 V SHSCFG.AREF = 10B

Supply voltage range (external reference)

VDD_ext SR

3.0 – 5.5 V SHSCFG.AREF = 00B

Analog input voltage range

VAIN SR VSSP- 0.05

– VDDP+ 0.05

V

Auxiliary analog reference ground

VREFGND SR

VSSP- 0.05

– 1.0 V G0CH0

VSSP- 0.05

– 0.2 V G1CH0

Internal reference voltage (full scale value)

VREFINT CC

5 V

Switched capacitance of an analog input

CAINS CC – 1.2 2 pF GNCTRxz.GAINy = 00B (unity gain)

– 1.2 2 pF GNCTRxz.GAINy = 01B (gain g1)

– 4.5 6 pF GNCTRxz.GAINy = 10B (gain g2)

– 4.5 6 pF GNCTRxz.GAINy = 11B (gain g3)

Total capacitance of an analog input

CAINT CC – – 10 pF

Total capacitance of the reference input

CAREFT CC

– – 10 pF

Page 43: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 43 V2.0, 2017-10

Gain settings GIN CC 1 – GNCTRxz.GAINy = 00B (unity gain)

3 – GNCTRxz.GAINy = 01B (gain g1)

6 – GNCTRxz.GAINy = 10B (gain g2)

12 – GNCTRxz.GAINy = 11B (gain g3)

Sample Time tsample CC 3 – – 1 / fADC

VDD = 5.0 V

3 – – 1 / fADC

VDD = 3.3 V

30 – – 1 / fADC

VDD = 2.0 V

Sigma delta loop hold time

tSD_hold CC

20 – – μs Residual charge stored in an active sigma delta loop remains available

Conversion timein fast compare mode

tCF CC 9 1 / fADC

2)

Conversion timein 12-bit mode

tC12 CC 20 1 / fADC

2)

Maximum sample rate in 12-bit mode 3)

fC12 CC – – fADC / 42.5

– 1 samplepending

– – fADC / 62.5

– 2 samplespending

Conversion timein 10-bit mode

tC10 CC 18 1 / fADC

2)

Maximum sample rate in 10-bit mode 3)

fC10 CC – – fADC / 40.5

– 1 samplepending

– – fADC / 58.5

– 2 samplespending

Conversion timein 8-bit mode

tC8 CC 16 1 / fADC

2)

Table 15 ADC Characteristics (Operating Conditions apply)1) (cont’d)

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

Page 44: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 44 V2.0, 2017-10

Maximum sample rate in 8-bit mode 3)

fC8 CC – – fADC / 38.5

– 1 samplepending

– – fADC / 54.5

– 2 samplespending

RMS noise 4) ENRMS CC

– 1.5 – LSB12

DC input, VDD = 5.0 V,VAIN = 2.5 V,25°C

DNL error EADNL CC – ±2.0 – LSB12

INL error EAINL CC – ±4.0 – LSB12

Gain error with external reference

EAGAIN CC

– ±0.5 – % SHSCFG.AREF = 00B (calibrated)

Gain error with internal reference 5)

EAGAIN CC

– ±3.6 – % SHSCFG.AREF = 1XB (calibrated),-40°C - 105°C

– ±2.0 – % SHSCFG.AREF = 1XB (calibrated),0°C - 85°C

Offset error EAOFF CC – ±8.0 – mV Calibrated,VDD = 5.0 V

1) The parameters are defined for ADC clock frequency fSH = 32MHz, SHSCFG.DIVS = 0000B. Usage of anyother frequencies may affect the ADC performance.

2) No pending samples assumed, excluding sampling time and calibration.3) Includes synchronization and calibration (average of gain and offset calibration).4) This parameter can also be defined as an SNR value: SNR[dB] = 20 × log(AMAXeff / NRMS).

With AMAXeff = 2N / 2, SNR[dB] = 20 × log ( 2048 / NRMS) [N = 12].NRMS = 1.5 LSB12, therefore, equals SNR = 20 × log (2048 / 1.5) = 62.7 dB.

5) Includes error from the reference voltage.

Table 15 ADC Characteristics (Operating Conditions apply)1) (cont’d)

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

Page 45: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 45 V2.0, 2017-10

Figure 11 ADC Voltage Supply

MC_VADC_AREFPATHS

AREF

:

VA

GN

D

SARConverter

VC

AL

VSS

VDDInternal

Reference

REFSEL

01

001X

VD

D

CH7..

CH0

VDDint/VDDext

VAIN

VREFGND VREFINT

CHNR

VAREF

VREF

Page 46: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 46 V2.0, 2017-10

3.2.3 Out of Range Comparator (ORC) CharacteristicsThe Out-of-Range Comparator (ORC) triggers on analog input voltages (VAIN) above theVDDP on selected input pins (ORCx.AIN) and generates a service request trigger(ORCx.OUT).Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Figure 12 ORCx.OUT Trigger Generation

Table 16 Out of Range Comparator (ORC) Characteristics (Operating Conditions apply; VDDP = 3.0 V - 5.5 V; CL = 0.25 pF)

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

DC Switching Level VODC CC 54 − 183 mV VAIN ≥ VDDP + VODC

Hysteresis VOHYS CC 15 − 54 mVAlways detected Overvoltage Pulse

tOPDD CC 103 − - ns VAIN ≥ VDDP + 150 mV88 − - ns VAIN ≥ VDDP + 350 mV

Never detected Overvoltage Pulse

tOPDN CC − − 21 ns VAIN ≥ VDDP + 150 mV− − 11 ns VAIN ≥ VDDP + 350 mV

Detection Delay of a persistent Overvoltage

tODD CC 39 − 132 ns VAIN ≥ VDDP + 150 mV31 − 121 ns VAIN ≥ VDDP + 350 mV

Release Delay tORD CC 44 − 240 ns VAIN ≤ VDDP; VDDP = 5 V57 − 340 ns VAIN ≤ VDDP; VDDP = 3.3 V

Enable Delay tOED CC − − 300 ns ORCCTRL.ENORCx = 1

VSS

VDDP

tORD

V OD

C

V OH

YS

tODD

ORCx.OUT

ORCx.AIN

Page 47: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 47 V2.0, 2017-10

Figure 13 ORC Detection Ranges

VAIN (V)

VSSA

VDDP + 350 mV

VDDP + 150 mV

Overvoltage may be

detected(long enough,

level uncertain )

Never detected

Overvoltage Pulse

(Too short)

T < tOPDNtOPDN < T < tOPDD

Overvoltage may be

detected

T > tOPDD

Always detected Overvoltage Pulse

T < tOPDN

Never detected

Overvoltage Pulse

(Too short)

tOPDN < T < tOPDD T > tOPDD

Always detected Overvoltage Pulse

VDDP + 60 mV

Overvoltage may be

detected

T > tOPDD

Never detected

Overvoltage Pulse

(Too low)

VDDP

Page 48: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 48 V2.0, 2017-10

3.2.4 Analog Comparator Characteristics Table 17 below shows the Analog Comparator characteristics.Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Table 17 Analog Comparator Characteristics (Operating Conditions apply)Parameter Symbol Limit Values Unit Notes/

Test ConditionsMin. Typ. Max.Input Voltage VCMP SR -0.05 – VDDP +

0.05V

Input Offset VCMPOFF CC – +/-3 – mV High power modeΔ VCMP < 200 mV

– +/-20 – mV Low power modeΔ VCMP < 200 mV

Propagation Delay1)

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

tPDELAY CC – 25 – ns High power mode, Δ VCMP = 100 mV

– 80 – ns High power mode, Δ VCMP = 25 mV

– 250 – ns Low power mode, Δ VCMP = 100 mV

– 700 – ns Low power mode, Δ VCMP = 25 mV

Current Consumption

IACMP CC – 100 – μA First active ACMP in high power mode, ΔVCMP > 30 mV

– 66 – μA Each additional ACMP in high power mode, ΔVCMP > 30 mV

– 10 – μA First active ACMP in low power mode

– 6 – μA Each additional ACMP in low power mode

Input Hysteresis VHYS CC – +/-15 – mVFilter Delay1) tFDELAY CC – 5 – ns

Page 49: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 49 V2.0, 2017-10

3.2.5 Temperature Sensor Characteristics Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Table 18 Temperature Sensor CharacteristicsParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.Measurement time tM CC − − 10 msTemperature sensor range TSR SR -40 − 115 °CSensor Accuracy1)

1) The temperature sensor accuracy is independent of the supply voltage.

TTSAL CC -6 – 6 °C TJ > 20°C -10 – 10 °C 0°C ≤ TJ ≤ 20°C− -/+8 – °C TJ < 0°C

Start-up time after enabling tTSSTE SR − − 15 μs

Page 50: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 50 V2.0, 2017-10

3.2.6 Power Supply Current The total power supply current defined below consists of a leakage and a switchingcomponent.Application relevant values are typically lower than those given in the following tables,and depend on the customer's system operating conditions (e.g. thermal connection orused application configurations).Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Table 19 Power Supply Parameters; VDDP = 5VParameter Symbol Values Unit Note /

Test ConditionMin.

Typ.1) Max.

Active mode currentPeripherals enabledfMCLK / fPCLK in MHz2)

IDDPAE CC − 9.2 12 mA 32 / 64 − 8.1 - mA 24 / 48− 6.6 - mA 16 / 32− 5.5 - mA 8 / 16− 4 - mA 1 / 1

Active mode currentPeripherals disabledfMCLK / fPCLK in MHz3)

IDDPAD CC − 4.8 - mA 32 / 64 − 4.1 - mA 24 / 48− 3.3 - mA 16 / 32− 2.7 - mA 8 / 16− 1.5 - mA 1 / 1

Active mode currentCode execution from RAMFlash is powered downfMCLK / fPCLK in MHz

IDDPAR CC − 7.3 - mA 32 / 64 − 6.3 - mA 24 / 48− 5.2 - mA 16 / 32− 4.2 - mA 8 / 16− 3.3 - mA 1 / 1

Sleep mode currentPeripherals clock enabledfMCLK / fPCLK in MHz4)

IDDPSE CC − 6.6 - mA 32 / 64 5.8 - mA 24 / 485.1 - mA 16 / 324.4 - mA 8 / 163.7 - mA 1 / 1

Page 51: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 51 V2.0, 2017-10

Sleep mode currentPeripherals clock disabledFlash activefMCLK / fPCLK in MHz5)

IDDPSD CC − 1.8 - mA 32 / 64 1.7 - mA 24 / 481.6 - mA 16 / 321.5 - mA 8 / 161.4 - mA 1 / 1

Sleep mode currentPeripherals clock disabledFlash powered downfMCLK / fPCLK in MHz6)

IDDPSR CC − 1.2 - mA 32 / 64 1.1 - mA 24 / 481.0 - mA 16 / 320.8 - mA 8 / 160.7 - mA 1 / 1

Deep Sleep mode current7) IDDPDS CC − 0.24 - mAWake-up time from Sleep to Active mode8)

tSSA CC − 6 - cycles

Wake-up time from Deep Sleep to Active mode9)

tDSA CC − 280 - μsec

1) The typical values are measured at TA = + 25 °C and VDDP = 5 V.2) CPU and all peripherals clock enabled, Flash is in active mode.3) CPU enabled, all peripherals clock disabled, Flash is in active mode.4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.5) CPU in sleep, Flash is in active mode.6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.8) CPU in sleep, Flash is in active mode during sleep mode.9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

Table 19 Power Supply Parameters; VDDP = 5VParameter Symbol Values Unit Note /

Test ConditionMin.

Typ.1) Max.

Page 52: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 52 V2.0, 2017-10

Figure 14 shows typical graphs for active mode supply current for VDDP = 5V, VDDP =3.3V, VDDP = 1.8V across different clock frequencies.

Figure 14 Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current IDDPA over supply voltage VDDP for different clock

frequencies

0123456789

10

1/1 8/16 16/32 24/48 32/64

I (m A)

MCLK / PCLK (MHz)

IDDPA E 5V/3.3V

IDDPA E 1.8V

IDDPA D 5V/3.3V/1.8V

Condition:1. TA = +25° C

Page 53: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 53 V2.0, 2017-10

Figure 15 shows typical graphs for sleep mode current for VDDP = 5V, VDDP = 3.3V, VDDP= 1.8V across different clock frequencies.

Figure 15 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current IDDPSR over supply voltage VDDP for different clock frequencies

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 /1 8 /1 6 1 6 /32 2 4 /48 3 2 /64

I (m A )

M C L K / P C L K (M H z )

ID DP S R5 V /3 .3 V /1 .8 V

C o n d it io n :1 . T A = + 2 5 ° C

Page 54: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 54 V2.0, 2017-10

Table 20 provides the active current consumption of some modules operating at 5 Vpower supply at 25° C. The typical values shown are used as a reference guide on thecurrent consumption when these modules are enabled.

Table 20 Typical Active Current ConsumptionActive Current Consumption

Symbol Limit Values

Unit Test Condition

Typ.Baseload current ICPUDDC 5.04 mA Modules including Core, SCU,

PORT, memories, ANATOP1)

1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loopin the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

VADC and SHS IADCDDC 3.4 mA Set CGATCLR0.VADC to 12)

2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

USIC0 IUSIC0DDC 0.87 mA Set CGATCLR0.USIC0 to 13)

3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

CCU40 ICCU40DDC 0.94 mA Set CGATCLR0.CCU40 to 14)

4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switchingfrom 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle

CCU80 ICCU80DDC 0.42 mA Set CGATCLR0.CCU80 to 15)

5) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU8 slice with PWM frequencyat 1500Hz and a period match interrupt used to toggle duty cycle between 10% and 90%

POSIF0 IPIF0DDC 0.26 mA Set CGATCLR0.POSIF0 to 16)

6) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, hall sensor mode

BCCU0 IBCCU0DDC 0.24 mA Set CGATCLR0.BCCU0 to 17)

7) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normalmode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s

MATH IMATHDDC 0.35 mA Set CGATCLR0.MATH to 18)

8) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, tangent calculation in whileloop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11

WDT IWDTDDC 0.03 mA Set CGATCLR0.WDT to 19)

9) Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB =0x00008000; WDT serviced every 1s

RTC IRTCDDC 0.01 mA Set CGATCLR0.RTC to 110)

10) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

Page 55: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 55 V2.0, 2017-10

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/orcharacterization.

Table 21 Flash Memory ParametersParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.Erase Time per page / sector

tERASE CC 6.8 7.1 7.6 ms

Program time per block

tPSER CC 102 152 204 μs

Wake-Up time tWU CC − 32.2 − μsRead time per word ta CC − 50 − nsData Retention Time tRET CC 10 − − years Max. 100 erase /

program cyclesFlash Wait States 1)

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typicalvalues are calculated from the execution of the Dhrystone benchmark program.

NWSFLASH CC 0 0 0 fMCLK = 8 MHz0 1 1 fMCLK = 16 MHz1 1.3 2 fMCLK = 32 MHz

Fixed Flash Wait States configured in bit NVM_NVMCONF.WS

NFWSFLASH SR

0 0 1 NVM_CONFIG1.FIXWS = 1B,fMCLK ≤ 16 MHz

1 1 1 NVM_CONFIG1.FIXWS = 1B,16 MHz < fMCLK ≤ 32 MHz

Erase Cycles NECYC CC − − 5*104 cycles Sum of page and sector erase cycles

Total Erase Cycles NTECYC CC − − 2*106 cycles

Page 56: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 56 V2.0, 2017-10

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

10%

90%

VSS

VDDP

tR tF

10%

90%

VDDP / 2 VDDP / 2

VDDP

VSS

Test Points

VLOAD + 0.1V Timing Reference

PointsVLOAD - 0.1V

VOH - 0.1V

VOL + 0.1V

Page 57: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 57 V2.0, 2017-10

3.3.2 Power-Up and Supply Monitoring Characteristics Table 22 provides the characteristics of the power-up and supply monitoring inXMC1300. The guard band between the lowest valid operating voltage and the brownout resetthreshold provides a margin for noise immunity and hysteresis. The electricalparameters may be violated while VDDP is outside its operating range. The brownout detection triggers a reset within the defined range. The prewarningdetection can be used to trigger an early warning and issue corrective and/or fail-safeactions in case of a critical supply voltage drop.Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Table 22 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

VDDP ramp-up time tRAMPUP SR VDDP/ SVDDPrise

− 107 μs

VDDP slew rate SVDDPOP SR 0 − 0.1 V/μs Slope during normal operation

SVDDP10 SR 0 − 10 V/μs Slope during fast transient within +/-10% of VDDP

SVDDPrise SR 0 − 10 V/μs Slope during power-on or restart after brownout event

SVDDPfall1) SR 0 − 0.25 V/μs Slope during

supply falling out of the +/-10% limits2)

VDDP prewarning voltage

VDDPPW CC 2.1 2.25 2.4 V ANAVDEL.VDEL_SELECT = 00B

2.85 3 3.15 V ANAVDEL.VDEL_SELECT = 01B

4.2 4.4 4.6 V ANAVDEL.VDEL_SELECT = 10B

Page 58: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 58 V2.0, 2017-10

Figure 19 Supply Threshold Parameters

VDDP brownout reset voltage

VDDPBO CC 1.55 1.62 1.75 V calibrated, before user code starts running

VDDP voltage to ensure defined pad states

VDDPPA CC − 1.0 − V

Start-up time from power-on reset

tSSW SR − 320 – μs Time to the first user code instruction3)

BMI program time tBMI SR − 8.25 – ms Time taken from a user-triggered system reset after BMI installation is is requested

1) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as statedfor this parameter.

2) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only tothe chip. A larger capacitor value has to be chosen if the power source sink a current.

3) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHzand the clocks to peripheral as specified in register CGATSTAT0 are gated.

Table 22 Power-Up and Supply Monitoring Parameters (Operating Conditions apply) (cont’d)

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

VDDP}

5.0V

VDDPPW

VDDPBO

Page 59: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 59 V2.0, 2017-10

3.3.3 On-Chip Oscillator Characteristics

Note: These parameters are not subject to production test, but verified by design and/orcharacterization.

Table 23 provides the characteristics of the 64 MHz clock output from the digitalcontrolled oscillator, DCO1 in XMC1300.

Table 23 64 MHz DCO1 Characteristics (Operating Conditions apply)Parameter Symbol Limit Values Unit Test Conditions

Min. Typ. Max.Nominal frequency fNOM CC – 64 – MHz under nominal

conditions1) after trimming

1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C.

Accuracy2)

2) The accuracy can be further improved through alternative methods, refer to XMC1000 Oscillator HandlingApplication Note.

ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (TA = 0 °C to 85 °C)

-3.9 – 4.0 % with respect to fNOM(typ), over temperature (TA = -40 °C to 105 °C)

Page 60: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 60 V2.0, 2017-10

Figure 20 shows the typical curves for the accuracy of DCO1, with and withoutcalibration based on temperature sensor, respectively.

Figure 20 Typical DCO1 accuracy over temperature

Table 24 provides the characteristics of the 32 kHz clock output from digital controlledoscillators, DCO2 in XMC1300.

Table 24 32 kHz DCO2 Characteristics (Operating Conditions apply)Parameter Symbol Limit Values Unit Test Conditions

Min. Typ. Max.Nominal frequency fNOM CC – 32.75 – kHz under nominal

conditions1) after trimming

1) The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25 °C.

Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0 °C to 85 °C)

-3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40 °C to 105 °C)

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

Acc

urac

y [%

]

Temperature [ C]

Without calibration based on temperature sensor

With calibration based on temperature sensor

°

Page 61: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 61 V2.0, 2017-10

3.3.4 Serial Wire Debug Port (SW-DP) Timing The following parameters are applicable for communication through the SW-DPinterface.Note: These parameters are not subject to production test, but verified by design and/or

characterization.

Figure 21 SWD Timing

Table 25 SWD Interface Timing Parameters(Operating Conditions apply)Parameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.SWDCLK high time t1 SR 50 – 500000 ns –SWDCLK low time t2 SR 50 – 500000 ns –SWDIO input setupto SWDCLK rising edge

t3 SR 10 – – ns –

SWDIO input holdafter SWDCLK rising edge

t4 SR 10 – – ns –

SWDIO output valid time after SWDCLK rising edge

t5 CC – – 68 ns CL = 50 pF– – 62 ns CL = 30 pF

SWDIO output hold time from SWDCLK rising edge

t6 CC 4 – – ns

SWDCLK

SWDIO(Output )

t1 t2

t6

t5

SWDIO(Input )

t3 t4

Page 62: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 62 V2.0, 2017-10

3.3.5 SPD Timing Requirements The optimum SPD decision time between 0B and 1B is 0.75 µs. With this value thesystem has maximum robustness against frequency deviations of the sampling clock ontool and on device side. However it is not always possible to exactly match this valuewith the given constraints for the sample clock. For instance for a oversampling rate of4, the sample clock will be 8 MHz and in this case the closest possible effective decisiontime is 5.5 clock cycles (0.69 µs).

For a balanced distribution of the timing robustness of SPD between tool and device, thetiming requirements for the tool are:• Frequency deviation of the sample clock is +/- 5%• Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal

sample frequency)

Table 26 Optimum Number of Sample Clocks for SPDSample Freq.

Sampling Factor

Sample Clocks 0B

Sample Clocks 1B

Effective Decision Time1)

1) Nominal sample frequency period multiplied with 0.5 + (max. number of 0B sample clocks)

Remark

8 MHz 4 1 to 5 6 to 12 0.69 µs The other closest option (0.81 µs) for the effective decision time is less robust.

Page 63: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 63 V2.0, 2017-10

3.3.6 Peripheral Timings Note: These parameters are not subject to production test, but verified by design and/or

characterization.

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing The following parameters are applicable for a USIC channel operated in SSC mode.Note: Operating Conditions apply.

Table 27 USIC SSC Master Mode TimingParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.SCLKOUT master clock period

tCLK CC 62.5 − − ns

Slave select output SELO active to first SCLKOUT transmit edge

t1 CC 80 − − ns

Slave select output SELO inactive after last SCLKOUT receive edge

t2 CC 0 − − ns

Data output DOUT[3:0] valid time

t3 CC -10 − 10 ns

Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge

t4 SR 80 − − ns

Data input DX0/DX[5:3] hold time from SCLKOUT receive edge

t5 SR 0 − − ns

Page 64: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 64 V2.0, 2017-10

Table 28 USIC SSC Slave Mode TimingParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.DX1 slave clock period tCLK SR 125 − − nsSelect input DX2 setup to first clock input DX1 transmit edge1)

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, andreceive data input (bits DXnCR.DSEN = 0).

t10 SR 10 − − ns

Select input DX2 hold after last clock input DX1 receive edge1)

t11 SR 10 − − ns

Receive data input DX0/DX[5:3] setup time to shift clock receive edge1)

t12 SR 10 − − ns

Data input DX0/DX[5:3] hold time from clock input DX1 receive edge1)

t13 SR 10 − − ns

Data output DOUT[3:0] valid time

t14 CC - − 80 ns

Page 65: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 65 V2.0, 2017-10

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave selectsignal is low-active, and the serial clock signal is not shifted and not inverted.

t2t1

USIC_SSC_TMGX.VSD

Clock OutputSCLKOUT

Data OutputDOUT[3:0]

t3 t3

t5

Datavalid

t4

First Transmit Edge

Data InputDX0/DX[5:3]

Select OutputSELOx Active

Master Mode Timing

Slave Mode Timing

t11t10

Clock InputDX1

Data OutputDOUT[3:0]

t14 t14

Datavalid

Data InputDX0/DX[5:3]

Select InputDX2

Active

t13

t12

Transmit Edge: with this clock edge, transmit data is shifted to transmit data output.Receive Edge: with this clock edge, receive data at receive data input is latched.

Receive Edge

Last Receive Edge

InactiveInactive

Transmit Edge

InactiveInactive

First Transmit Edge

Receive Edge

Transmit Edge

Last Receive Edge

t5

Datavalid

t4

Datavalid

t12

t13

Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal.

Page 66: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 66 V2.0, 2017-10

3.3.6.2 Inter-IC (IIC) Interface Timing The following parameters are applicable for a USIC channel operated in IIC mode.Note: Operating Conditions apply.

Table 29 USIC IIC Standard Mode Timing1)

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal linesneed to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

Fall time of both SDA and SCL

t1 CC/SR

- - 300 ns

Rise time of both SDA and SCL

t2 CC/SR

- - 1000 ns

Data hold time t3 CC/SR

0 - - µs

Data set-up time t4 CC/SR

250 - - ns

LOW period of SCL clock t5 CC/SR

4.7 - - µs

HIGH period of SCL clock t6 CC/SR

4.0 - - µs

Hold time for (repeated) START condition

t7 CC/SR

4.0 - - µs

Set-up time for repeated START condition

t8 CC/SR

4.7 - - µs

Set-up time for STOP condition

t9 CC/SR

4.0 - - µs

Bus free time between a STOP and START condition

t10 CC/SR

4.7 - - µs

Capacitive load for each bus line

Cb SR - - 400 pF

Page 67: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 67 V2.0, 2017-10

Table 30 USIC IIC Fast Mode Timing1)

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal linesneed to operate in open-drain mode. The high level on these lines must be held by an external pull-up device,approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Parameter Symbol Values Unit Note / Test ConditionMin. Typ. Max.

Fall time of both SDA and SCL

t1 CC/SR

20 + 0.1*Cb2)

2) Cb refers to the total capacitance of one bus line in pF.

- 300 ns

Rise time of both SDA and SCL

t2 CC/SR

20 + 0.1*Cb

- 300 ns

Data hold time t3 CC/SR

0 - - µs

Data set-up time t4 CC/SR

100 - - ns

LOW period of SCL clock t5 CC/SR

1.3 - - µs

HIGH period of SCL clock t6 CC/SR

0.6 - - µs

Hold time for (repeated) START condition

t7 CC/SR

0.6 - - µs

Set-up time for repeated START condition

t8 CC/SR

0.6 - - µs

Set-up time for STOP condition

t9 CC/SR

0.6 - - µs

Bus free time between a STOP and START condition

t10 CC/SR

1.3 - - µs

Capacitive load for each bus line

Cb SR - - 400 pF

Page 68: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 68 V2.0, 2017-10

Figure 23 USIC IIC Stand and Fast Mode Timing

3.3.6.3 Inter-IC Sound (IIS) Interface Timing The following parameters are applicable for a USIC channel operated in IIS mode.Note: Operating Conditions apply.

Table 31 USIC IIS Master Transmitter TimingParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.Clock period t1 CC 2/fMCLK - - ns VDDP ≥ 3 V

4/fMCLK - - ns VDDP < 3 VClock HIGH t2 CC 0.35 x

t1min

- - ns

Clock Low t3 CC 0.35 x t1min

- - ns

Hold time t4 CC 0 - - nsClock rise time t5 CC - - 0.15 x

t1min

ns

SCL

SDA

SCL

SDA

t1 t2

t1 t2

t10

t9t7t8

t7

t3

t4

t5

t6

P SSr

S

70%

30%

9th

clock

9th

clock

Page 69: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Electrical Parameters

Data Sheet 69 V2.0, 2017-10

Figure 24 USIC IIS Master Transmitter Timing

Figure 25 USIC IIS Slave Receiver Timing

Table 32 USIC IIS Slave Receiver TimingParameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.Clock period t6 SR 4/fMCLK - - nsClock HIGH t7 SR 0.35 x

t6min

- - ns

Clock Low t8 SR 0.35 x t6min

- - ns

Set-up time t9 SR 0.2 x t6min

- - ns

Hold time t10 SR 10 - - ns

SCK

WA/DOUT

t1

t5 t3

t2

t4

SCK

WA/DIN

t6

t10

t8

t7

t9

Page 70: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 70 V2.0, 2017-10

4 Package and ReliabilityThe XMC1300 is a member of the XMC1000 Family of microcontrollers. It is alsocompatible to a certain extent with members of similar families or subfamilies.Each package is optimized for the device it houses. Therefore, there may be slightdifferences between packages of the same pin-count but for different device types. Inparticular, the size of the exposed die pad may vary.If different device types are considered or planned for an application, it must be ensuredthat the board layout fits all packages under consideration.

4.1 Package ParametersTable 33 provides the thermal characteristics of the packages used in XMC1300.

Note: For electrical reasons, it is required to connect the exposed pad to the boardground VSSP, independent of EMC and thermal requirements.

4.1.1 Thermal ConsiderationsWhen operating the XMC1300 in a system, the total heat generated in the chip must bedissipated to the ambient environment to prevent overheating and the resulting thermaldamage.The maximum heat that can be dissipated depends on the package and its integrationinto the target board. The “Thermal resistance RΘJA” quantifies these parameters. Thepower dissipation must be limited so that the average junction temperature does notexceed 115 °C.

Table 33 Thermal Characteristics of the PackagesParameter Symbol Limit Values Unit Package Types

Min. Max.Exposed Die Pad Dimensions

Ex × EyCC

- 2.7 × 2.7 mm PG-VQFN-24-19- 3.7 × 3.7 mm PG-VQFN-40-13

Thermal resistance Junction-Ambient

RΘJA CC - 104.6 K/W PG-TSSOP-16-81)

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

- 83.2 K/W PG-TSSOP-28-161)

- 70.3 K/W PG-TSSOP-38-91)

- 46.0 K/W PG-VQFN-24-191)

- 38.4 K/W PG-VQFN-40-131)

Page 71: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 71 V2.0, 2017-10

The difference between junction temperature and ambient temperature is determined byΔT = (PINT + PIOSTAT + PIODYN) × RΘJA

The internal power consumption is defined asPINT = VDDP × IDDP (switching current and leakage current).The static external power consumption caused by the output drivers is defined asPIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL)The dynamic external power consumption caused by the output drivers (PIODYN) dependson the capacitive load connected to the respective pins and their switching frequencies.If the total power dissipation for a given system configuration exceeds the defined limit,countermeasures must be taken to ensure proper system operation:• Reduce VDDP, if possible in the system• Reduce the system frequency• Reduce the number of output pins• Reduce the load on active output drivers

Page 72: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 72 V2.0, 2017-10

4.2 Package Outlines

Figure 26 PG-TSSOP-38-9

Page 73: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 73 V2.0, 2017-10

Figure 27 PG-TSSOP-28-16

Page 74: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 74 V2.0, 2017-10

Figure 28 PG-TSSOP-16-8

Page 75: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 75 V2.0, 2017-10

Figure 29 PG-VQFN-24-19

Page 76: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Package and Reliability

Data Sheet 76 V2.0, 2017-10

Figure 30 PG-VQFN-40-13

All dimensions in mm.

Page 77: XMC1300 Data Sheet - Infineon Technologies

XMC1300 AB-StepXMC1000 Family

Quality Declaration

Data Sheet 77 V2.0, 2017-10

5 Quality DeclarationTable 34 shows the characteristics of the quality parameters in the XMC1300.

Table 34 Quality ParametersParameter Symbol Limit Values Unit Notes

Min. Max.ESD susceptibility according to Human Body Model (HBM)

VHBM SR

- 2000 V Conforming to EIA/JESD22-A114-B

ESD susceptibility according to Charged Device Model (CDM) pins

VCDM SR

- 500 V Conforming to JESD22-C101-C

Moisture sensitivity level MSL CC

- 3 - JEDECJ-STD-020D

Soldering temperature TSDR SR

- 260 °C Profile according to JEDECJ-STD-020D

Page 78: XMC1300 Data Sheet - Infineon Technologies

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG