68
1 Supplementary Information Modular Engineering for Efficient Photosynthetic Biosynthesis of 1-Butanol from CO 2 in Cyanobacteria Xufeng Liu, Rui Miao, Pia Lindberg, Peter Lindblad* Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden [email protected] [email protected] [email protected] *Correspondence to: [email protected] Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2019

Xufeng Liu, Rui Miao, Pia Lindberg, Peter Lindblad*lighting, fed-batch, photoautotrophic condition, 30 C/ 18 days 0.03 g/L Modified clostridial pathway 3 Synechococcus elongatus PCC7942

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

1

Supplementary Information

Modular Engineering for Efficient Photosynthetic Biosynthesis of 1-Butanol from CO2 in Cyanobacteria

Xufeng Liu, Rui Miao, Pia Lindberg, Peter Lindblad*

Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523,

SE-751 20 Uppsala, Sweden

[email protected]

[email protected]

[email protected]

*Correspondence to: [email protected]

Electronic Supplementary Material (ESI) for Energy & Environmental Science.This journal is © The Royal Society of Chemistry 2019

2

Table of Contents

Supplementary Figure 1………………………………………………………………………………………………………..3

Supplementary Figure 2………………………………………………………………………………………………………..5

Supplementary Figure 3………………………………………………………………………………………………………..6

Supplementary Figure 4………………………………………………………………………………………………………..6

Supplementary Figure 5………………………………………………………………………………………………………..7

Supplementary Figure 6………………………………………………………………………………………………………..7

Supplementary Figure 7………………………………………………………………………………………………………..8

Supplementary Figure 8………………………………………………………………………………………………………..8

Supplementary Figure 9………………………………………………………………………………………………………..9

Supplementary Figure 10…………………………………………………………………………………………………….10

Supplementary Figure 11…………………………………………………………………………………………………….11

Supplementary Figure 12…………………………………………………………………………………………………….12

Supplementary Figure 13…………………………………………………………………………………………………….13

Supplementary Figure 14…………………………………………………………………………………………………….14

Supplementary Table 1. Comparison of microbial cell factories for 1-butanol production…..15

Supplementary Table 2. Genes, 5’-regions and other genetic elements used in this study….18

Supplementary Table 3. Summary of experimentally verified PK enzymes………………………….22

Supplementary Table 4. Plasmids used in this study……………………………………………………………25

Supplementary Table 5. Synechocystis strains used in this study…………………………………………28

Supplementary Table 6. Primers used in this study………………………………………….………………….32

Supplementary Table 7. Sequence of codon optimized synthetic genes used in this study….40

References for Supplementary Information……………………………………………………..…………………64

3

Supplementary Figure 1 Schematic diagram of the multi-level modular engineering in

Synechocystis PCC 6803. To establish the boundaries, the engineered biosynthesis is

visualized in four Modules, Module 1, 2, 3 and 4, respectively. (a) Biosynthetic scheme for

complete biosynthesis of 1-butanol from CO2, and the detailed engineering targets

implemented in this study. Heterologous and endogenous enzymes are shown in blue and

black font, respectively. Metabolite abbreviations: Ru5P, ribulose-5-phosphate; RuBP,

ribulose-1,5-bisphosphate; 3PGA, 3-phosphoglycerate; G3P, glyceraldehyde-3-phosphate;

F6P, fructose-6-phosphate; E4P, erythrose-4-phosphate; X5P, xylulose-5-phosphate; PEP,

phosphoenolpyruvate; Acetyl-P, acetyl-phosphate; PHB, poly-3-hydroxybutyrate. (b)

4

Simplified schematic of the multi-level modular engineering. The general modular

engineering strategy, with only engineering and assembling work applied for individual

modules, was further upgraded to an organic integration of combinatorial engineering of

each module and discrete multi-level tuning, and thus we termed this chimeric architecture

a multi-level modular engineering. (c) Chemical structures of metabolites in 1-butanol

biosynthetic pathway for Module 1.

5

Introducing and re-casting the 1-butanol biosynthetic pathway (Module 1)

Supplementary Figure 2 Summary of genetic arrangement for 1-butanol biosynthetic genes

and pathways screening in Module 1. Enzyme evaluation and screen was systematically

performed by engineering diverse sets of strains with different combinations of pathway

genes. (a) The expression units of strains BOH1-4 and BOH13 harboring the last four steps of

clostridial pathway. (b) The expression units of strains BOH5-12, BOH14 and BOH15

harboring the last five steps of reversed β-oxidation pathway. (c) The expression units of

strain BOH31 harboring slr1192OP for the last four steps of clostridial pathway. (d) The

expression units of strains BOH16-17 and BOH23-26 harboring the PhaA route of clostridial

pathway. (e) The expression units of strains BOH18-19 and BOH27-29 harboring the NphT7

route of clostridial pathway. (f) The expression units of strains BOH20-22 harboring the

reversed β-oxidation pathway. For (a-e), the alternative genes can replace their counterpart

genes.

6

Supplementary Figure 3 1-Butanol production and cell density of strains BOH5, BOH7,

BOH9-12, BOH14 and BOH15 to compare diversified 1-butanol biosynthetic genes via the

last five steps of reversed β-oxidation pathway. The time point, “+”, “-” and other detailed

annotations are as described in Fig. 2(b-e) legend. All data are presented as mean ± SD of

biological triplicates.

Supplementary Figure 4 Western-immunoblotting results of strains BOH16, BOH18 and

BOH23-29 to evaluate protein expression of wild type enzymes and enzymes modified by

amino acid substitutions. Western-immunoblots against different affinity tag fusions are

aligned for each variant. Desired protein bands with specific antibody binding were observed

for each engineered strain, labeled for each lane. The observed molecular weights agree

with predictions from their sequences. Heterologous and endogenous enzymes

overexpressed are shown in blue and black font, respectively.

7

Supplementary Figure 5 The effect of codon optimized slr1192 for Synechocystis (slr1192OP)

on 1-butanol production and protein expressing. (a) 1-Butanol production and cell density of

strains BOH3, BOH30 and BOH31 to compare slr1192 and slr1192OP via the last four steps of

clostridial pathway. The time point, colored columns, “+”, “-” and other detailed annotations

are as described in Fig. 2(b-e) legend. All data are presented as mean ± SD of biological

triplicates. (b) Western-immunoblotting results of strains BOH1, BOH3, BOH30 and BOH31 to

evaluate protein expressing of slr1192 and slr1192OP. The detailed annotations are as

described in Supplementary Fig. 4 legend.

Supplementary Figure 6 Schematic diagram of re-casted 1-butanol biosynthetic pathway

using better performing enzymes in Module 1. Heterologous and endogenous enzymes are

shown in blue and black font, respectively.

8

Optimizing the 5’-regions of expression units (Module 1+2)

Supplementary Figure 7 Enzyme expression levels visualized by Western immunoblots in

Module 2. (a) Western-immunoblotting results of strains BOH31-35 to evaluate protein

expressing of PduP and Slr1192OP with different 5’-regions. (b) Western-immunoblotting

results of strains BOH32 and BOH40-47 to evaluate protein expressing of Ter, Ccr and PhaJ

with different 5’-regions. (c) Western-immunoblotting results of strains BOH48-57 to

evaluate protein expressing of PhaA, NphT7 and PhaBT173S with different 5’-regions. For (a-c),

the detailed annotations are as described in Supplementary Fig. 4 legend.

Supplementary Figure 8 Screening the 5’-regions of pduP-slr1192OP operon when PpsbA2-

ter-phaJ substituted with PtrccoreBCD-ccr-phaJ. (a) 1-Butanol production and cell density of

strains BOH36-39 and BOH45 to screen the 5’-regions of pduP-slr1192OP operon combined

9

with PtrccoreBCD-ccr-phaJ via the last four steps of clostridial pathway. The time point,

colored columns, “+”, “-” and other detailed annotations are as described in Fig. 2(b-e)

legend. All data are presented as mean ± SD of biological triplicates. Illustration of

expression units in the strategy designed for 5’-regions screening are show in the left panel.

(b) Western-immunoblotting results of strains BOH36-39 and BOH45 to evaluate protein

expressing of PduP and Slr1192OP with different 5’-regions. The detailed annotations are as

described in Supplementary Fig. 4 legend.

Supplementary Figure 9 Schematic diagram of further optimized 1-butanol biosynthetic

pathway and 5’-regions of the three expression units with combined Modules 1 and 2 in

strain BOH56. Heterologous and endogenous enzymes are shown in blue and black font,

respectively.

10

Rewiring carbon flux (Module 1+2+3)

Supplementary Figure 10 Western-immunoblotting results of strains BOH45 and BOH58-60

to evaluate protein expressing of Ccr and PhaJ with different integration sites. The detailed

annotations are as described in Supplementary Fig. 4 legend.

11

Rewriting the central carbon metabolism (Module 1+2+3+4)

Supplementary Figure 11 Evaluation of three positive transcriptional regulators of the sugar

catabolism in Synechocystis. (a) 1-Butanol production and cell density of strains BOH56 and

BOH61-63 to evaluate SigE, Rre37 and Hik8 via the clostridial pathway. The time point,

colored columns, “+”, “-” and other detailed annotations are as described in Fig. 2(b-e)

legend. All data are presented as mean ± SD of biological triplicates. Genetic architecture of

expression units are shown in the lower panel. (b) Western-immunoblotting results of strains

BOH56 and BOH61-63 to evaluate protein expressing of SigE, Rre37 and Hik8. The detailed

annotations are as described in Supplementary Fig. 4 legend.

12

Supplementary Figure 12 Schematic diagram of optimized photoautotrophic 1-butanol

biosynthetic pathway from CO2 with four modules assembled in strain BOH78. Heterologous,

endogenous and inactivated endogenous enzymes are shown in blue, black and grey font,

respectively. See Fig. 1 regarding abbreviations of metabolites.

13

Supplementary Figure 13 Experimental procedure of optimizing the photosynthetic

conditions in the sealed cultivation system of Synechocystis strains for 1-butanol production.

At the same time, a modified long-term cultivation method was set up by titrating HCl to

adjust culture pH. The 1-butanol high-yielding strain BOH78 and control strain EmptyV5

were cultured for 30 days. Three replicates were used to determine cell density and 1-

butanol titer.

14

Supplementary Figure 14 Cell growth and 1-butanol production in a long-term cultivation of

Synechocystis strains. (a) Growth curve of strain EmptyV5 cultivated under various

conditions for 30 days. Strain EmptyV5 serves as the background control, which is not

engineered with any 1-butanol pathway genes. (b) Growth curve of strain BOH78 cultivated

under various conditions for 30 days. (c) Time course of in-flask 1-butanol production of

strain BOH78 cultivated under various conditions for 30 days. For (a-c), L20, L50 and L100

represent the cells were cultivated under light intensity 20, 50 and 100 μmol photons m-2 s-1,

respectively. 1d indicates that the NaHCO3 was supplemented into and sample was taken

from the culture every day, while 2d indicates the same operation every second day.

Measurements of cell growth were performed every day. 1-Butanol titer was measured

every day or every second day, depending on the NaHCO3 feeding rate. All data are

presented as mean ± SD of biological triplicates.

15

Supplementary Table 1 Comparison of microbial cell factories for 1-butanol production

Microorganism Medium/ Carbon source

Cultivation mode/ Cultivation timea

Titer Pathway Reference

Cyanobacteria

Synechocystis

PCC 6803

BG11/

NaHCO3

Shake plug-sealed flask,

constant lighting, fed-batch,

photoautotrophic condition, 30

°C/ 28 days

4.8 g/L Re-casted

clostridial

pathway

This study

Synechocystis

PCC 6803

BG11/

NaHCO3

Parafilm-sealed 24-well plates,

constant lighting, batch,

photoautotrophic condition, 28

°C/ 8 days

0.036

g/L

Modified

clostridial

pathway

1

Synechococcus

elongatus

PCC7942

BG11/

NaHCO3

Dark test tube, batch, anaerobic

condition, 30°C/ 7 days

0.0145

g/L

Modified

clostridial

pathway

2

Synechococcus

elongatus

PCC7942

BG11/

NaHCO3

Shake screw-cap flask, constant

lighting, fed-batch,

photoautotrophic condition, 30

°C/ 18 days

0.03

g/L

Modified

clostridial

pathway

3

Synechococcus

elongatus

PCC7942

BG11/

NaHCO3

Shake screw-cap flask, constant

lighting, fed-batch,

photoautotrophic condition, 30

°C/ 12 days

0.404

g/L

Modified

clostridial

pathway

4

Synechococcus

elongatus

PCC7942

BG11/

NaHCO3

Shake screw-cap flask, constant

lighting, fed-batch,

photoautotrophic condition, 30

°C/ 6 days

0.418

g/L

Modified

clostridial

pathway

5

Escherichia coli

E. coli BW25113 M9 medium/

Glucose

Shake screw-cap flask, batch, 30

°C/ 100 hours

0.088

g/L

2-Ketoacid

pathway

6

E. coli BW25113 M9 medium/

Glucose

Shake screw-cap flask, batch, 30

°C/ 72 hours

1 g/L 2-Ketoacid

pathway via

threonine

7

E. coli BW25113 M9 medium/

Glucose

Shake screw-cap flask, batch, 30

°C/ 92 hours

0.524

g/L

2-Ketoacid

pathway via

citramalate

8

E. coli BW25113 Terrific Broth

(TB) medium/

Shake sealed glass tube, batch,

semi-aerobic condition, 37 °C/

0.552

g/L

Modified

clostridial

9

16

Glycerol 24 hours pathway

E. coli JM109 M9 medium/

Glucose

Stirred in bottle, batch,

anaerobic condition, 30 °C/ 60

hours

1.2 g/L Clostridial

pathway

10

E. coli BL21Star

(DE3)

TB medium/

Glycerol

Shake screw-cap flask, batch, 30

°C/ 48 hours

0.58

g/L

Modified

clostridial

pathway

11

E. coli BW25113 TB medium/

Glucose

Shake sealed tube, fed-batch,

anaerobic condition 37°C/ 72

hours.

Lab scale bioreactor,

continuous fermentation in

aerobic–anaerobic dual stage,

30 °C/ 7 days

15 g/L,

30 g/L

Modified

clostridial

pathway

12

E. coli DH1 TB medium/

Glucose

Shake sealed baffled flask, fed-

batch, anaerobic condition, 30

°C/ 72 hours

4.65

g/L

Modified

clostridial

pathway

13

E. coli MG1655 Minimal salts

medium/

Glucose

Shake baffled flask, batch, 30

°C/ 24 hours.

Lab scale fermentor, continuous

fermentation, 30 °C/ 36 hours

2.2 g/L,

14.5

g/L

Reversed β-

oxidation

pathway

14

E. coli BL21Star

(DE3)

TB medium/

Glucose

Shake oxygen permeable screw-

cap flask, batch, aerobic

conditions, 30 °C/ 24 hours

0.3 g/L Fatty acid

biosynthetic

pathway

15

Yeast- Saccharomyces cerevisiae

Saccharomyces

cerevisiae

BY4742

SD medium/

Galactose

Shake capped vials, batch, semi-

aerobic condition, 30 °C/ 72

hours

0.0025

g/L

Modified

clostridial

pathway

16

Saccharomyces

cerevisiae

CEN.PK113-11C

Minimal

medium/

Glucose

Shake unbaffled flask, batch,

aerobic condition, 30 °C/ N.R.

0.0016

g/L

Modified

clostridial

pathway

17

Saccharomyces

cerevisiae

CEN.PK113-11C

SCD medium /

Glucose

Shake unbaffled flask, batch,

oxygen-limited condition, 30

°C/ 48 hours

0.12

g/L

Modified

clostridial

pathway

18

Saccharomyces

cerevisiae

YPD medium/

Glucose

Shake vial, batch, anaerobic

condition, 30 °C/ 15 days

0.3 g/L Modified

clostridial

pathway

19

Saccharomyces SMD medium/ Shake sealed flask, batch, 0.86 Modified 20

17

cerevisiae VSY0 Glucose aerobic condition, 30 °C/ 74

hours

g/L clostridial

pathway

Saccharomyces

cerevisiae

BY4741

Verduyn

medium/

Glucose

Shake flask, batch, 30 °C/ 55

hours

0.092

g/L

2-Ketoacid

pathway via

glycine

21

Saccharomyces

cerevisiae

YSG50

YPAD

medium/

Glucose

Shake sealed glass tube, batch,

micro-aerobic condition, 30 °C/

48 hours

0.243

g/L

2-Ketoacid

pathway via

Ehrlich

pathway

22

Saccharomyces

cerevisiae

YSG50

YPAD

medium/

Glucose

Shake sealed glass tube, batch,

micro-anaerobic condition, 30

°C/ N.R.

Bioreactor, batch, micro-

anaerobic condition, 30 °C/ N.R.

0.835

g/L

1.05

g/L

2-Ketoacid

pathway via

threonine &

citramalate

23

Saccharomyces

cerevisiae

CEN.PK2−1C

SCD-Ura

medium/

Glucose

Shake unbaffled flask, batch,

oxygen-limited condition, 30

°C/ N.R.

0.02

g/L

Reversed β-

oxidation

pathway

24

Saccharomyces

cerevisiae

CEN.PK113-5D

SMD medium/

Glucose

Shake sealed flask, batch, semi-

anaerobic condition, 30 °C/ 74

hours

0.13

g/L

Reversed β-

oxidation

pathway

25

a, The cultivation time refers to the time when the highest 1-butanol production reached.

N.R. = not reported.

18

Supplementary Table 2 Genes, 5’-regions and other genetic elements used in this study

Heterologous genes with codon optimization for Synechocystis PCC 6803

Gene Enzyme Full name Source GenBank ID Size (bp)a

N-terminal

tagyqhD YqhD Alcohol dehydrogenase

(ADH)

E. coli MG1655 ACT44688.1 1164 Strep

yjgB YjgB Alcohol dehydrogenase

(ADH)

E. coli MG1655 AAA97166.1 1020 Strep

pduP PduP CoA-acylating aldehyde

dehydrogenase

Salmonella

enterica

AAD39015 1395 Flag

mhpF MhpF CoA-acylating aldehyde

dehydrogenase

E. coli MG1655 NC_000913 951 His

ter Ter trans-2-enoyl-CoA

reductase

Treponema

denticola

Q73Q47.1 1194 His

ccr Ccr Crotonyl-CoA reductase Streptomyces

coelicolor

U37135.1 1344 His

phaJ PhaJ (R)-specific enoyl-CoA

hydratase

Aeromonas

caviae

O32472 405 Strep

fadB FadB 3-Hydroxyacyl-CoA

dehydrogenase and enoyl-

CoA hydratase

E. coli MG1655 NC_000913 2190 Flag

phaB PhaB (R)-3-hydroxybutyryl-CoA

dehydrogenase

Ralstonia

eutropha H16

AEI76813 741 Flag

phaA PhaA Acetoacetyl-CoA synthase Ralstonia

eutropha H16

P14611 1182 Flag

nphT7 NphT7 Acetoacetyl-CoA synthase Streptomyces sp.

Strain CL190

BAJ10048 990 Flag

pkBb PKBb Phosphoketolase Bifidobacterium

breve strain 203

GU936109 2478 Strep

pkLm PKLm Phosphoketolase Leuconostoc

mesenteroides

ATCC 8293

ZP_0006311

9

2442 Strep

pkLl PKLl Phosphoketolase Lactococcus lactis

IL1403

NP_267658 2469 Strep

pkCa PKCa Phosphoketolase Clostridium

acetobutylicum

ATCC 824

CA_C1343 2391 Strep

19

pkPa PKPa Phosphoketolase Pseudomonas

aeruginosa

PAO1

NP_252303.

1

2406 Strep

pkAn PKAn Phosphoketolase Aspergillus

nidulans A187

AN4913.3 2343 Strep

pkLp1 PKLp1 Phosphoketolase Lactobacillus

plantarum WCFS1

NP_786060.

1

2391 Strep

pkLp2 PKLp2 Phosphoketolase Lactobacillus

plantarum WCFS1

NP_786753.

1

2367 Strep

ptaBs PtaBS Phosphotransacetylaseb Bacillus subtilis NP_391646 972 His

Heterologous genes encoding proteins with amino acid substitutions

Gene Enzyme Wild-type enzyme

Note N-terminal

tag phaBQ47L PhaBQ47L PhaB Increased recognition of NADPH, decreased acetoacetyl-

CoA binding activity26

Flag

phaBT173S PhaBT173S PhaB Improved acetoacetyl-CoA binding activity, influenced

interaction with NADPH26

Flag

phaBQ47L,

T173S

PhaBQ47L,

T173S

PhaB A double mutant bearing Q47L and T173S substitutions was

first constructed in this study, intended to improve both

NADPH and acetoacetyl-CoA binding activity.

Flag

phaAF219Y PhaAF219Y PhaA Reported more than 2-fold activity enhancement in vitro27 Flag

Endogenous genes to overexpress in Synechocystis PCC 6803

Gene Enzyme Full name Note Size (bp)a

N-terminal

tagslr1192 Slr1192 Alcohol dehydrogenase

(ADH)

1011 Strep

slr1192OP

Slr1192OP

Alcohol dehydrogenase

(ADH)

Codon optimized for

Synechocystis PCC 6803 (83%

identical with slr1192 on

nucleotide level).

1011 Strep

slr0942 Slr0942 Alcohol dehydrogenase

(ADH)

984 Strep

slr1994 Slr1994 (R)-3-hydroxybutyryl-CoA

dehydrogenase

Endogenous PhaB 723 Flag

slr1993 Slr1993 Acetoacetyl-CoA synthase Endogenous PhaA 1230 Flag

sigE

(sll1689)

SigE A group 2 sigma factor for

RNA Polymerase

Codon optimized for

Synechocystis PCC 6803

1110 Strep

20

rre37

(sll1330)

Rre37 An OmpR-type response

regulator

Codon optimized for

Synechocystis PCC 6803

753 Strep

hik8

(sll0750)

Hik8 A KaiC-associated histidine

kinase

Codon optimized for

Synechocystis PCC 6803

1152 Strep

pkSs

(slr0453)

PKSs Phosphoketolase Endogenous PK. Codon optimized

for Synechocystis PCC 6803

2466 Strep

Endogenous genes used as integration sites in Synechocystis PCC 6803

Gene Enzyme Full name Gene ID in Cyanobase and note Size

(bp)

phaE &

phaC

PhaE &

PhaC

Poly-3-hydroxybutyrate

(PHB) synthase

slr1829 and slr1830. PhaE and PhaC catalyze

the irreversible reaction to generate PHB

from (R)-3-hydroxybutyryl-CoA.28

993 &

1137

acs Acs Acetyl-coenzyme A

synthetase

sll0542. Annotated Acs catalyzes the

irreversible reaction to generate acetyl-CoA

from acetate, consuming ATP to form AMP.

1962

pta Pta Phosphotransacetylaseb slr2132. Annotated Pta catalyzes the

reversible reaction to generate acetyl-CoA

from acetyl-P.

2094

ach Ach Acetyl-CoA hydrolase slr1888. Annotated Ach catalyzes the

irreversible reaction to generate acetate

directly from acetyl-CoA.

1893

ackA AckA Acetate kinase sll1299. Annotated AckA catalyzes the

reversible reaction to generate acetate

directly from acetyl-P, with ATP formed.

1242

slr0168 Slr0168 slr0168. A neutral site29 1932

Promoters and 5’-regions related to this study

Promoter/ 5’-region Note

PpsbA2 A native promoter of psbA2 gene in Synechocystis PCC 680330,31

Ptrc A heterologous promoter family commonly used as inducible strong promoters,

while shown constitutive expression in Synechocystis due to inefficient

regulation.32,33

Ptrc2O A modified version of Ptrc with two lac operators, shown the most strength in

different Ptrc versions tested in Synechocystis.32

PtrccoreBCD An artificial 5’-region, translational coupling BCD (bicistronic design, a strong system

to initiate translation and provide more reliable expression from previous reports34),

with the Ptrccore (a Ptrc promoter with no operator sites based on the construction

strategy in BCD study).

21

PtrccoreRiboJ An artificial 5’-region translational coupling RiboJ (self-cleaving ribozyme, a strong

system to initiate translation and provide more reliable expression from previous

reports35,36), with the Ptrccore.

Pcpc560 A newly discovered native strong promoter in Synechocystis PCC 680337

Other genetic elements in the expression units

Genetic elements

Full name Note

RBS* A strong ribosome binding site

(RBS)31,38-40

Added in front of each gene, except the first gene

behind promoter, to allow initiation of translation.

T Terminator BBa_B001538 Placed behind the last gene in every expression units.

SpR Spectinomycin resistance cassette Placed behind T. 1032 bp.

KmR Kanamycin resistance cassette Placed behind T. 992 bp.

EmR Erythromycin resistance cassette Placed behind T. 999 bp.

a, The gene size is the original size before the tag is added in the N-terminal part of each gene.

b, Longer variants of phosphotransacetylase (Pta) are found in E. coli and Synechocystis PCC 6803, composed of

about 700 amino acids. The shorter variant of Pta, composed of 323 amino acids, was identified in B. subtilis,

and is similar only to the C-terminal part of the longer variants of Pta41.

22

Supplementary Table 3 Summary of experimentally verified PK enzymes

Genus or phylum

Species PK selecteda

Reasons for selection for this study and references

Prokaryotic heterotrophic bacteria

Bifidobacterium breve strain

203PKBb

Bifidobacterium breve

D6PAH1-

Bifidobacterium lactis

DSM10140-

Bifidobacterium animalis

JCM1190-

Bifidobacterium longum

biovar longum NCC2705-

Bifidobacterium longum

JCM1217-

Bifidobacterium longum

BB536-

Bifidobacterium

adolescentis ATCC 15703-

Bifidobacterium bifidum

CECT4549-

Bifidobacterium

Bifidobacterium infantis

CECT4551-

1. PK from B. breve strain 203 exhibits high

amino-acid sequence identity (94%) to PK

from B. Lactis.42

2. Amino-acid sequence of PK from B.

animalis JCM1190 is 96.8% identical to the PK

from B. lactis.43

3. All PKs from Bifidobacterium genus show

high homology.44-47

4. PK from B. breve showed higher activity

than the other two PKs from B. Lactis and B.

adolescentis in vitro.48

5. By comparison of the reported activities in

vitro of different PKs in the literature, PK from

B. breve strain 203 shows the highest

activities among PKs from Bifidobacterium

genus.49

Thus, PK from B. breve strain 203 (PKBb) was

selected for this study.

Leuconostoc mesenteroides

C7 (LMC7)-

Leuconostoc mesenteroides

ATCC 8293 (LM8293)PKLm

Leuconostoc mesenteroides

R19318 (J18)-

Leuconostoc

Leuconostoc oenos

(Oenococcus oeni) PSU-1-

1. PK from L. mesenteroides C7 has the same

amino-acid sequence with PK from L.

mesenteroides ATCC 8293.50

2. All PKs from Leuconostoc genus show high

homology.

Thus, PK from L. mesenteroides ATCC 8293

(PKLm) was selected for this study.

Lactococcus lactis IL1403PKLl

Lactococcus lactis KF147 -

Lactococcus lactis IO-1 -Lactococcus

Lactococcus cremoris

MG1363-

1. All PKs from Lactococcus genus show high

homology.

2. PK from L. lactis IL1403 is the most

investigated among Lactococcus genus.

Thus, PK from L. lactis IL1403 (PKLl) was

selected for this study.

23

ClostridiumClostridium acetobutylicum

ATCC 824PKCa

PK from C. acetobutylicum ATCC 824 (PKCa) is

the only choice from Clostridium genus.

Pseudomonas aeruginosa

ATCC 15442PKPa

Pseudomonas

Pseudomonas aeruginosa

PAO1-

1. PK from P. aeruginosa ATCC 15442 has only

two different amino acids with PK from P.

aeruginosa PAO1.51

2. PK from P. aeruginosa ATCC 15442 had

substantially higher activity than PK from L.

lactis IL1403 or L. mesenteroides in vitro.52

Thus, PK from P. aeruginosa ATCC 15442

(PKPa) is a potential choice for this study.

Lactobacillus pentosus

MD363-

Lactobacillus paraplantarum

C7-

Lactobacillus reuteri

ATCC 55730-

Lactobacillus

Lactobacillus plantarum

WCFS1

PKLp1

PKLp2

1. L. plantarum WCFS1 has two PKs (PKLp1

and PKLp2), with 67% identity of amino-acid

sequence.52

2. Both PKLp1 and PKLp2 displayed

significantly higher activity than PK from L.

paraplantarum C7 in vitro.48

3. The amino-acid sequence of PKLp1 is 98.5%

and 98.7% identical with PK from L. pentosus

MD363 and L. paraplantarum C7,

respectively.53

4. All PKs from Lactobacillus genus show high

homology.54

5. PKLp1 and PKLp2 are the most investigated

among Lactobacillus genus.

Thus, both two PKs from L. plantarum WCFS1

(PKLp1 and PKLp2) were selected for this

study.

Filamentous fungi

Aspergillus nidulans A187

(A4)PKAn

Termitomyces clypeatus-

Metarhizium anisopliaeemi-

Filamentous

fungi

Cryptococcus neoformans-

1. PK from A. nidulans A187 was most

frequently used for biochemicals production

among all PKs in the literature.

2. PK from A. nidulans A187 is the most

investigated among filamentous fungi.

Thus, considering the low homology between

fungi and Synechocystis, only the PK from A.

nidulans A187 (PKAn) in filamentous fungi

was selected to be expressed in

Synechocystis.

24

Cyanobacteria

Anabaena PCC 7120 -

Cyanobacteria

Synechocystis PCC 6803 PKSs

1. Two PKs from Anabaena55 and a PK from

Synechocystis56 have been experimentally

verified so far.

2. These PKs from cyanobacteria show high

homology.54,55

The PK from Synechocystis (PKSs) only

contributes to heterotrophic or

photomixotrophic metabolism,56 and thus it is

potentially interesting to constitutively

overexpress this native PK under

photoautotrophic conditions in Synechocystis.

a, The source genus and species are designated by the two letters immediately following the PK symbol.

25

Supplementary Table 4 Plasmids used in this study

Backbone vector Integration site Promoter Antibiotics resistancea Reference

pEERM1 psbA2 PpsbA2 Km 38

pPhaEC phaE & phaC (slr1829 & 1830) PpsbA2 Km This study

pAcs acs (sll0542) PpsbA2 Em This study

pPta pta (slr2132) PpsbA2 Sp This study

pPtaE pta (slr2132) Ptrc2O Em This study

pAch ach (slr1888) Ptrc2O Em This study

pAckA ackA (sll1299) Ptrc2O Sp This study

pNSI Neutral site I (slr0168) Ptrc2O Sp This study

pNSIE Neutral site I (slr0168) Ptrc2O Em This study

Plasmid Relevant characteristicsb, c Reference

Module 1

pXL1 pPhaEC-(PpsbA2-pduP-yqhD-T) This study

pXL2 pPhaEC-(PpsbA2-pduP-yjgB-T) This study

pXL3 pPhaEC-(PpsbA2-pduP-slr1192-T) This study

pXL4 pPhaEC-(PpsbA2-pduP-slr0942-T) This study

pXL5 pAcs-(PpsbA2-ter-phaJ-T) This study

pXL6 pAcs-(PpsbA2-ter-fadB-T) This study

pXL7 pAcs-(PpsbA2-ccr-fadB-T) This study

pXL8 pPhaEC-(PpsbA2-mhpF-yqhD-T) This study

pXL9 pPhaEC-(PpsbA2-mhpF-slr1192-T) This study

pXL10 pPta-(PpsbA2-phaA-phaB-T) This study

pXL11 pPta-(PpsbA2-slr1993-slr1994-T) This study

pXL12 pPta-(PpsbA2-nphT7-phaB-T) This study

pXL13 pPta-(PpsbA2-nphT7-slr1994-T) This study

pXL14 pPta-(PpsbA2-phaA-T) This study

pXL15 pPta-(PpsbA2-slr1993-T) This study

pXL16 pPta-(PpsbA2-nphT7-T) This study

pXL17 pPta-(PpsbA2-phaAF219Y-phaB-T) This study

pXL18 pPta-(PpsbA2-phaA-phaBQ47L-T) This study

pXL19 pPta-(PpsbA2-phaA-phaBT173S-T) This study

pXL20 pPta-(PpsbA2-phaA-phaBQ47L, T173S-T) This study

pXL21 pPta-(PpsbA2-nphT7-phaBQ47L-T) This study

pXL22 pPta-(PpsbA2-nphT7-phaBT173S-T) This study

pXL23 pPta-(PpsbA2-nphT7-phaBQ47L, T173S-T) This study

pXL24 pPhaEC-(PpsbA2-pduP -T) This study

26

pXL25 pPhaEC-(PpsbA2-pduP-slr1192OP-T) This study

Module 1+2

pXL26 pPhaEC-(Ptrc2O-pduP-slr1192OP-T) This study

pXL27 pPhaEC-(PtrccoreBCD-pduP-slr1192OP-T) This study

pXL28 pPhaEC-(PtrccoreRiboJ-pduP-slr1192OP-T) This study

pXL29 pPhaEC-(Pcpc560-pduP-slr1192OP-T) This study

pXL30 pAcs-(Ptrc2O-ter-phaJ-T) This study

pXL31 pAcs-(PtrccoreBCD-ter-phaJ-T) This study

pXL32 pAcs-(PtrccoreRiboJ-ter-phaJ-T) This study

pXL33 pAcs-(Pcpc560-ter-phaJ-T) This study

pXL34 pAcs-(Ptrc2O-ccr-phaJ-T) This study

pXL35 pAcs-(PtrccoreBCD-ccr-phaJ-T) This study

pXL36 pAcs-(PtrccoreRiboJ-ccr-phaJ-T) This study

pXL37 pAcs-(Pcpc560-ccr-phaJ-T) This study

pXL38 pPta-(Ptrc2O-phaA-phaBT173S-T) This study

pXL39 pPta-(PtrccoreBCD-phaA-phaBT173S-T) This study

pXL40 pPta-(PtrccoreRiboJ-phaA-phaBT173S-T) This study

pXL41 pPta-(Pcpc560-phaA-phaBT173S-T) This study

pXL42 pPta-(Ptrc2O-nphT7-phaBT173S-T) This study

pXL43 pPta-(PtrccoreBCD-nphT7-phaBT173S-T) This study

pXL44 pPta-(PtrccoreRiboJ-nphT7-phaBT173S-T) This study

pXL45 pPta-(Pcpc560-nphT7-phaBT173S-T) This study

Module 1+2+3

pXL46 pAch-(PtrccoreBCD-ccr-phaJ-T) This study

pXL47 pPtaE-(PtrccoreBCD-ccr-phaJ-T) This study

pXL48 pNSIE-(PtrccoreBCD-ccr-phaJ-T) This study

Module 1+2+3+4

pXL49 pAcs-(PtrccoreBCD-ccr-phaJ-sigE-T) This study

pXL50 pAcs-(PtrccoreBCD-ccr-phaJ-rre37-T) This study

pXL51 pAcs-(PtrccoreBCD-ccr-phaJ-hik8-T) This study

pXL52 pAch-(PtrccoreBCD-ccr-phaJ-pkBb-T) This study

pXL53 pAch-(PtrccoreBCD-ccr-phaJ-pkLm-T) This study

pXL54 pAch-(PtrccoreBCD-ccr-phaJ-pkLl-T) This study

pXL55 pAch-(PtrccoreBCD-ccr-phaJ-pkCa-T) This study

pXL56 pAch-(PtrccoreBCD-ccr-phaJ-pkPa-T) This study

pXL57 pAch-(PtrccoreBCD-ccr-phaJ-pkAn-T) This study

pXL58 pAch-(PtrccoreBCD-ccr-phaJ-pkLp1-T) This study

pXL59 pAch-(PtrccoreBCD-ccr-phaJ-pkLp2-T) This study

27

pXL60 pAch-(PtrccoreBCD-ccr-phaJ-pkSs-T) This study

pXL61 pAckA-(PtrccoreRiboJ-nphT7-phaBT173S-T) This study

pXL62 pAckA-(PtrccoreRiboJ-nphT7-phaBT173S-ptaBs-T) This study

pXL63 pNSI-(PtrccoreRiboJ-nphT7-phaBT173S-T) This study

pXL64 pNSI-(PtrccoreRiboJ-nphT7-phaBT173S-ptaBs-T) This study

a, Antibiotic markers: Sp = spectinomycin, Km = kanamycin, Em = erythromycin.

b, All the RBS (Ribosome binding site) and T (Terminator) in the expression units are the strong ribosome

binding site RBS* and Terminator BBa_B0015, respectively.38

c, Expressed genes are indicated in bold.

28

Supplementary Table 5 Synechocystis strains used in this study

Strain Relevant genotypesa, b, c Reference

Background strains

6803WT Wild-type Synechocystis PCC 6803 57

EmptyV1 ΔphaE ΔphaC:: KmR, Δacs:: EmR This study

EmptyV2 ΔphaE ΔphaC:: KmR, Δacs:: EmR, Δpta:: SpR This study

EmptyV3 ΔphaE ΔphaC:: KmR, Δach:: EmR This study

EmptyV4 ΔphaE ΔphaC:: KmR, Δach:: EmR, ΔackA:: SpR This study

EmptyV5 ΔphaE ΔphaC:: KmR, Δach:: EmR, Δslr0168:: SpR This study

1-butanol producing strains

Module 1

BOH1 ΔphaE ΔphaC::(PpsbA2-pduP-yqhD-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH2 ΔphaE ΔphaC::(PpsbA2-pduP-yjgB-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH3 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH4 ΔphaE ΔphaC::(PpsbA2-pduP-slr0942-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH5 ΔphaE ΔphaC::(PpsbA2-pduP-yqhD-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR This study

BOH6 ΔphaE ΔphaC::(PpsbA2-pduP-yjgB-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR This study

BOH7 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR This study

BOH8 ΔphaE ΔphaC::(PpsbA2-pduP-slr0942-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR This study

BOH9 ΔphaE ΔphaC::(PpsbA2-pduP-yqhD-T)-KmR, Δacs::(PpsbA2-ccr-fadB-T)-EmR This study

BOH10 ΔphaE ΔphaC::(PpsbA2-pduP-yjgB-T)-KmR, Δacs::(PpsbA2-ccr-fadB-T)-EmR This study

BOH11 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ccr-fadB-T)-EmR This study

BOH12 ΔphaE ΔphaC::(PpsbA2-pduP-slr0942-T)-KmR, Δacs::(PpsbA2-ccr-fadB-T)-EmR This study

BOH13 ΔphaE ΔphaC::(PpsbA2-mhpF-yqhD-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH14 ΔphaE ΔphaC::(PpsbA2-mhpF-yqhD-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR This study

BOH15 ΔphaE ΔphaC::(PpsbA2-mhpF-slr1192-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR This study

BOH16 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-phaA-phaB-T)-SpR

This study

BOH17 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-slr1993-slr1994-T)-SpR

This study

BOH18 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-nphT7-phaB-T)-SpR

This study

BOH19 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-nphT7-slr1994-T)-SpR

This study

BOH20 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR,

Δpta::(PpsbA2-phaA-T)-SpR

This study

BOH21 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR, This study

29

Δpta::(PpsbA2-slr1993-T)-SpR

BOH22 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-fadB-T)-EmR,

Δpta::(PpsbA2-nphT7-T)-SpR

This study

BOH23 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-phaAF219Y-phaB-T)-SpR

This study

BOH24 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-phaA-phaBQ47L-T)-SpR

This study

BOH25 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-phaA-phaBT173S-T)-SpR

This study

BOH26 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-phaA-phaBQ47L, T173S-T)-SpR

This study

BOH27 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-nphT7-phaBQ47L-T)-SpR

This study

BOH28 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-nphT7-phaBT173S-T)-SpR

This study

BOH29 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR,

Δpta::(PpsbA2-nphT7-phaBQ47L, T173S-T)-SpR

This study

BOH30 ΔphaE ΔphaC::(PpsbA2-pduP-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH31 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192OP-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

Module 1+2

BOH32 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH33 ΔphaE ΔphaC::(PtrccoreBCD-pduP-slr1192OP-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH34 ΔphaE ΔphaC::(PtrccoreRiboJ-pduP-slr1192OP-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-

EmR

This study

BOH35 ΔphaE ΔphaC::(Pcpc560-pduP-slr1192OP-T)-KmR, Δacs::(PpsbA2-ter-phaJ-T)-EmR This study

BOH36 ΔphaE ΔphaC::(PpsbA2-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR This study

BOH37 ΔphaE ΔphaC::(PtrccoreBCD-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-

EmR

This study

BOH38 ΔphaE ΔphaC::(PtrccoreRiboJ-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-

T)-EmR

This study

BOH39 ΔphaE ΔphaC::(Pcpc560-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR This study

BOH40 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(Ptrc2O-ter-phaJ-T)-EmR This study

BOH41 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ter-phaJ-T)-EmR This study

BOH42 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreRiboJ-ter-phaJ-T)-EmR This study

BOH43 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(Pcpc560-ter-phaJ-T)-EmR This study

BOH44 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(Ptrc2O-ccr-phaJ-T)-EmR This study

BOH45 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR This study

BOH46 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreRiboJ-ccr-phaJ-T)-EmR This study

30

BOH47 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(Pcpc560-ccr-phaJ-T)-EmR This study

BOH48 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(PpsbA2-phaA-phaBT173S-T)-SpR

This study

BOH49 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(Ptrc2O-phaA-phaBT173S-T)-SpR

This study

BOH50 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(PtrccoreBCD-phaA-phaBT173S-T)-SpR

This study

BOH51 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(PtrccoreRiboJ-phaA-phaBT173S-T)-SpR

This study

BOH52 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(Pcpc560-phaA-phaBT173S-T)-SpR

This study

BOH53 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(PpsbA2-nphT7-phaBT173S-T)-SpR

This study

BOH54 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(Ptrc2O-nphT7-phaBT173S-T)-SpR

This study

BOH55 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(PtrccoreBCD-nphT7-phaBT173S-T)-SpR

This study

BOH56 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH57 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-T)-EmR,

Δpta::(Pcpc560-nphT7-phaBT173S-T)-SpR

This study

Module 1+2+3

BOH58 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-T)-EmR This study

BOH59 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δpta::(PtrccoreBCD-ccr-phaJ-T)-EmR This study

BOH60 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δslr0168::(PtrccoreBCD-ccr-phaJ-T)-

EmR

This study

Module 1+2+3+4

BOH61 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-sigE-T)-

EmR, Δpta::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH62 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-rre37-

T)-EmR, Δpta::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH63 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δacs::(PtrccoreBCD-ccr-phaJ-hik8-T)-

EmR, Δpta::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH64 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkBb-

T)-EmR

This study

BOH65 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkLm-

T)-EmR

This study

BOH66 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkLl-T)- This study

31

EmR

BOH67 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkCa-

T)-EmR

This study

BOH68 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkPa-

T)-EmR

This study

BOH69 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkAn-

T)-EmR

This study

BOH70 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkLp1-

T)-EmR

This study

BOH71 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkLp2-

T)-EmR

This study

BOH72 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkSs-T)-

EmR

This study

BOH73 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-T)-EmR,

ΔackA::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH74 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ -T)-EmR,

Δslr0168::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH75 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkPa-

T)-EmR, ΔackA::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH76 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkPa-

T)-EmR, Δslr0168::(PtrccoreRiboJ-nphT7-phaBT173S-T)-SpR

This study

BOH77 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkPa-

T)-EmR, ΔackA::(PtrccoreRiboJ-nphT7-phaBT173S-ptaBs-T)-SpR

This study

BOH78 ΔphaE ΔphaC::(Ptrc2O-pduP-slr1192OP-T)-KmR, Δach::(PtrccoreBCD-ccr-phaJ-pkPa-

T)-EmR, Δslr0168::(PtrccoreRiboJ-nphT7-phaBT173S-ptaBs-T)-SpR

This study

a, All the RBS (Ribosome binding site) and T (Terminator) in the expression units are the strong ribosome

binding site RBS* and Terminator BBa_B0015, respectively.38

b, Antibiotic markers: SpR = spectinomycin resistance cassette, KmR = kanamycin resistance cassette, EmR =

erythromycin resistance cassette.

c, Expressed genes are indicated in bold.

32

Supplementary Table 6 Primers used in this study

Primer Nucleotide sequence (5’-3’)a

Primers for PCR amplification of homologous recombination regions

phaECUFBglII TAGAGAAGATCTCCCTGGCCAAACACTGGCTGGAT

phaECURTermini1 GAAGATCCTTTGATTTTCAGCCGAATCTAACCTTGGCCGCCG

phaECURTermini2 TAGAGAGAATTCAAAAAAAGGATCTCAAGAAGATCCTTTGATTTTCAG

phaECDFBamHI TAGAGAGGATCCAAATTTTGCTGGAATACATTAGGGC

phaECDRSalI TAGAGAGTCGACTAGAATCAGTTTTTTGACAGCTTCCC

acsUFBglII TAGAGAAGATCTCAAATTAGCCAAACCCACGCCGATC

acsURTermini1 GAAGATCCTTTGATTTTTAGCGTGTTGGACAAATTACGGGAG

acsURTermini2 TAGAGAGAATTCAAAAAAAGGATCTCAAGAAGATCCTTTGATTTTTAGCGTGTTGG

acsDFBamHI TAGAGAGGATCCGGTTCTCCGTCAAAGTCTTTAATGG

acsDRSalI TAGAGAGTCGACTTTCCACTTCACTTGGTTTGTCAACAG

ptaUFBglII TAGAGAAGATCTCGGGAAGGGGTAGGCATTACCC

ptaURTermini1 GATCCTTTGATTTTAATTTAAATAACCTCAACGTATCCAGC

ptaURTermini2 TAGAGAGAATTCAAAAAAAGGATCTCAAGAAGATCCTTTGATTTTAATTTAAATAACCTC

ptaDFBamHI TAGAGAGGATCCTTTTACTCTTAATTAGTTAAAATGATCCCTTG

ptaDRSalI TAGAGAGTCGACTTGGCTTTATTTCCCGATACGGAAAC

achUFBglII TAGAGAAGATCTGCAAAAACACTTCCCCGATCGCC

achURTermini TAGAGAGAATTCAAAAAAAGGATCTCAAGAAGATCCTTTGATTTTAGTTCTTGACCGGGGAA

GATATGAG

achDFBamHI TAGAGAGGATCCGCCGTCTTCTTTCTGCTAATTTATTGAAG

achDRSalI TAGAGAGTCGACGTGCATCGCCACCACTAAATGGTG

ackAUFBglII TAGAGAAGATCTATTCCCTTAGATTGCAAAAAACACAACGG

ackAURTermini TAGAGAGAATTCAAAAAAAGGATCTCAAGAAGATCCTTTGATTTTTTCAATTCGGTTTGGAAA

AGTTGTTTCAC

ackADFBamHI TAGAGAGGATCCATTGCGAAAATGTTAGAAAATGGCTGTGAAG

ackADRSalI TAGAGAGTCGACGGTGTACATTTTTGCCGCCATTCC

slr0168UFBglII TAGAGAAGATCTAATGTGGAACGGGGCCTAGACAC

slr0168URTermini TAGAGAGAATTCAAAAAAAGGATCTCAAGAAGATCCTTTGATTTTAGATTAATTCAACAGTAA

TATTTCACAAAGTTATCGAG

slr0168DFBamHI TAGAGAGGATCCCTCAGGGGCATTATCGGAGCAAG

slr0168DRSalI TAGAGACTCGAGCCCGACGGCCAACATCTTTGG

Primers for PCR amplification of spectinomycin resistance cassette, Ptrc2O and Pcpc560

SpFTermiF1 GGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAAGCAACGATGTTACGCAGCAGG

SpFTermiF2 CGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTG

GGCC

33

SpFTermiF3 TAGAGACTGCAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCG

TTTTATCTGTTGTTTGTCGGTG

SpFTermiR1 CTATCAACAGGAGTCCAAGCGAGCTCGATATCAAACGTCGGCTTGAACGAATTGTTAGAC

SpFTermiR2 CAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAG

GAGTCCAAGCGAG

SpFTermiR3 TAGAGAGGATCCCAGCTCGAGGCTTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCG

AGCGTTCTGAACAAATCC

PtrcUpF TGCCACCTGACGTCTAAGAAACC

PtrcStrepR CTTCTCGAACTGAGGATGACTCC

Pcpc560EcoRF ACCTGTAGAGAAGAGTCCCTG

Pcpc560XbaIR TGAATTAATCTCCTACTTGACTTTATGAG

Primers for fusion PCR of PtrccoreBCD or PtrccoreRiboJ with corresponding gene

PtrcUpF2 CGCAACGTTGTTGCCATTGCTAC

SpePstR2 TAGAGACTGCAGCGGCCGCTACTAGT

PtrcBCDFlagF CATCTTAATCATGCTAAGGAGGTTTTCTAATGGACTACAAGGATGACGATGACAAG

PtrcBCDFlagR CTTGTCATCGTCATCCTTGTAGTCCATTAGAAAACCTCCTTAGCATGATTAAGATG

PtrcBCDStrepF CTTAATCATGCTAAGGAGGTTTTCTAATGTGGAGTCATCCTCAGTTCGAG

PtrcBCDHisterF CATCTTAATCATGCTAAGGAGGTTTTCTAATGCATCATCATCATCATCATATTGTGAAACC

PtrcBCDHisterR GGTTTCACAATATGATGATGATGATGATGCATTAGAAAACCTCCTTAGCATGATTAAGATG

PtrcRibFlagR CTTGTCATCGTCATCCTTGTAGTCCATTTTTTTCCTCCTTCTAGTTTAAACAAAATTATTTGTAG

PtrcRibFlagF CTACAAATAATTTTGTTTAAACTAGAAGGAGGAAAAAAATGGACTACAAGGATGACGATGAC

AAG

PtrcRibStrepF GTTTAAACTAGAAGGAGGAAAAAAATGTGGAGTCATCCTCAGTTCGAGAAG

PtrcRibHisterF CTACAAATAATTTTGTTTAAACTAGAAGGAGGAAAAAAATGCATCATCATCATCATCATATTG

TGAAACC

PtrcRibHisterR GGTTTCACAATATGATGATGATGATGATGCATTTTTTTCCTCCTTCTAGTTTAAACAAAATTAT

TTGTAG

PtrcBCDFlagnF CATCTTAATCATGCTAAGGAGGTTTTCTAATGGACTACAAGGATGACGATGACAAGACTGAC

GTGCGG

PtrcRibFlagnF CTACAAATAATTTTGTTTAAACTAGAAGGAGGAAAAAAATGGACTACAAGGATGACGATGAC

AAGACTGACGTGCGG

PtrccoreEcoF TAGAGAGAATTCGAGCTGTTGACAATTGTGAGC

nphT7SpePstR TAGAGACTGCAGCGGCCGCTACTAGTTTACCATTCAATTAAGGCAAAGGAAG

PtrcBCDHisccrF CATCTTAATCATGCTAAGGAGGTTTTCTAATGCATCATCATCATCATCATACCGTG

PtrcBCDHisccrR CACGGTATGATGATGATGATGATGCATTAGAAAACCTCCTTAGCATGATTAAGATG

PtrcRibHisccrF CTACAAATAATTTTGTTTAAACTAGAAGGAGGAAAAAAATGCATCATCATCATCATCATACCG

TG

34

PtrcRibHisccrR CACGGTATGATGATGATGATGATGCATTTTTTTCCTCCTTCTAGTTTAAACAAAATTATTTGTA

G

PtrcBCDFlagpF CATCTTAATCATGCTAAGGAGGTTTTCTAATGGACTACAAGGATGACGATGACAAGACCGAT

GTGG

PtrcRibFlagpF CTACAAATAATTTTGTTTAAACTAGAAGGAGGAAAAAAATGGACTACAAGGATGACGATGAC

AAGACCGATGTGG

pduPSpePstR TAGAGACTGCAGCGGCCGCTACTAGTTTAGCGAATGGAAAAGCCGTTG

Primers for PCR amplification of endogenous genes

slr1192StrepF1new GGAGTCATCCTCAGTTCGAGAAGATTAAAGCCTACGCTGCCCTGGA

StrepF2 TAGAGATCTAGATAGTGGAGGTACTAGAATGTGGAGTCATCCTCAGTTCGAGAAG

Slr1192R1 GGCTGAGCACTACCCGATAATGGGCTTTGCCGCTTTCCAAATGGGCGATCGCCTCGTTGATCT

Slr1192R2 TAGAGACTGCAGCGGCCGCTACTAGTCTAATTTTTACTATGGCTGAGCACTACCCGATAATGG

slr1192changeR1 CTTTCCAAATGGGCGATCGCCTCGTTGATC

slr1192changeR2 GCACTACCCGATAATGGGCTTTGCCGCTTTCCAAATGGGCGATCGCCTC

slr1192changeR3 CTAGTCTAATTTTTACTATGGCTGAGCACTACCCGATAATGGGCTTTG

slr1192changeR4 TAGAGACTGCAGCGGCCGCTACTAGTCTAATTTTTACTATGGCTGAGC

slr0942StrepF1 GGAGTCATCCTCAGTTCGAGAAGCAGAGTTTCAATAGGATAAATTC

slr0942R TAGAGACTGCAGCGGCCGCTACTAGTTTAAATTTCATCCCATAGGTTTTGTAACG

slr0942changeF CTTTGCAGGATTTGGGCTTGGATTATTTGGATCTATATC

slr0942changeR GATATAGATCCAAATAATCCAAGCCCAAATCCTGCAAAG

slr1993FlagF TAGAGATCTAGAATGGACTACAAGGATGACGATGACAAGGCCGCCCATCCCAACCC

slr1993R TAGAGACTGCAGCGGCCGCTACTAGTTCACACCCGCTCTAAGGCGATC

slr1994FlagF1 GACTACAAGGATGACGATGACAAGTTAAGTCTTGGTTTGGAAGATAAAG

FlagF2 TAGAGATCTAGATAGTGGAGGTACTAGAATGGACTACAAGGATGACGATGACAAG

slr1994R CTGCAGCGGCCGCTACTAGTTTAGGTGTGGTGGGCCCCATTTAC

LFlagtaggedgeneF TAGAGATCTAGATAGTGGAGGTACTAGAATGG

SFlagtaggedgeneF TAGAGATCTAGAATGGACTACAAGGATGACG

SStreptaggedgeneF TAGAGATCTAGAATGTGGAGTCATCCTCAGTTCGAG

SpePstR TAGAGACTGCAGCGGCCGCTACTAGTTTA

Primers for cloning of proteins with amino acid substitutions

phaAF TAGAGATCTAGAATGGACTACAAGGATGACGATGACAAGACCGATG

phaAF219YR GAGTGGCACCCTGGCGAACATATTCGTCGGTTTTAAAGGCCACGG

phaAF219YF CCGTGGCCTTTAAAACCGACGAATATGTTCGCCAGGGTGCCACTC

phaBQ47LR GGCAATAAAATCAAAACCCAGAGCTTTCTGCAATTCTAACCATTTTTCGCGCCGGG

phaBQ47LF CCCGGCGCGAAAAATGGTTAGAATTGCAGAAAGCTCTGGGTTTTGATTTTATTGCC

phaBT173SR GAGACACAGTATTAACGGTCACTCCTTTGGAGGCAACTTCCTGAGCTAAGGCC

phaBT173SF GGCCTTAGCTCAGGAAGTTGCCTCCAAAGGAGTGACCGTTAATACTGTGTCTC

Primers for E.coli colony PCR and sequencing to confirm positive plasmid construction

35

VectorbackSF GCATTTAGAATACGTACTCAGCGTC

VectorbackSR CTCACGTTAAGGGATTTTGGTCATG

KmSF GGAACTGCCTCGGTGAGTTTTCTCCTTC

KmSR CTGGAGCAAGACGTTTCCCGTTG

EmSF CTACCATTACCTACGAGCAAGTGTTG

EmSR CGGTACCAATTTCATAAACGGTGTC

SpSF CCACTACGTGAAAGGCGAG

SpSR CCTCTGATAGTTGAGTCGATAC

phaECUSF GCGGCCAAGGTTAGATTCGGCTG

phaECUSF2 CAGCGGAACTACAGGCTGAGG

phaECDSR GAGTGTTGCCCTAATGTATTCCAGC

phaECDSR2 TGACGTACAAGCGGTGGATGTATCA

acsUSF CCTGGAAACTTGGCAGGAAAAGC

acsUSR CAAATTCCTTACCTAAACATTCCCG

acsDSF CATCCAAGTTAAATCCACTTCCCAC

acsDSR CCAATACTAGTTTCCTTCTTCTATCC

ptaUSF CTGGCTAAAAGCGCTATCACTTAAGTAG

ptaUSR CGCCTGCTCAATTAACCAGGG

ptaDSF GAATAGTTCTCCATAACGGCGATC

ptaDSR GTGGCAGCCATGGTGTTAAGCC

achUSF GGCATCCGGACGTGCAAAGTTG

achDSR CAATTCCACCTACTTAAGTGATAGCGC

ackAUSF GGCTAGCTATAACGCCGAAGCG

ackADSR GGTTGACGTGTTGGCGGATGC

slr0168USF GAATATCAAGATGCCACCCTGGC

slr0168DSR CTATTACCGTCAGTGGAGACAATGG

PpsbA2SF CTTATGTCATCTATAAGCTTCGTG

Ptrc2OSF CATCCGGCTCGTATAATGTGTGG

PtrccoreSF2 GAGCTGTTGACAATTGTGAGCGC

Pcpc560SF CTAGGGTCATTACTTTGGACTCC

AntiUTSR AGTAGAGAGCGTTCACCGAC

yqhDSF GATTATGGGTTAGACGGCTCC

yqhDSR CGCCGGTTTTCTTCACGCTC

yjgBSF GTAAACTGATGCGGTTTGCCG

yjgBSR GCTCAAATCACTATGGCAAATACCAC

slr1192SF CCATGACATTAAACCCGTGGTGG

slr1192SR CATGGACAAATCACTGTGGCACAC

slr1192OPSF CCGTGCGTCATGATATTAAACCCG

36

slr1192OPSR CATGGACAAATCACTATGACACACGC

slr0942SF CCTGAACGACTAGAACAAAATTTG

slr0942SR CAAGTCCAAAGCTTGCTCAACG

pduPSF CGCTCGCACTTTACAGACCAGC

pduPSR GCGGCATCAATGGCTTCACTCAC

mhpFSF CAGTGCCTTAGCCACTGCTGA

mhpFSR TGTTGCCCGTGCCGCAGAAT

terSF GGATCAATTATGAGGCCGAAGTTGAG

terSF2 GACCGACCTCGCTGGTTACC

terSR CTAAGACGTTCTTGGGTGCTTTGGCCCC

ccrSF GGGTTAGGAGTTCGTGATGCTG

ccrSR TCGGGCAGTTGTAAGGCAGC

phaJSF CTTTTGAACGGCCCATTGTGCAC

phaJSR GTGCACAATGGGCCGTTCAAAAG

fadBSF GCCCGTCACAATGAACCCTATTAC

fadBSF2 CGGCAAGCTATTAATGGTGATCTGG

fadBSR TCCCATCTTCCAGCCAGTCC

phaASF CGAAATGAAACGTCGGGATGCC

phaASR ACCAACAGCAGTACGGGCAG

phaBSF CTATTCGGCAAGATGTGCTGGAC

phaBSR CCCAGAGCTTTCTGTTGTTCTAACC

phaBSR2 GGACCACATCCAGCCACAACC

slr1993SF GACAAGTTGAATGTGAACGGTGGG

slr1993SF2 CCGCCATGATGAGTGTGATTAATGC

slr1993SR CAGGGGAGTTCGTTTAGCGGC

slr1994SF GAAGGCATGTATGAACGGAAAGC

slr1994SR GCTTTCCGTTCATACATGCCTTC

nphT7SF CCATGCACCGTACTGTGGAAACC

nphT7SR GCCGAATGCCGGTTTTACGAG

sigEOPSF CGCGAACGTGTGCGGCAAATTC

sigEOPSR CATTGATCCACGGCACTGGTATTG

rre37OPSF GTGCGGAATGTGGGGTATCGC

rre37OPSR GCCAACTTAACAAGGAACGTAAATGG

hik8OPSF GCTTGGGTTTATCCTTGTGTCGC

hik8OPSR CAAGGGCACACTGGAGGCATTG

PK-BbSR CCATCCCTTCAATGGCTTCTTCG

PK-BbSF CCGATTGGGTGTATCCCGATGTG

PK-BbSF2 CCCAACATTACCAAAGATGAAGCCG

37

PK-BbSF3 GGTTGGATGGAATCCTACAAACCC

PK-LMSR GGCCCGCCACCATTTATCCAC

PK-LMSF GTGACCCGTAATGAAGGTCGGG

PK-LMSF2 GGATTGGCAGTCACATGACCGC

PK-LMSF3 CGCATGTCCGCCAATCCCATTAC

PK-LlSR CAAATAGGTAGCAGCACGCCAC

PK-LlSF CCGTAATGAGGGTGTGGATATTCC

PK-LlSF2 CCGGTGGGATTGGTTCCCAC

PK-LlSF3 GCCGATGGCTCCTTGAAAGAAG

PK-CaSR CGGCCCGCCAATAGGCATCAAT

PK-CaSF CGGGAAGTGGGCGAAGATTTACC

PK-CaSF2 GAAGTGTATCCCAATGTGAGTCGG

PK-CaSF3 CTACCGGTTGATTCCCGAATTGG

PK-PaSR CGGCGGCATGGGCTAACAATTC

PK-PaSF GTGCTCGCTTGATGGAAGTGCC

PK-PaSF2 GCCTTGAATGTGTTGACCGGC

PK-PaSF3 GCCCATTCCCTATGGCATTGCC

PK-ANSR GGGCACATGGCTGGGTTTGG

PK-ANSF GATCATAACATTGCCGAAACCCGC

PK-ANSF2 GCTTACCCTCCCATATTAATGCCG

PK-ANSF3 GCCTCCCGATTTGCCCGATTG

PK-Lp1SR GCACGCCAATATTCATCCACGCG

PK-Lp1SF GGCCGAAGGCACCGATATTCC

PK-Lp1SF2 CGTGGCTAGTCATGCCGATCC

PK-Lp1SF3 CCGAAGGTCAAGCTCGTATGGC

PK-Lp2SR GGCGGCCCGCCAATATTTATCC

PK-Lp2SF CGCCTACATTCGTGATGCCGG

PK-Lp2SF2 GCGTGGCTAGTCATGCTGCTC

PK-Lp2SF3 CATTACCAATGGCGGCGTTGATC

PK-6803SR GGAGGTCACCATACTAAACACGC

PK-6803SF GATTGTACCAACTACGCCTATGAAC

PK-6803SF2 CGCCGAATGTAGTGAAGATGAAGATG

PK-6803SF3 CAATTAGAAGCCTGGATGCGGTC

pta-BsSR CCAGAATCCGTTCGTCCAGCC

pta-BsSF GCCCGTGAATGATTTGAGTCGG

PK-BbSR CCATCCCTTCAATGGCTTCTTCG

PK-BbSF CCGATTGGGTGTATCCCGATGTG

PK-BbSF2 CCCAACATTACCAAAGATGAAGCCG

38

PK-BbSF3 GGTTGGATGGAATCCTACAAACCC

PK-LMSR GGCCCGCCACCATTTATCCAC

PK-LMSF GTGACCCGTAATGAAGGTCGGG

PK-LMSF2 GGATTGGCAGTCACATGACCGC

PK-LMSF3 CGCATGTCCGCCAATCCCATTAC

PK-LlSR CAAATAGGTAGCAGCACGCCAC

PK-LlSF CCGTAATGAGGGTGTGGATATTCC

PK-LlSF2 CCGGTGGGATTGGTTCCCAC

PK-LlSF3 GCCGATGGCTCCTTGAAAGAAG

PK-CaSR CGGCCCGCCAATAGGCATCAAT

PK-CaSF CGGGAAGTGGGCGAAGATTTACC

PK-CaSF2 GAAGTGTATCCCAATGTGAGTCGG

PK-CaSF3 CTACCGGTTGATTCCCGAATTGG

PK-PaSR CGGCGGCATGGGCTAACAATTC

PK-PaSF GTGCTCGCTTGATGGAAGTGCC

PK-PaSF2 GCCTTGAATGTGTTGACCGGC

PK-PaSF3 GCCCATTCCCTATGGCATTGCC

PK-PaSF4 GGCCTATGCCGATGGTGAAGAAG

PK-ANSR GGGCACATGGCTGGGTTTGG

PK-ANSF GATCATAACATTGCCGAAACCCGC

PK-ANSF2 GCTTACCCTCCCATATTAATGCCG

PK-ANSF3 GCCTCCCGATTTGCCCGATTG

PK-Lp1SR GCACGCCAATATTCATCCACGCG

PK-Lp1SF GGCCGAAGGCACCGATATTCC

PK-Lp1SF2 CGTGGCTAGTCATGCCGATCC

PK-Lp1SF3 CCGAAGGTCAAGCTCGTATGGC

PK-Lp2SR GGCGGCCCGCCAATATTTATCC

PK-Lp2SF CGCCTACATTCGTGATGCCGG

PK-Lp2SF2 GCGTGGCTAGTCATGCTGCTC

PK-Lp2SF3 CATTACCAATGGCGGCGTTGATC

PK-6803SR GGAGGTCACCATACTAAACACGC

PK-6803SF GATTGTACCAACTACGCCTATGAAC

PK-6803SF2 CGCCGAATGTAGTGAAGATGAAGATG

PK-6803SF3 CAATTAGAAGCCTGGATGCGGTC

pta-BsSF GCCCGTGAATGATTTGAGTCGG

pta-BsSR CCAGAATCCGTTCGTCCAGCC

Primers for Synechocystis colony PCR to successful verify genomic integration

phaECUUSF CCAGCACTGATTGAACAATGCCG

39

acsUUSF GCGGTTAATTCCTCCTGTGGG

ptaUUSF2 GAAACCATTTCTCGCATTGTGCCC

achUUSF CCACAGTTCGGATAGGCTCACG

ackAUUSF CACCGCAACCGGTAACCGTTAG

slr0168UUSF CCTGAGCCTGATGAAGGATGTGG

Primers for PCR with Synechocystis genome DNA to examine fully segregation

phaECSF GCCTTGAATCGTTATCGCATTCAGC

phaECSR GTCCTTCCTGCAAATCCACCATG

acsSF CTCCGCAACAGACGACGCATAA

acsSR GATGGCAATCCCGTCGAGTCAG

ptaSF CTCCGATGGAGCTATTGATCAGG

ptaSR GGCAATGTGCATCGCCACCAC

achSF CTGATCGCCAGGAACAGTTAGCC

achSR GGATTCTGGGCACCTGGCTATTC

ackASF GATCGCCTACCGGAGACGATAC

ackASR GTGGAACCCATAGCGACGGATG

slr0168SF2 GGTATGGATGGCACCGATGCG

slr0168SR2 GCGGTCTAACTTAGCGGCGAC

a, Primer names correspond to the name of the gene that the primer amplifies, whether the primer is the

forward primer (F) or reverse primer (R) of that gene, and the restriction site incorporated into the primer

sequence for cloning.

40

Supplementary Table 7 Sequence of codon optimized synthetic genes used in this study

Gene Protein and nucleotide sequence (5’-3’) a, b

yqhD MWSHPQFEKNNFNLHTPTRILFGKGAIAGLREQIPHDARVLITYGGGSVKKTGVLDQVLDALKGMDVLEFGGIE

PNPAYETLMNAVKLVREQKVTFLLAVGGGSVLDGTKFIAAAANYPENIDPWHILQTGGKEIKSAIPMGCVLTLPA

TGSESNAGAVISRKTTGDKQAFHSAHVQPVFAVLDPVYTYTLPPRQVANGVVDAFVHTVEQYVTKPVDAKIQD

RFAEGILLTLIEDGPKALKEPENYDVRANVMWAATQALNGLIGAGVPQDWATHMLGHELTAMHGLDHAQTL

AIVLPALWNEKRDTKRAKLLQYAERVWNITEGSDDERIDAAIAATRNFFEQLGVPTHLSDYGLDGSSIPALLKKLE

EHGMTQLGENHDITLDVSRRIYEAAR

ATGTGGAGTCATCCTCAGTTCGAGAAGAATAACTTTAATTTGCATACCCCCACTCGGATTTTATTTGGGAAA

GGAGCCATTGCTGGGTTACGCGAACAAATTCCCCACGATGCCCGTGTTTTGATTACCTATGGCGGTGGGAG

CGTGAAGAAAACCGGCGTTTTAGATCAGGTGTTAGACGCCCTGAAGGGTATGGATGTGTTGGAATTTGGA

GGCATTGAACCCAATCCCGCCTACGAAACCCTGATGAACGCTGTGAAATTGGTTCGCGAACAAAAAGTGAC

CTTTTTGTTAGCTGTGGGCGGCGGCTCCGTGTTGGATGGCACCAAATTTATTGCCGCTGCCGCTAATTATCC

CGAAAACATTGACCCCTGGCATATTTTGCAAACCGGCGGTAAAGAAATTAAAAGTGCCATTCCTATGGGCT

GTGTTCTGACCTTGCCCGCCACTGGGAGCGAATCTAACGCCGGAGCTGTGATTTCCCGCAAAACCACTGGG

GATAAACAAGCCTTTCATAGTGCTCACGTGCAGCCCGTTTTTGCCGTGCTGGACCCCGTTTATACCTACACTT

TGCCTCCCCGGCAAGTGGCCAATGGCGTGGTTGATGCTTTTGTTCATACCGTGGAACAATATGTTACTAAAC

CCGTGGATGCCAAAATTCAGGACCGTTTTGCTGAAGGGATTCTGTTGACCTTAATTGAAGATGGACCCAAA

GCCCTGAAAGAACCCGAAAATTACGACGTTCGGGCCAACGTGATGTGGGCCGCTACCCAAGCCTTGAATG

GTTTAATTGGTGCTGGTGTGCCCCAGGATTGGGCTACCCACATGTTAGGCCACGAACTGACTGCCATGCAT

GGTTTAGACCACGCCCAAACCCTGGCTATTGTTCTGCCCGCCTTGTGGAATGAAAAACGTGATACCAAACG

GGCCAAATTGTTGCAATACGCTGAACGTGTGTGGAACATTACCGAAGGGAGCGATGACGAACGGATTGAT

GCCGCTATTGCCGCTACCCGCAATTTCTTTGAACAATTAGGAGTGCCCACTCATTTGTCTGATTATGGGTTA

GACGGCTCCTCCATTCCCGCCTTGTTGAAAAAATTGGAAGAACATGGCATGACCCAGTTAGGTGAAAATCA

CGATATTACTCTGGACGTGTCCCGGCGCATTTACGAAGCCGCTCGCTAA

yjgB MWSHPQFEKSMIKSYAAKEAGGELEVYEYDPGELRPQDVEVQVDYCGICHSDLSMIDNEWGFSQYPLVAGHE

VIGRVVALGSAAQDKGLQVGQRVGIGWTARSCGHCDACISGNQINCEQGAVPTIMNRGGFAEKLRADWQW

VIPLPENIDIESAGPLLCGGITVFKPLLMHHITATSRVGVIGIGGLGHIAIKLLHAMGCEVTAFSSNPAKEQEVLAM

GADKVVNSRDPQALKALAGQFDLIINTVNVSLDWQPYFEALTYGGNFHTVGAVLTPLSVPAFTLIAGDRSVSGS

ATGTPYELRKLMRFAARSKVAPTTELFPMSKINDAIQHVRDGKARYRVVLKADF

ATGTGGAGTCATCCTCAGTTCGAGAAGTCTATGATTAAATCCTATGCCGCTAAAGAAGCCGGCGGTGAACT

GGAAGTGTATGAATACGATCCCGGTGAATTGCGGCCCCAAGATGTGGAAGTTCAGGTGGACTATTGTGGT

ATTTGCCATAGTGATTTGAGCATGATTGACAATGAATGGGGGTTTAGTCAATACCCCTTAGTTGCCGGGCA

CGAAGTGATTGGACGCGTGGTTGCTTTGGGGAGCGCCGCTCAGGATAAAGGGTTACAAGTTGGACAGCGT

GTGGGGATTGGATGGACCGCCCGGAGTTGTGGCCATTGCGACGCTTGTATTAGCGGTAATCAAATTAACTG

CGAACAGGGGGCCGTGCCCACTATTATGAATCGCGGGGGATTTGCCGAAAAATTGCGTGCTGATTGGCAA

41

TGGGTGATTCCCCTGCCCGAAAACATTGACATTGAAAGCGCCGGTCCCTTGTTATGCGGCGGTATTACCGT

GTTTAAACCCCTGTTGATGCATCACATTACCGCCACTTCCCGCGTTGGCGTGATTGGTATTGGGGGATTAGG

ACATATTGCCATTAAATTGCTGCACGCTATGGGCTGTGAAGTTACCGCCTTTTCCAGTAATCCCGCTAAAGA

ACAAGAAGTGTTGGCTATGGGCGCTGATAAAGTGGTTAACTCTCGTGACCCCCAAGCCTTGAAAGCCTTAG

CTGGCCAGTTTGATCTGATTATTAATACCGTTAACGTGAGTTTGGACTGGCAGCCCTATTTTGAAGCCTTAA

CTTACGGCGGTAATTTTCATACCGTTGGAGCCGTGCTGACTCCCTTGAGTGTTCCCGCCTTTACCTTAATTGC

TGGTGATCGTAGCGTGTCTGGCTCCGCCACCGGTACTCCCTATGAATTACGTAAACTGATGCGGTTTGCCGC

TCGCTCTAAAGTGGCCCCCACCACTGAACTGTTTCCCATGTCCAAAATTAACGATGCCATTCAACACGTGCG

GGACGGCAAAGCCCGGTATCGGGTGGTTTTGAAAGCTGATTTTTAA

pduP MDYKDDDDKNTSELETLIRTILSEQLTTPAQTPVQPQGKGIFQSVSEAIDAAHQAFLRYQQCPLKTRSAIISAMR

QELTPLLAPLAEESANETGMGNKEDKFLKNKAALDNTPGVEDLTTTALTGDGGMVLFEYSPFGVIGSVAPSTNP

TETIINNSISMLAAGNSIYFSPHPGAKKVSLKLISLIEEIAFRCCGIRNLVVTVAEPTFEATQQMMAHPRIAVLAITG

GPGIVAMGMKSGKKVIGAGAGNPPCIVDETADLVKAAEDIINGASFDYNLPCIAEKSLIVVESVAERLVQQMQT

FGALLLSPADTDKLRAVCLPEGQANKKLVGKSPSAMLEAAGIAVPAKAPRLLIALVNADDPWVTSEQLMPMLP

VVKVSDFDSALALALKVEEGLHHTAIMHSQNVSRLNLAARTLQTSIFVKNGPSYAGIGVGGEGFTTFTIATPTGE

GTTSARTFARSRRCVLTNGFSIR

ATGGACTACAAGGATGACGATGACAAGAATACCTCCGAACTGGAAACTTTGATTCGGACCATTTTAAGTG

AACAACTGACCACCCCCGCTCAGACCCCCGTTCAACCCCAGGGAAAAGGAATTTTTCAATCCGTGAGTGAA

GCCATTGATGCCGCTCATCAGGCTTTTCTGCGCTATCAACAGTGTCCCTTGAAAACTCGTAGCGCTATTATTT

CTGCCATGCGGCAAGAATTAACCCCCTTGTTAGCTCCCCTGGCCGAAGAATCCGCCAATGAAACCGGCATG

GGTAACAAAGAAGATAAATTTTTGAAAAACAAAGCCGCTTTAGATAACACTCCCGGTGTGGAAGACCTGAC

CACTACCGCCTTGACCGGGGATGGCGGTATGGTGTTGTTTGAATATAGTCCCTTTGGTGTGATTGGGTCCG

TTGCCCCCAGTACCAATCCCACTGAAACCATTATTAACAACAGCATTTCTATGTTAGCCGCTGGAAACAGCA

TTTACTTTTCTCCCCATCCCGGCGCCAAAAAAGTGTCCTTAAAACTGATTAGTTTAATTGAAGAAATTGCCTT

TCGCTGTTGCGGTATTCGTAATCTGGTGGTTACCGTGGCTGAACCCACTTTTGAAGCCACCCAACAGATGAT

GGCTCACCCCCGGATTGCTGTGTTGGCTATTACCGGCGGCCCCGGCATTGTTGCTATGGGCATGAAAAGCG

GCAAAAAAGTGATTGGGGCCGGAGCTGGCAATCCTCCCTGTATTGTGGATGAAACCGCCGACTTGGTTAA

AGCCGCTGAAGATATTATTAATGGGGCCAGTTTTGACTATAACTTGCCCTGCATTGCCGAAAAATCCTTGAT

TGTGGTTGAATCTGTGGCCGAACGCTTAGTTCAACAGATGCAAACTTTTGGCGCCCTGTTGTTATCCCCCGC

TGATACCGACAAATTGCGTGCCGTTTGTCTGCCCGAAGGTCAAGCTAATAAAAAACTGGTGGGGAAATCCC

CCAGTGCCATGTTGGAAGCCGCTGGTATTGCCGTGCCCGCCAAAGCTCCCCGTCTGTTGATTGCTTTGGTGA

ACGCCGATGACCCCTGGGTTACCAGTGAACAATTGATGCCCATGTTACCCGTGGTTAAAGTTTCCGATTTTG

ACAGTGCCTTGGCTTTAGCCCTGAAAGTGGAAGAAGGCTTGCATCACACCGCCATTATGCACAGCCAAAAT

GTGTCTCGGTTGAACTTAGCCGCTCGCACTTTACAGACCAGCATTTTTGTTAAAAACGGACCCTCTTACGCC

GGTATTGGGGTGGGCGGTGAAGGTTTTACTACCTTTACCATTGCCACTCCCACCGGAGAAGGCACTACCTC

CGCTCGTACTTTTGCCCGGAGTCGGCGCTGCGTGTTAACCAACGGCTTTTCCATTCGCTAA

mhpF MHHHHHHSKRKVAIIGSGNIGTDLMIKILRHGQHLEMAVMVGIDPQSDGLARARRMGVATTHEGVIGLMNM

42

PEFADIDIVFDATSAGAHVKNDAALREAKPDIRLIDLTPAAIGPYCVPVVNLEANVDQLNVNMVTCGGQATIPM

VAAVSRVARVHYAEIIASIASKSAGPGTRANIDEFTETTSRAIEVVGGAAKGKAIIVLNPAEPPLMMRDTVYVLSD

EASQDDIEASINEMAEAVQAYVPGYRLKQRVQFEVIPQDKPVNLPGVGQFSGLKTAVWLEVEGAAHYLPAYAG

NLDIMTSSALATAEKMAQSLARKAGEAA

ATGCATCATCATCATCATCATAGCAAACGGAAAGTGGCTATTATTGGGAGCGGGAACATTGGAACTGACTT

AATGATTAAAATTCTGCGGCACGGGCAACACCTGGAAATGGCCGTGATGGTTGGGATTGATCCCCAAAGT

GATGGATTAGCCCGCGCTCGGCGCATGGGTGTGGCTACCACTCATGAAGGCGTGATTGGTTTAATGAATAT

GCCCGAATTTGCCGATATTGACATTGTGTTTGATGCCACCAGTGCCGGGGCTCACGTGAAAAACGACGCCG

CTCTGCGGGAAGCCAAACCCGATATTCGCTTGATTGACTTAACCCCCGCCGCTATTGGACCCTATTGTGTGC

CCGTGGTTAATTTAGAAGCCAACGTGGATCAACTGAATGTGAACATGGTTACCTGCGGCGGTCAGGCCACT

ATTCCTATGGTGGCCGCTGTTAGCCGTGTGGCCCGCGTGCATTACGCTGAAATTATTGCCTCTATTGCTAGT

AAATCCGCCGGCCCCGGCACCCGCGCCAATATTGATGAATTTACTGAAACCACCAGTCGGGCCATTGAAGT

GGTTGGGGGAGCCGCTAAGGGTAAAGCCATTATTGTGTTGAACCCCGCTGAACCTCCCTTGATGATGCGTG

ATACCGTGTATGTTTTATCCGACGAAGCCAGTCAAGATGACATTGAAGCTAGCATTAATGAAATGGCCGAA

GCTGTGCAGGCCTATGTTCCCGGTTACCGCTTAAAACAACGTGTGCAGTTTGAAGTTATTCCCCAAGATAAA

CCCGTGAACTTGCCCGGCGTTGGACAGTTTTCCGGGCTGAAAACCGCCGTGTGGTTGGAAGTTGAAGGCG

CCGCTCACTATCTGCCCGCCTACGCTGGTAATTTGGATATTATGACTTCCAGTGCCTTAGCCACTGCTGAAA

AAATGGCCCAATCCTTAGCCCGTAAAGCTGGTGAAGCCGCCTAA

ter MHHHHHHMIVKPMVRNNICLNAHPQGCKKGVEDQIEYTKKRITAEVKAGAKAPKNVLVLGCSNGYGLASRIT

AAFGYGAATIGVSFEKAGSETKYGTPGWYNNLAFDEAAKREGLYSVTIDGDAFSDEIKAQVIEEAKKKGIKFDLIV

YSLASPVRTDPDTGIMHKSVLKPFGKTFTGKTVDPFTGELKEISAEPANDEEAAATVKVMGGEDWERWIKQLSK

EGLLEEGCITLAYSYIGPEATQALYRKGTIGKAKEHLEATAHRLNKENPSIRAFVSVNKGLVTRASAVIPVIPLYLASL

FKVMKEKGNHEGCIEQITRLYAERLYRKDGTIPVDEENRIRIDDWELEEDVQKAVSALMEKVTGENAESLTDLAG

YRHDFLASNGFDVEGINYEAEVERFDRI

ATGCATCATCATCATCATCATATGATTGTGAAACCAATGGTTCGTAATAACATTTGCCTGAATGCCCACCCC

CAAGGTTGCAAGAAAGGCGTGGAGGATCAAATCGAATACACCAAAAAGAGGATTACTGCCGAGGTTAAG

GCTGGGGCCAAAGCACCCAAGAACGTCTTAGTATTAGGGTGTAGCAATGGTTACGGGCTAGCCTCTCGAAT

TACTGCGGCTTTCGGTTATGGGGCAGCCACAATTGGCGTTAGCTTTGAAAAAGCCGGAAGCGAAACTAAAT

ACGGAACACCGGGATGGTATAACAATCTCGCATTTGATGAAGCCGCTAAACGCGAAGGACTATATTCCGTG

ACAATTGATGGGGATGCGTTTTCCGATGAGATTAAAGCTCAGGTAATTGAAGAAGCGAAAAAGAAGGGGA

TCAAGTTTGACTTAATCGTATATAGTTTGGCCTCCCCCGTGCGCACCGATCCTGACACTGGCATCATGCATA

AATCCGTTCTTAAACCCTTTGGTAAAACCTTTACGGGCAAAACGGTCGATCCCTTTACCGGCGAACTGAAAG

AAATATCAGCAGAACCAGCCAACGACGAGGAAGCAGCCGCTACGGTGAAAGTGATGGGAGGCGAAGATT

GGGAACGGTGGATAAAACAGTTGAGTAAAGAAGGGTTGTTAGAAGAAGGTTGTATTACCCTTGCTTACTC

CTACATTGGCCCCGAGGCCACTCAAGCGTTATATCGAAAGGGTACTATTGGCAAAGCCAAAGAACATTTGG

AAGCTACCGCCCATCGGCTGAATAAAGAAAATCCCAGCATCCGCGCATTCGTAAGTGTGAATAAGGGTCTG

43

GTCACGCGTGCGAGTGCCGTCATTCCTGTGATTCCTTTGTATTTGGCTAGTCTGTTTAAAGTTATGAAAGAA

AAAGGTAACCACGAAGGGTGTATCGAGCAAATTACCAGACTATATGCGGAGCGGCTGTATCGCAAAGACG

GCACCATTCCGGTGGATGAAGAAAATCGTATTAGAATTGATGACTGGGAACTCGAAGAAGATGTGCAGAA

AGCGGTTTCGGCCTTAATGGAGAAGGTGACCGGCGAAAATGCCGAATCTTTGACCGACCTCGCTGGTTACC

GTCATGATTTTCTAGCCTCTAACGGATTTGATGTTGAAGGGATCAATTATGAGGCCGAAGTTGAGCGGTTC

GACAGGATTTAA

ccr MHHHHHHTVKDILDAIQSKDATSADFAALQLPESYRAITVHKDETEMFAGLETRDKDPRKSIHLDEVPVPELGP

GEALVAVMASSVNYNSVWTSIFEPVSTFAFLERYGKLSPLTKRHDLPYHIIGSDLAGVVLRTGPGVNAWQPGDE

VVAHCLSVELESPDGHDDTMLDPEQRIWGFETNFGGLAEIALVKTNQLMPKPKHLTWEEAAAPGLVNSTAYR

QLVSRNGAAMKQGDNVLIWGASGGLGSYATQFALAGGANPICVVSSPQKAEICRSMGAEAIIDRNAEGYKFW

KDEHTQDPKEWKRFGKRIRELTGGEDIDIVFEHPGRETFGASVYVTRKGGTITTCASTSGYMHEYDNRYLWMSL

KRIIGSHFANYREAYEANRLIAKGKIHPTLSKTYSLEETGQAAYDVHRNLHQGKVGVLCLAPEEGLGVRDAEMRA

QHIDAINRFRNV

ATGCATCATCATCATCATCATACCGTGAAAGATATTTTGGACGCTATTCAGAGTAAAGACGCCACTTCCGCC

GATTTTGCTGCCTTACAACTGCCCGAAAGCTACCGTGCCATTACCGTGCATAAAGATGAAACTGAAATGTTT

GCTGGCTTAGAAACCCGTGATAAAGACCCCCGGAAAAGTATTCACCTGGACGAAGTGCCCGTTCCCGAATT

GGGGCCCGGAGAAGCCTTGGTGGCCGTTATGGCTTCCAGTGTGAATTATAACAGCGTTTGGACCTCTATTT

TTGAACCCGTGAGCACTTTTGCCTTTTTGGAACGCTACGGTAAACTGAGTCCCTTGACCAAACGTCATGATT

TACCCTATCACATTATTGGGTCCGACCTGGCTGGAGTGGTTTTGCGTACTGGCCCCGGTGTGAATGCCTGG

CAACCCGGTGATGAAGTGGTTGCTCATTGTTTAAGCGTTGAACTGGAATCTCCCGATGGTCACGATGACAC

CATGTTGGACCCCGAACAACGTATTTGGGGGTTTGAAACTAATTTTGGCGGTTTAGCCGAAATTGCTCTGGT

GAAAACCAACCAGTTAATGCCCAAACCCAAACATTTAACCTGGGAAGAAGCCGCCGCCCCCGGCTTGGTGA

ATAGTACCGCCTACCGCCAATTGGTTAGTCGTAATGGGGCTGCCATGAAACAGGGAGATAACGTGTTGATT

TGGGGCGCCTCCGGGGGATTAGGTAGTTATGCTACCCAATTTGCTTTGGCCGGCGGTGCCAATCCCATTTG

TGTGGTTAGCTCTCCCCAGAAAGCTGAAATTTGTCGGAGTATGGGCGCTGAAGCCATTATTGATCGCAACG

CCGAAGGATACAAATTTTGGAAAGATGAACATACCCAAGACCCCAAAGAATGGAAACGGTTTGGTAAACG

GATTCGCGAATTAACCGGGGGAGAAGATATTGACATTGTGTTTGAACACCCCGGCCGTGAAACTTTTGGTG

CCTCCGTGTATGTTACCCGGAAAGGCGGTACTATTACCACTTGTGCCTCCACCAGTGGGTACATGCATGAAT

ACGATAACCGTTATTTGTGGATGAGCTTAAAACGGATTATTGGCTCTCACTTTGCCAATTACCGGGAAGCCT

ATGAAGCTAACCGCTTAATTGCCAAAGGCAAAATTCATCCCACCCTGTCCAAAACTTACAGTTTGGAAGAAA

CCGGTCAAGCTGCCTATGATGTGCATCGCAACCTGCACCAGGGCAAAGTGGGTGTTTTGTGCTTAGCCCCC

GAAGAAGGGTTAGGAGTTCGTGATGCTGAAATGCGTGCCCAACATATTGATGCTATTAACCGTTTTCGGAA

TGTGTAA

phaJ MWSHPQFEKSAQSLEVGQKARLSKRFGAAEVAAFAALSEDFNPLHLDPAFAATTAFERPIVHGMLLASLFSGLL

GQQLPGKGSIYLGQSLSFKLPVFVGDEVTAEVEVTALREDKPIATLTTRIFTQGGALAVTGEAVVKLP

ATGTGGAGTCATCCTCAGTTCGAGAAGAGCGCCCAATCTTTGGAAGTGGGGCAGAAAGCCCGGTTAAGCA

44

AACGCTTTGGAGCCGCTGAAGTTGCCGCTTTTGCCGCTCTGAGTGAAGATTTTAACCCCCTGCATCTGGACC

CCGCCTTTGCCGCTACCACTGCTTTTGAACGGCCCATTGTGCACGGGATGTTGTTAGCCTCCCTGTTTAGTG

GCCTGTTGGGTCAACAATTGCCCGGCAAAGGCTCCATTTACTTGGGCCAATCCTTAAGTTTTAAACTGCCCG

TGTTTGTTGGTGATGAAGTGACCGCCGAAGTGGAAGTTACTGCTTTACGTGAAGACAAACCCATTGCCACC

CTGACCACTCGGATTTTTACTCAGGGCGGTGCCTTAGCTGTTACCGGCGAAGCCGTGGTTAAATTGCCCTAA

fadB MDYKDDDDKLYKGDTLYLDWLEDGIAELVFDAPGSVNKLDTATVASLGEAIGVLEQQSDLKGLLLRSNKAAFIV

GADITEFLSLFLVPEEQLSQWLHFANSVFNRLEDLPVPTIAAVNGYALGGGCECVLATDYRLATPDLRIGLPETKL

GIMPGFGGSVRMPRMLGADSALEIIAAGKDVGADQALKIGLVDGVVKAEKLVEGAKAVLRQAINGDLDWKAK

RQPKLEPLKLSKIEATMSFTIAKGMVAQTAGKHYPAPITAVKTIEAAARFGREEALNLENKSFVPLAHTNEARALV

GIFLNDQYVKGKAKKLTKDVETPKQAAVLGAGIMGGGIAYQSAWKGVPVVMKDINDKSLTLGMTEAAKLLNK

QLERGKIDGLKLAGVISTIHPTLDYAGFDRVDIVVEAVVENPKVKKAVLAETEQKVRQDTVLASNTSTIPISELANA

LERPENFCGMHFFNPVHRMPLVEIIRGEKSSDETIAKVVAWASKMGKTPIVVNDCPGFFVNRVLFPYFAGFSQL

LRDGADFRKIDKVMEKQFGWPMGPAYLLDVVGIDTAHHAQAVMAAGFPQRMQKDYRDAIDALFDANRFGQ

KNGLGFWRYKEDSKGKPKKEEDAAVEDLLAEVSQPKRDFSEEEIIARMMIPMVNEVVRCLEEGIIATPAEADMA

LVYGLGFPPFHGGAFRWLDTLGSAKYLDMAQQYQHLGPLYEVPEGLRNKARHNEPYYPPVEPARPVGDLKTA

ATGGACTACAAGGATGACGATGACAAGCTGTATAAAGGAGACACCCTGTATTTGGACTGGCTGGAAGAT

GGGATTGCTGAACTGGTTTTTGATGCCCCCGGAAGCGTGAATAAATTAGATACCGCTACTGTGGCCAGCCT

GGGCGAAGCCATTGGTGTTTTAGAACAACAGAGCGACCTGAAAGGCTTGTTACTGCGTTCTAATAAAGCCG

CTTTTATTGTGGGTGCCGATATTACCGAATTTCTGTCTTTGTTTTTAGTTCCCGAAGAACAATTATCCCAGTG

GCTGCATTTTGCCAATAGTGTGTTTAACCGGTTGGAAGATTTGCCCGTGCCCACCATTGCCGCTGTTAACGG

CTACGCCTTAGGCGGTGGGTGTGAATGCGTGTTGGCTACCGACTATCGCTTAGCCACTCCCGATTTGCGTAT

TGGTTTACCCGAAACCAAATTGGGGATTATGCCCGGATTTGGAGGCTCCGTGCGTATGCCCCGTATGCTGG

GAGCTGATAGTGCCTTGGAAATTATTGCCGCTGGCAAAGACGTGGGTGCTGATCAAGCCCTGAAAATTGG

GTTGGTTGATGGAGTGGTTAAAGCCGAAAAATTGGTGGAAGGCGCTAAAGCCGTTTTACGGCAAGCTATT

AATGGTGATCTGGACTGGAAAGCCAAACGCCAGCCCAAATTAGAACCCCTGAAATTGTCCAAAATTGAAGC

TACCATGAGTTTTACTATTGCCAAAGGCATGGTGGCTCAAACCGCCGGTAAACATTACCCCGCTCCCATTAC

CGCCGTTAAAACTATTGAAGCCGCTGCCCGTTTTGGTCGGGAAGAAGCCTTAAATCTGGAAAACAAATCCT

TTGTGCCCTTGGCCCACACCAATGAAGCTCGGGCCCTGGTGGGGATTTTTCTGAACGACCAGTACGTTAAA

GGAAAAGCCAAAAAACTGACCAAAGATGTGGAAACTCCCAAACAAGCTGCCGTTTTGGGGGCCGGAATTA

TGGGTGGGGGAATTGCTTATCAGAGCGCCTGGAAAGGTGTGCCCGTGGTTATGAAAGATATTAACGACAA

ATCTTTGACCTTAGGGATGACTGAAGCTGCCAAATTGTTAAACAAACAATTAGAACGCGGCAAAATTGACG

GTCTGAAATTGGCCGGGGTGATTAGCACCATTCATCCCACTTTGGATTATGCCGGATTTGATCGTGTGGACA

TTGTGGTTGAAGCCGTGGTTGAAAATCCCAAAGTGAAAAAAGCTGTTTTAGCCGAAACCGAACAAAAAGT

GCGTCAGGATACTGTTCTGGCCAGCAACACCTCTACTATTCCCATTAGTGAATTAGCTAATGCCCTGGAACG

GCCCGAAAACTTTTGTGGGATGCATTTCTTTAATCCCGTGCACCGGATGCCCTTAGTTGAAATTATTCGCGG

CGAAAAATCCAGTGATGAAACCATTGCCAAAGTGGTTGCTTGGGCCTCCAAAATGGGGAAAACTCCCATTG

TGGTTAATGATTGTCCCGGCTTTTTCGTGAACCGCGTTTTGTTTCCCTACTTTGCTGGGTTTAGTCAACTGTT

45

GCGGGATGGAGCCGACTTTCGCAAAATTGATAAAGTGATGGAAAAACAGTTTGGGTGGCCTATGGGCCCC

GCCTATTTACTGGACGTGGTTGGGATTGATACCGCCCATCACGCTCAAGCCGTGATGGCTGCCGGCTTTCCC

CAACGTATGCAGAAAGATTACCGGGACGCTATTGATGCCTTGTTTGACGCCAATCGCTTTGGCCAGAAAAA

CGGCTTAGGTTTTTGGCGTTATAAAGAAGATTCCAAAGGTAAACCCAAAAAAGAAGAAGACGCTGCCGTG

GAAGATTTGTTAGCCGAAGTTAGCCAACCCAAACGTGATTTTTCTGAAGAAGAAATTATTGCCCGGATGAT

GATTCCTATGGTGAATGAAGTGGTTCGGTGTTTGGAAGAAGGCATTATTGCTACCCCCGCTGAAGCCGATA

TGGCCTTGGTGTATGGGTTAGGATTTCCTCCCTTTCACGGCGGTGCCTTTCGCTGGTTGGACACCTTAGGTA

GTGCTAAATATTTAGATATGGCCCAACAGTACCAACATCTGGGCCCCTTGTATGAAGTGCCCGAAGGTTTG

CGCAATAAAGCCCGTCACAATGAACCCTATTACCCCCCCGTTGAACCCGCTCGCCCCGTTGGAGATTTGAAA

ACTGCTTAA

phaB MDYKDDDDKTQRIAYVTGGMGGIGTAICQRLAKDGFRVVAGCGPNSPRREKWLEQQKALGFDFIASEGNVA

DWDSTKTAFDKVKSEVGEVDVLINNAGITRDVVFRKMTRADWDAVIDTNLTSLFNVTKQVIDGMADRGWGRI

VNISSVNGQKGQFGQTNYSTAKAGLHGFTMALAQEVATKGVTVNTVSPGYIATDMVKAIRQDVLDKIVATIPV

KRLGLPEEIASICAWLSSEESGFSTGADFSLNGGLHMG

ATGGACTACAAGGATGACGATGACAAGACTCAGCGGATTGCTTATGTGACTGGTGGGATGGGAGGTATT

GGGACTGCTATTTGCCAGCGGTTGGCTAAAGACGGTTTTCGGGTTGTGGCTGGATGTGGTCCCAATAGCCC

CCGGCGCGAAAAATGGTTAGAACAACAGAAAGCTCTGGGTTTTGATTTTATTGCCTCCGAAGGGAACGTG

GCTGATTGGGACAGTACCAAAACTGCCTTTGATAAAGTGAAATCCGAAGTTGGTGAAGTGGACGTTTTGAT

TAATAACGCCGGGATTACCCGTGATGTGGTTTTTCGTAAAATGACTCGGGCCGATTGGGACGCTGTGATTG

ATACCAATCTGACCTCCTTGTTTAACGTGACCAAACAGGTTATTGATGGAATGGCCGACCGCGGGTGGGGA

CGTATTGTGAATATTTCCAGTGTTAACGGCCAAAAAGGCCAGTTTGGGCAAACCAATTATAGCACTGCCAA

AGCTGGATTGCATGGCTTTACTATGGCCTTAGCTCAGGAAGTTGCCACTAAAGGAGTGACCGTTAATACTG

TGTCTCCCGGCTACATTGCCACCGATATGGTGAAAGCTATTCGGCAAGATGTGCTGGACAAAATTGTTGCC

ACCATTCCCGTGAAACGCTTGGGTTTACCCGAAGAAATTGCCTCCATTTGCGCTTGGTTAAGCTCTGAAGAA

TCTGGCTTTTCCACTGGTGCTGACTTTTCCCTGAACGGGGGTTTACACATGGGGTAA

phaB Q47L

MDYKDDDDKTQRIAYVTGGMGGIGTAICQRLAKDGFRVVAGCGPNSPRREKWLELQKALGFDFIASEGNVAD

WDSTKTAFDKVKSEVGEVDVLINNAGITRDVVFRKMTRADWDAVIDTNLTSLFNVTKQVIDGMADRGWGRIV

NISSVNGQKGQFGQTNYSTAKAGLHGFTMALAQEVATKGVTVNTVSPGYIATDMVKAIRQDVLDKIVATIPVK

RLGLPEEIASICAWLSSEESGFSTGADFSLNGGLHMG

ATGGACTACAAGGATGACGATGACAAGACTCAGCGGATTGCTTATGTGACTGGTGGGATGGGAGGTATT

GGGACTGCTATTTGCCAGCGGTTGGCTAAAGACGGTTTTCGGGTTGTGGCTGGATGTGGTCCCAATAGCCC

CCGGCGCGAAAAATGGTTAGAATTGCAGAAAGCTCTGGGTTTTGATTTTATTGCCTCCGAAGGGAACGTGG

CTGATTGGGACAGTACCAAAACTGCCTTTGATAAAGTGAAATCCGAAGTTGGTGAAGTGGACGTTTTGATT

AATAACGCCGGGATTACCCGTGATGTGGTTTTTCGTAAAATGACTCGGGCCGATTGGGACGCTGTGATTGA

TACCAATCTGACCTCCTTGTTTAACGTGACCAAACAGGTTATTGATGGAATGGCCGACCGCGGGTGGGGAC

GTATTGTGAATATTTCCAGTGTTAACGGCCAAAAAGGCCAGTTTGGGCAAACCAATTATAGCACTGCCAAA

46

GCTGGATTGCATGGCTTTACTATGGCCTTAGCTCAGGAAGTTGCCACTAAAGGAGTGACCGTTAATACTGT

GTCTCCCGGCTACATTGCCACCGATATGGTGAAAGCTATTCGGCAAGATGTGCTGGACAAAATTGTTGCCA

CCATTCCCGTGAAACGCTTGGGTTTACCCGAAGAAATTGCCTCCATTTGCGCTTGGTTAAGCTCTGAAGAAT

CTGGCTTTTCCACTGGTGCTGACTTTTCCCTGAACGGGGGTTTACACATGGGGTAA

phaB T173S

MDYKDDDDKTQRIAYVTGGMGGIGTAICQRLAKDGFRVVAGCGPNSPRREKWLEQQKALGFDFIASEGNVA

DWDSTKTAFDKVKSEVGEVDVLINNAGITRDVVFRKMTRADWDAVIDTNLTSLFNVTKQVIDGMADRGWGRI

VNISSVNGQKGQFGQTNYSTAKAGLHGFTMALAQEVASKGVTVNTVSPGYIATDMVKAIRQDVLDKIVATIPV

KRLGLPEEIASICAWLSSEESGFSTGADFSLNGGLHMG

ATGGACTACAAGGATGACGATGACAAGACTCAGCGGATTGCTTATGTGACTGGTGGGATGGGAGGTATT

GGGACTGCTATTTGCCAGCGGTTGGCTAAAGACGGTTTTCGGGTTGTGGCTGGATGTGGTCCCAATAGCCC

CCGGCGCGAAAAATGGTTAGAACAACAGAAAGCTCTGGGTTTTGATTTTATTGCCTCCGAAGGGAACGTG

GCTGATTGGGACAGTACCAAAACTGCCTTTGATAAAGTGAAATCCGAAGTTGGTGAAGTGGACGTTTTGAT

TAATAACGCCGGGATTACCCGTGATGTGGTTTTTCGTAAAATGACTCGGGCCGATTGGGACGCTGTGATTG

ATACCAATCTGACCTCCTTGTTTAACGTGACCAAACAGGTTATTGATGGAATGGCCGACCGCGGGTGGGGA

CGTATTGTGAATATTTCCAGTGTTAACGGCCAAAAAGGCCAGTTTGGGCAAACCAATTATAGCACTGCCAA

AGCTGGATTGCATGGCTTTACTATGGCCTTAGCTCAGGAAGTTGCCTCCAAAGGAGTGACCGTTAATACTG

TGTCTCCCGGCTACATTGCCACCGATATGGTGAAAGCTATTCGGCAAGATGTGCTGGACAAAATTGTTGCC

ACCATTCCCGTGAAACGCTTGGGTTTACCCGAAGAAATTGCCTCCATTTGCGCTTGGTTAAGCTCTGAAGAA

TCTGGCTTTTCCACTGGTGCTGACTTTTCCCTGAACGGGGGTTTACACATGGGGTAA

phaB Q47L,

T173S

MDYKDDDDKTQRIAYVTGGMGGIGTAICQRLAKDGFRVVAGCGPNSPRREKWLELQKALGFDFIASEGNVAD

WDSTKTAFDKVKSEVGEVDVLINNAGITRDVVFRKMTRADWDAVIDTNLTSLFNVTKQVIDGMADRGWGRIV

NISSVNGQKGQFGQTNYSTAKAGLHGFTMALAQEVASKGVTVNTVSPGYIATDMVKAIRQDVLDKIVATIPVK

RLGLPEEIASICAWLSSEESGFSTGADFSLNGGLHMG

ATGGACTACAAGGATGACGATGACAAGACTCAGCGGATTGCTTATGTGACTGGTGGGATGGGAGGTATT

GGGACTGCTATTTGCCAGCGGTTGGCTAAAGACGGTTTTCGGGTTGTGGCTGGATGTGGTCCCAATAGCCC

CCGGCGCGAAAAATGGTTAGAATTGCAGAAAGCTCTGGGTTTTGATTTTATTGCCTCCGAAGGGAACGTGG

CTGATTGGGACAGTACCAAAACTGCCTTTGATAAAGTGAAATCCGAAGTTGGTGAAGTGGACGTTTTGATT

AATAACGCCGGGATTACCCGTGATGTGGTTTTTCGTAAAATGACTCGGGCCGATTGGGACGCTGTGATTGA

TACCAATCTGACCTCCTTGTTTAACGTGACCAAACAGGTTATTGATGGAATGGCCGACCGCGGGTGGGGAC

GTATTGTGAATATTTCCAGTGTTAACGGCCAAAAAGGCCAGTTTGGGCAAACCAATTATAGCACTGCCAAA

GCTGGATTGCATGGCTTTACTATGGCCTTAGCTCAGGAAGTTGCCTCCAAAGGAGTGACCGTTAATACTGT

GTCTCCCGGCTACATTGCCACCGATATGGTGAAAGCTATTCGGCAAGATGTGCTGGACAAAATTGTTGCCA

CCATTCCCGTGAAACGCTTGGGTTTACCCGAAGAAATTGCCTCCATTTGCGCTTGGTTAAGCTCTGAAGAAT

CTGGCTTTTCCACTGGTGCTGACTTTTCCCTGAACGGGGGTTTACACATGGGGTAA

phaA MDYKDDDDKTDVVIVSAARTAVGKFGGSLAKIPAPELGAVVIKAALERAGVKPEQVSEVIMGQVLTAGSGQNP

ARQAAIKAGLPAMVPAMTINKVCGSGLKAVMLAANAIMAGDAEIVVAGGQENMSAAPHVLPGSRDGFRMG

47

DAKLVDTMIVDGLWDVYNQYHMGITAENVAKEYGITREAQDEFAVGSQNKAEAAQKAGKFDEEIVPVLIPQR

KGDPVAFKTDEFVRQGATLDSMSGLKPAFDKAGTVTAANASGLNDGAAAVVVMSAAKAKELGLTPLATIKSYA

NAGVDPKVMGMGPVPASKRALSRAEWTPQDLDLMEINEAFAAQALAVHQQMGWDTSKVNVNGGAIAIGH

PIGASGCRILVTLLHEMKRRDAKKGLASLCIGGGMGVALAVERK

ATGGACTACAAGGATGACGATGACAAGACCGATGTGGTTATTGTTTCCGCTGCCCGTACTGCTGTTGGTAA

ATTTGGAGGGTCTCTGGCTAAAATTCCCGCCCCCGAACTGGGTGCCGTGGTTATTAAAGCCGCTTTGGAAC

GTGCCGGGGTGAAACCCGAACAAGTTAGCGAAGTGATTATGGGACAGGTTTTGACCGCCGGCTCTGGTCA

AAATCCCGCTCGTCAGGCTGCTATTAAAGCTGGATTACCCGCTATGGTTCCCGCCATGACTATTAATAAAGT

GTGTGGGTCCGGATTGAAAGCCGTTATGTTAGCCGCTAACGCTATTATGGCCGGTGATGCTGAAATTGTGG

TTGCCGGCGGTCAAGAAAATATGTCCGCCGCTCCCCATGTGTTGCCCGGCAGTCGTGACGGTTTTCGGATG

GGGGATGCCAAATTAGTTGACACCATGATTGTGGATGGACTGTGGGACGTGTATAATCAATACCACATGG

GCATTACCGCTGAAAACGTGGCCAAAGAATATGGTATTACTCGCGAAGCCCAAGATGAATTTGCTGTGGGC

AGTCAAAATAAAGCCGAAGCCGCTCAGAAAGCCGGTAAATTTGACGAAGAAATTGTTCCCGTGTTAATTCC

CCAACGGAAAGGCGATCCCGTGGCCTTTAAAACCGACGAATTTGTTCGCCAGGGTGCCACTCTGGATTCCA

TGAGTGGGTTGAAACCCGCTTTTGACAAAGCCGGCACCGTGACTGCCGCTAATGCTAGTGGACTGAATGAT

GGTGCCGCTGCCGTGGTTGTGATGAGTGCTGCCAAAGCCAAAGAACTGGGGTTGACCCCCTTGGCCACTAT

TAAAAGCTACGCTAATGCCGGAGTTGATCCCAAAGTGATGGGCATGGGTCCCGTGCCCGCTAGCAAACGC

GCCTTATCTCGTGCTGAATGGACTCCCCAAGATTTGGATTTGATGGAAATTAACGAAGCCTTTGCTGCCCAG

GCTCTGGCCGTGCATCAACAGATGGGTTGGGATACCAGCAAAGTTAATGTGAACGGGGGAGCTATTGCCA

TTGGGCATCCCATTGGGGCCTCTGGATGCCGTATTTTAGTGACCTTGTTACACGAAATGAAACGTCGGGAT

GCCAAAAAAGGGCTGGCTTCTCTGTGTATTGGTGGGGGTATGGGGGTGGCTTTGGCTGTTGAACGGAAAT

AA

phaA F219Y

MDYKDDDDKTDVVIVSAARTAVGKFGGSLAKIPAPELGAVVIKAALERAGVKPEQVSEVIMGQVLTAGSGQNP

ARQAAIKAGLPAMVPAMTINKVCGSGLKAVMLAANAIMAGDAEIVVAGGQENMSAAPHVLPGSRDGFRMG

DAKLVDTMIVDGLWDVYNQYHMGITAENVAKEYGITREAQDEFAVGSQNKAEAAQKAGKFDEEIVPVLIPQR

KGDPVAFKTDEYVRQGATLDSMSGLKPAFDKAGTVTAANASGLNDGAAAVVVMSAAKAKELGLTPLATIKSYA

NAGVDPKVMGMGPVPASKRALSRAEWTPQDLDLMEINEAFAAQALAVHQQMGWDTSKVNVNGGAIAIGH

PIGASGCRILVTLLHEMKRRDAKKGLASLCIGGGMGVALAVERK

ATGGACTACAAGGATGACGATGACAAGACCGATGTGGTTATTGTTTCCGCTGCCCGTACTGCTGTTGGTAA

ATTTGGAGGGTCTCTGGCTAAAATTCCCGCCCCCGAACTGGGTGCCGTGGTTATTAAAGCCGCTTTGGAAC

GTGCCGGGGTGAAACCCGAACAAGTTAGCGAAGTGATTATGGGACAGGTTTTGACCGCCGGCTCTGGTCA

AAATCCCGCTCGTCAGGCTGCTATTAAAGCTGGATTACCCGCTATGGTTCCCGCCATGACTATTAATAAAGT

GTGTGGGTCCGGATTGAAAGCCGTTATGTTAGCCGCTAACGCTATTATGGCCGGTGATGCTGAAATTGTGG

TTGCCGGCGGTCAAGAAAATATGTCCGCCGCTCCCCATGTGTTGCCCGGCAGTCGTGACGGTTTTCGGATG

GGGGATGCCAAATTAGTTGACACCATGATTGTGGATGGACTGTGGGACGTGTATAATCAATACCACATGG

GCATTACCGCTGAAAACGTGGCCAAAGAATATGGTATTACTCGCGAAGCCCAAGATGAATTTGCTGTGGGC

48

AGTCAAAATAAAGCCGAAGCCGCTCAGAAAGCCGGTAAATTTGACGAAGAAATTGTTCCCGTGTTAATTCC

CCAACGGAAAGGCGATCCCGTGGCCTTTAAAACCGACGAATATGTTCGCCAGGGTGCCACTCTGGATTCCA

TGAGTGGGTTGAAACCCGCTTTTGACAAAGCCGGCACCGTGACTGCCGCTAATGCTAGTGGACTGAATGAT

GGTGCCGCTGCCGTGGTTGTGATGAGTGCTGCCAAAGCCAAAGAACTGGGGTTGACCCCCTTGGCCACTAT

TAAAAGCTACGCTAATGCCGGAGTTGATCCCAAAGTGATGGGCATGGGTCCCGTGCCCGCTAGCAAACGC

GCCTTATCTCGTGCTGAATGGACTCCCCAAGATTTGGATTTGATGGAAATTAACGAAGCCTTTGCTGCCCAG

GCTCTGGCCGTGCATCAACAGATGGGTTGGGATACCAGCAAAGTTAATGTGAACGGGGGAGCTATTGCCA

TTGGGCATCCCATTGGGGCCTCTGGATGCCGTATTTTAGTGACCTTGTTACACGAAATGAAACGTCGGGAT

GCCAAAAAAGGGCTGGCTTCTCTGTGTATTGGTGGGGGTATGGGGGTGGCTTTGGCTGTTGAACGGAAAT

AAACTAGATAGTGGAGGTACTAGAATGGACTACAAGGATGACGATGACAAGACTCAGCGGATTGCTTATG

TGACTGGTGGGATGGGAGGTATTGGGACTGCTATTTGCCAGCGGTTGGCTAAAGACGGTTTTCGGGTTGT

GGCTGGATGTGGTCCCAATAGCCCCCGGCGCGAAAAATGGTTAGAACAACAGAAAGCTCTGGGTTTTGAT

TTTATTGCCTCCGAAGGGAACGTGGCTGATTGGGACAGTACCAAAACTGCCTTTGATAAAGTGAAATCCGA

AGTTGGTGAAGTGGACGTTTTGATTAATAACGCCGGGATTACCCGTGATGTGGTTTTTCGTAAAATGACTC

GGGCCGATTGGGACGCTGTGATTGATACCAATCTGACCTCCTTGTTTAACGTGACCAAACAGGTTATTGAT

GGAATGGCCGACCGCGGGTGGGGACGTATTGTGAATATTTCCAGTGTTAACGGCCAAAAAGGCCAGTTTG

GGCAAACCAATTATAGCACTGCCAAAGCTGGATTGCATGGCTTTACTATGGCCTTAGCTCAGGAAGTTGCC

ACTAAAGGAGTGACCGTTAATACTGTGTCTCCCGGCTACATTGCCACCGATATGGTGAAAGCTATTCGGCA

AGATGTGCTGGACAAAATTGTTGCCACCATTCCCGTGAAACGCTTGGGTTTACCCGAAGAAATTGCCTCCAT

TTGCGCTTGGTTAAGCTCTGAAGAATCTGGCTTTTCCACTGGTGCTGACTTTTCCCTGAACGGGGGTTTACA

CATGGGGTAA

nphT7 MDYKDDDDKTDVRFRIIGTGAYVPERIVSNDEVGAPAGVDDDWITRKTGIRQRRWAADDQATSDLATAAGR

AALKAAGITPEQLTVIAVATSTPDRPQPPTAAYVQHHLGATGTAAFDVNAVCSGTVFALSSVAGTLVYRGGYAL

VIGADLYSRILNPADRKTVVLFGDGAGAMVLGPTSTGTGPIVRRVALHTFGGLTDLIRVPAGGSRQPLDTDGLD

AGLQYFAMDGREVRRFVTEHLPQLIKGFLHEAGVDAADISHFVPHQANGVMLDEVFGELHLPRATMHRTVET

YGNTGAASIPITMDAAVRAGSFRPGELVLLAGFGGGMAASFALIEW

ATGGACTACAAGGATGACGATGACAAGACTGACGTGCGGTTTCGCATTATTGGCACCGGGGCCTATGTGC

CCGAACGGATTGTTAGCAATGATGAAGTGGGCGCCCCCGCTGGTGTGGATGACGATTGGATTACTCGTAA

AACCGGCATTCGGCAACGTCGGTGGGCCGCTGACGATCAGGCCACTAGCGATCTGGCTACCGCCGCTGGT

CGTGCTGCTTTGAAAGCCGCTGGGATTACTCCCGAACAATTGACCGTGATTGCCGTTGCTACCTCTACTCCC

GACCGTCCCCAACCTCCCACCGCCGCTTATGTGCAGCATCACTTAGGCGCCACCGGTACTGCCGCTTTTGAT

GTGAATGCCGTTTGTTCCGGGACCGTTTTTGCCTTGTCCAGTGTTGCTGGCACCTTAGTGTATCGTGGCGGT

TACGCCTTGGTGATTGGTGCTGATTTATACTCCCGTATTCTGAACCCCGCCGACCGGAAAACCGTGGTTTTA

TTTGGAGATGGTGCTGGTGCTATGGTGCTGGGACCCACCTCCACCGGGACCGGACCCATTGTGCGTCGGG

TTGCCCTGCATACTTTTGGGGGATTAACCGATCTGATTCGCGTGCCCGCCGGCGGTTCCCGTCAACCCTTGG

ACACCGATGGGCTGGACGCCGGATTGCAGTATTTTGCTATGGATGGCCGCGAAGTGCGCCGTTTTGTTACC

GAACATTTGCCCCAATTGATTAAAGGGTTTTTACACGAAGCCGGAGTTGACGCCGCTGATATTAGTCATTTT

49

GTGCCCCACCAGGCCAATGGCGTTATGCTGGATGAAGTGTTTGGTGAACTGCATTTGCCCCGTGCCACCAT

GCACCGTACTGTGGAAACCTACGGGAACACTGGAGCCGCTAGCATTCCCATTACTATGGATGCCGCTGTTC

GTGCTGGCTCTTTTCGCCCCGGTGAATTGGTGTTGTTAGCCGGTTTTGGGGGAGGCATGGCCGCTTCCTTTG

CCTTAATTGAATGGTAA

slr1192OP

MWSHPQFEKIKAYAALEANGKLQPFEYDPGALGANEVEIEVQYCGVCHSDLSMINNEWGISNYPLVPGHEVV

GTVAAMGEGVNHVEVGDLVGLGWHSGYCMTCHSCLSGYHNLCATAESTIVGHYGGFGDRVRAKGVSVVKLP

KGIDLASAGPLFCGGITVFSPMVELSLKPTAKVAVIGIGGLGHLAVQFLRAWGCEVTAFTSSARKQTEVLELGAH

HILDSTNPEAIASAEGKFDYIISTVNLKLDWNLYISTLAPQGHFHFVGVVLEPLDLNLFPLLMGQRSVSASPVGSPA

TIATMLDFAVRHDIKPVVEQFSFDQINEAIAHLESGKAHYRVVLSHSKN

ATGTGGAGTCATCCTCAGTTCGAGAAGATTAAAGCCTACGCCGCCTTGGAAGCCAATGGAAAATTACAGC

CCTTTGAATACGATCCCGGTGCCCTGGGTGCTAACGAAGTTGAAATTGAAGTGCAATATTGTGGCGTGTGT

CATAGTGATTTGTCCATGATTAACAACGAATGGGGTATTAGTAACTATCCCTTAGTGCCCGGTCATGAAGTG

GTGGGGACCGTGGCTGCTATGGGCGAAGGTGTGAATCATGTGGAAGTGGGGGATTTAGTGGGGTTGGGC

TGGCATAGTGGCTATTGTATGACCTGTCATAGTTGTTTGTCCGGTTATCATAACTTGTGTGCCACCGCCGAA

TCCACCATTGTGGGGCATTATGGCGGTTTTGGCGATCGGGTGCGCGCCAAAGGGGTGAGTGTGGTGAAAT

TGCCCAAAGGCATTGATTTGGCCTCCGCCGGTCCCTTATTTTGTGGTGGCATTACCGTGTTTAGTCCTATGG

TGGAATTGTCCTTAAAACCCACCGCCAAAGTGGCCGTGATTGGCATTGGTGGGTTAGGTCATTTGGCCGTG

CAATTTTTGCGTGCCTGGGGCTGTGAAGTGACCGCCTTTACCAGTTCCGCCCGGAAACAAACCGAAGTGTT

GGAATTAGGGGCCCATCATATTTTAGATAGTACCAATCCCGAAGCCATTGCCTCCGCCGAAGGCAAATTTG

ATTACATTATTAGTACCGTGAACTTGAAATTGGATTGGAACTTGTACATTTCCACCTTGGCTCCCCAAGGTCA

TTTTCATTTTGTGGGCGTGGTGTTGGAACCCTTGGATTTAAATTTGTTTCCCTTGTTGATGGGTCAACGCTCC

GTGAGTGCTTCCCCCGTGGGGAGTCCCGCCACCATTGCCACCATGTTAGATTTTGCCGTGCGTCATGATATT

AAACCCGTGGTGGAACAATTTTCCTTTGATCAAATTAACGAAGCCATTGCTCATTTGGAAAGTGGTAAAGCC

CATTATCGGGTGGTGCTGTCCCATTCTAAAAACTAA

sigE MWSHPQFEKSDMSSLSTPNTSAVDQWQALDGLADGQAIANDDPPAIEVTLGDGQQGSFNKAVSEDTVGAFF

KEMARYPLLSAAEEVELARQIRLLVSAEDVRQQLTQQLERTPSLQEWGQALEFPQVRQFEIWLYQLRAAKRRMI

RSNLRLVVSIAKRYLNRGVPFLDLIQEGAIGLNRAAEKFDPDKGYKFSTYAYWWIRQAITRTIANDARTIRLPIHVV

EKLNKIKKAQRSLKQELKRNPNEGELAAALDITPAQLRQLLQLRRQSLSLNHRVGKGEDTELVDLLEDQQLQLPE

DLMNESMLRREIVEVLAEVLTEREMEVICLRYGIASHQSYTLEEVGNMFNLSRERVRQIQSKAMRKLRRPQVAR

RLKGWL

ATGTGGAGTCATCCTCAGTTCGAGAAGTCCGATATGTCCAGTTTGTCCACCCCCAATACCAGTGCCGTGGA

TCAATGGCAAGCCTTGGATGGCTTAGCCGATGGTCAAGCCATTGCCAATGATGATCCTCCCGCCATTGAAG

TGACCTTAGGCGATGGTCAACAAGGGTCCTTTAATAAAGCTGTGAGTGAAGATACCGTGGGCGCCTTTTTC

AAAGAAATGGCCCGCTATCCCTTGTTATCCGCCGCCGAAGAAGTGGAATTGGCCCGCCAAATTCGTTTGTT

AGTGAGTGCCGAAGATGTGCGGCAACAATTGACCCAACAATTAGAACGCACCCCCAGTTTGCAAGAATGG

GGGCAAGCCTTAGAATTTCCCCAAGTGCGTCAATTTGAAATTTGGTTGTACCAATTACGGGCCGCCAAACG

50

TCGGATGATTCGTTCCAATTTGCGGTTAGTGGTGTCCATTGCCAAACGCTATTTGAATCGTGGCGTGCCCTT

TTTGGATTTAATTCAAGAAGGTGCCATTGGGTTAAATCGGGCCGCCGAAAAATTTGATCCCGATAAAGGTT

ACAAATTTTCCACCTATGCCTATTGGTGGATTCGGCAAGCCATTACCCGCACCATTGCCAATGATGCCCGGA

CCATTCGCTTGCCCATTCATGTGGTGGAAAAATTGAACAAAATCAAAAAAGCCCAACGTAGTTTGAAACAA

GAATTAAAACGGAATCCCAATGAAGGCGAATTGGCCGCCGCCTTGGATATTACCCCCGCCCAATTGCGCCA

ATTGTTACAATTACGTCGGCAATCCTTGAGTTTAAATCATCGTGTGGGGAAAGGCGAAGATACCGAATTGG

TGGATTTGTTAGAAGATCAACAATTGCAATTACCCGAAGATTTGATGAATGAATCCATGTTACGCCGTGAA

ATTGTGGAAGTGTTGGCCGAAGTGTTAACCGAACGCGAAATGGAAGTGATTTGTTTGCGTTATGGTATTGC

CTCCCATCAAAGTTATACCTTGGAAGAAGTGGGGAATATGTTTAATTTATCCCGCGAACGTGTGCGGCAAA

TTCAAAGTAAAGCCATGCGGAAATTGCGGCGCCCCCAAGTGGCTCGTCGGTTGAAAGGTTGGTTATAA

rre37 MWSHPQFEKNPVYISVVEGNPHLRSLLSWHLQQSGYLVQQCSGFHQARQAFNNQLPTLAVIDSDLTDGDGIE

LCRWLYQQHQSMIFILSAKDTEKDIVHGLKAGADDYLTKPFGMQEFLARIECLIRRVRTVAAPLLLDYGVLKIDLV

QRRVEYQGNFVDLTPQEFSLLYVLTQAEGSALSRTELLRRAWPEAIDNPRTIDTHVLSLRKKIETDPRQPSLIQTVR

NVGYRFNSSILEEKKVVAEKPVTLSPAGVSVLT

ATGTGGAGTCATCCTCAGTTCGAGAAGAATCCCGTGTATATTTCCGTGGTGGAAGGCAATCCCCATTTACG

TTCCTTGTTAAGTTGGCATTTACAACAATCCGGTTATTTGGTGCAACAATGTAGTGGGTTTCATCAAGCCCG

CCAAGCCTTTAATAATCAATTACCCACCTTGGCCGTGATTGATAGTGATTTAACCGATGGCGATGGTATTGA

ATTATGTCGGTGGTTGTACCAACAACATCAATCCATGATTTTTATTTTGAGTGCCAAAGATACCGAAAAAGA

TATTGTGCATGGGTTAAAAGCCGGCGCCGATGATTATTTGACCAAACCCTTTGGTATGCAAGAATTTTTAGC

CCGCATTGAATGTTTGATTCGTCGGGTGCGTACCGTGGCTGCCCCCTTGTTATTGGATTACGGCGTGTTAAA

AATTGATTTGGTGCAACGTCGGGTGGAATATCAGGGTAATTTTGTGGATTTGACTCCCCAAGAATTTTCCTT

ATTGTATGTGTTAACCCAAGCCGAAGGGTCCGCCTTGAGTCGGACCGAATTATTGCGCCGTGCCTGGCCCG

AAGCCATTGATAATCCCCGCACCATTGATACCCATGTGTTATCCTTGCGGAAGAAAATTGAAACCGATCCCC

GGCAACCCAGTTTAATTCAAACCGTGCGGAATGTGGGGTATCGCTTTAATTCCAGTATTTTGGAAGAAAAG

AAAGTGGTGGCCGAAAAACCCGTGACCTTATCCCCCGCCGGTGTGAGTGTGTTGACCTAA

hik8 MWSHPQFEKSSSSELGNASSVPLQFLLFIDDRPNSQDSVQEIGQCLTNLLDGHSHDLQILQISKHPHLVEHFRLV

ATPSLIKLQPEPRQVLAGSNIIQQLQKWWPRWQQELAMDPNPEDTGQSPSCPREISSVGYSGELMKMSDELFL

LKKDKEELLQQIQFKDQILAMLAHDLRSPLTAASIAVDTLELLQHKPIEEQKPALRSQLLYQARKQFKIMDRLIEDIL

QASKNLNSQFQVHGRPLAIADLCQEVLELYQAKFSKKNLTITYDIPKDLPNVFADEELIRQVIANLLDNAIKYTPAH

GSITVGALHRTTQKVQVSITDNGPGIPNSKQETIFEGHFRLQRDEQTDGYGLGLSLCRKIIQAHYGQIWVDSRPK

QGSSFHFTLPVYR

ATGTGGAGTCATCCTCAGTTCGAGAAGTCCAGTTCCAGTGAATTAGGCAATGCCTCCAGTGTGCCCTTGCA

ATTTTTGTTGTTTATTGATGATCGGCCCAATTCCCAAGATAGTGTGCAAGAAATTGGCCAATGTTTGACCAA

CTTGTTAGATGGTCATTCCCATGATTTACAAATTTTGCAAATTAGTAAACATCCCCATTTAGTGGAACATTTT

CGTTTGGTGGCCACCCCCTCCTTGATTAAATTGCAACCCGAACCCCGGCAAGTGTTAGCCGGTAGTAACATT

ATTCAACAATTGCAAAAATGGTGGCCCCGCTGGCAACAAGAATTGGCTATGGACCCCAATCCCGAAGATAC

51

CGGGCAATCCCCCAGTTGTCCCCGTGAAATTTCCAGTGTGGGGTATTCCGGCGAATTAATGAAAATGAGTG

ATGAATTGTTTTTGTTGAAAAAAGATAAAGAAGAATTGTTACAACAAATTCAATTTAAAGATCAAATTTTAG

CCATGTTGGCCCATGATTTACGTTCCCCCTTGACCGCCGCCAGTATTGCCGTGGATACCTTAGAATTGTTACA

ACATAAACCCATTGAAGAACAAAAACCCGCCTTGCGTTCCCAATTGTTGTACCAAGCCCGGAAACAATTTAA

AATTATGGATCGCTTGATTGAAGATATTTTGCAAGCCTCCAAAAACTTAAATAGTCAATTTCAAGTGCATGG

CCGCCCCTTAGCCATTGCCGATTTGTGTCAAGAAGTGTTGGAATTATACCAAGCCAAATTTTCCAAGAAAAA

TTTGACCATTACCTATGATATTCCCAAAGATTTACCCAATGTGTTTGCCGATGAAGAATTGATTCGGCAAGT

GATTGCCAACTTGTTAGATAACGCCATTAAATACACCCCCGCCCACGGCTCCATTACCGTGGGGGCCTTACA

TCGCACCACCCAAAAAGTGCAAGTGTCCATTACCGATAATGGCCCCGGTATTCCCAATAGTAAACAAGAAA

CCATTTTTGAAGGTCATTTTCGGTTGCAACGCGATGAACAAACCGATGGGTATGGCTTGGGTTTATCCTTGT

GTCGCAAAATTATTCAAGCCCATTATGGGCAAATTTGGGTGGATAGTCGTCCCAAACAAGGCTCCAGTTTTC

ATTTTACCTTGCCCGTGTATCGGTAA

pkBb MWSHPQFEKTNPVIGTPWQKLDRPVSEEAIEGMDKYWRVTNYMSIGQIYLRSNPLMKEPFTRDDVKHRLVG

HWGTTPGLNFLLAHINRLIADHQQNTVFIMGPGHGGPAGTSQSYVDGTYTEYYPNITKDEAGLQKFFRQFSYP

GGIPSHFAPETPGSIHEGGELGYALSHAYGAVMNNPSLFVPCIIGDGEAETGPLATGWQSNKLVNPRTDGIVLPI

LHLNGYKIANPTILARISDEELHDFFRGMGYHPYEFVAGFDNEDHMSIHRRFAELFETIFDEICDIKAAAQTDDMT

RPFYPMLIFRTPKGWTCPKFIDGKKTEGSWRAHQVPLASARDTEEHFEVLKGWMESYKPEELFNADGSIKDDV

TAFMPKGELRIGANPNANGGVIREDLKLPELDQYEVTGVKEYGHGWGQVEAPRALGAYCRDIIKNNPDSFRIFG

PDETASNRLNATYEVTDKQWDNGYLSGLVDEHMAVTGQVTEQLSEHQCEGFLEAYLLTGRHGIWSSYESFVHV

IDSMLNQHAKWLEATVREIPWRKPISSVNLLVSSHVWRQDHNGFSHQDPGVTSLLINKTFNNDHVTNIYFATD

ANMLLAISEKCFKSTNKINAIFAGKQPAPTWVTLDEARAELEAGAAEWKWASNAENNDEVQVVLASAGDVPT

QELMAASDALNKMGIKFKVVNVVDLLKLQSRENNDEALTDEEFTELFTADKPVLFAYHSYAQDVRGLIYDRPNH

DNFHVVGYKEQGSTTTPFDMVRVNDMDRYALQAAALKLIDADKYADKIDELNAFRKKAFQFAVDNGYDIPEFT

DWVYPDVKVDETQMLSATAATAGDNE

ATGTGGAGTCATCCTCAGTTCGAGAAGACCAATCCCGTGATTGGCACCCCCTGGCAAAAATTGGATCGGCC

CGTGTCCGAAGAAGCCATTGAAGGGATGGATAAATATTGGCGTGTGACCAACTACATGTCCATTGGCCAAA

TTTATTTGCGGAGTAATCCCTTAATGAAAGAACCCTTTACCCGCGATGATGTGAAACATCGTTTAGTGGGGC

ATTGGGGCACCACCCCCGGTTTGAATTTTCTGTTAGCCCATATTAATCGGTTAATTGCCGATCATCAACAAA

ATACCGTGTTTATTATGGGCCCCGGTCATGGCGGCCCCGCCGGCACCTCCCAAAGTTATGTGGATGGCACC

TACACCGAATATTATCCCAACATTACCAAAGATGAAGCCGGTTTACAAAAATTTTTCCGCCAATTTTCCTATC

CCGGCGGCATTCCCAGTCATTTTGCCCCCGAAACCCCCGGCTCCATTCATGAAGGTGGGGAATTGGGGTAT

GCCTTATCCCATGCCTATGGCGCCGTGATGAATAATCCCAGTTTGTTTGTGCCCTGTATTATTGGTGATGGG

GAAGCTGAAACCGGTCCCTTAGCTACCGGTTGGCAAAGTAATAAATTGGTGAATCCCCGCACCGATGGTAT

TGTGTTACCCATTTTGCATTTGAACGGGTACAAAATTGCCAATCCCACCATTTTGGCCCGCATTTCCGATGAA

GAATTACATGATTTCTTTCGTGGCATGGGTTATCATCCCTATGAATTTGTGGCCGGCTTTGATAACGAAGAT

CACATGAGTATTCATCGTCGGTTTGCCGAATTGTTTGAAACCATTTTTGATGAAATTTGTGATATTAAAGCTG

CCGCCCAAACCGATGATATGACCCGGCCCTTTTATCCCATGTTAATTTTTCGCACCCCCAAAGGTTGGACCT

52

GTCCCAAATTTATTGATGGCAAGAAAACCGAAGGGTCCTGGCGTGCCCATCAAGTGCCCTTGGCCAGTGCC

CGCGATACCGAAGAACATTTTGAAGTGTTGAAAGGTTGGATGGAATCCTACAAACCCGAAGAATTATTTAA

CGCCGATGGGAGTATTAAAGATGATGTGACCGCCTTTATGCCCAAAGGCGAATTGCGCATTGGTGCCAATC

CCAATGCCAATGGCGGTGTGATTCGTGAAGATTTGAAATTGCCCGAATTAGATCAATATGAAGTGACCGGC

GTGAAAGAATATGGGCATGGCTGGGGTCAAGTGGAAGCTCCCCGCGCCTTGGGTGCCTATTGTCGTGATA

TTATTAAAAACAACCCCGATTCCTTTCGGATTTTTGGGCCCGATGAAACCGCCAGTAATCGCTTAAATGCCA

CCTATGAAGTGACCGATAAACAATGGGATAATGGCTATTTGTCCGGTTTAGTGGATGAACACATGGCCGTG

ACCGGCCAAGTGACCGAACAATTAAGTGAACATCAATGTGAAGGCTTTTTGGAAGCCTATTTGTTAACCGG

TCGTCATGGGATTTGGTCCAGTTATGAATCCTTTGTGCATGTGATTGATAGTATGTTGAATCAACATGCCAA

ATGGTTAGAAGCCACCGTGCGTGAAATTCCCTGGCGGAAACCCATTTCCAGTGTGAATTTGTTAGTGTCCA

GTCATGTGTGGCGGCAAGATCATAATGGTTTTTCCCATCAAGATCCCGGCGTGACCAGTTTGTTGATTAATA

AAACCTTTAACAACGATCATGTGACCAATATTTATTTTGCCACCGATGCCAATATGTTGTTGGCCATTTCCGA

AAAATGTTTTAAAAGTACCAACAAAATTAATGCCATTTTTGCTGGTAAACAACCCGCTCCCACCTGGGTGAC

CTTGGATGAAGCCCGTGCCGAATTAGAAGCTGGTGCCGCCGAATGGAAATGGGCTTCCAATGCCGAAAAT

AATGATGAAGTTCAAGTGGTGTTGGCTTCCGCCGGCGATGTGCCCACCCAAGAATTGATGGCCGCCAGTGA

TGCCTTGAACAAAATGGGTATTAAATTTAAAGTGGTGAACGTGGTGGATTTGTTGAAATTACAAAGTCGTG

AAAACAATGATGAAGCCTTGACCGATGAAGAATTTACCGAATTATTTACCGCCGATAAACCCGTGTTGTTTG

CCTATCATTCCTATGCCCAAGATGTGCGGGGCTTGATTTATGATCGCCCCAATCATGATAATTTTCATGTGGT

GGGGTATAAAGAACAAGGCAGTACCACCACCCCCTTTGATATGGTGCGTGTGAATGATATGGATCGGTAT

GCCTTGCAAGCTGCCGCCTTGAAATTGATTGATGCCGATAAATACGCCGATAAAATTGATGAATTAAACGC

CTTTCGGAAAAAAGCCTTTCAATTTGCCGTGGATAATGGCTATGATATTCCCGAATTTACCGATTGGGTGTA

TCCCGATGTGAAAGTGGATGAAACCCAAATGTTAAGTGCCACCGCCGCCACCGCCGGTGATAATGAATAA

pkLm MWSHPQFEKADFDSKEYLELVDKWWRATNYLSAGMIFLKSNPLFSVTNTPIKAEDVKVKPIGHWGTISGQTFL

YAHANRLINKYGLNMFYVGGPGHGGQVMVTNAYLDGAYTEDYPEITQDIEGMSHLFKRFSFPGGIGSHMTAQ

TPGSLHEGGELGYSLSHAFGAVLDNPDQVAFAVVGDGEAETGPSMASWHSIKFLNAKNDGAVLPVLDLNGFKI

SNPTIFSRMSDEEITKFFEGLGYSPRFIENDDIHDYATYHQLAANILDQAIEDIQAIQNDARENGKYQDGEIPAWP

VIIARLPKGWGGPTHDASNNPIENSFRAHQVPLPLEQHDLATLPEFEDWMNSYKPEELFNADGSLKDELKAIAP

KGDKRMSANPITNGGADRSDLKLPNWREFANDINDDTRGKEFADSKRNMDMATLSNYLGAVSQLNPTRFRFF

GPDETMSNRLWGLFNVTPRQWMEEIKEPQDQLLSPTGRIIDSQLSEHQAEGWLEGYTLTGRVGIFASYESFLRV

VDTMVTQHFKWLRHASEQAWRNDYPSLNLIATSTAFQQDHNGYTHQDPGMLTHLAEKKSNFIREYLPADGN

SLLAVQERAFSERHKVNLLIASKQPRQQWFTVEEAEVLANEGLKIIDWASTAPSSDVDITFASAGTEPTIETLAAL

WLINQAFPDVKFRYVNVVELLRLQKKSEPNMNDERELSAEEFNKYFQADTPVIFGFHAYENLIESFFFERKFTGD

VYVHGYREDGDITTTYDMRVYSHLDRFHQAKEAAEILSANGKIDQAAADTFIAKMDDTLAKHFQVTRNEGRDIE

EFTDWTWSPLK

ATGTGGAGTCATCCTCAGTTCGAGAAGGCCGATTTTGATTCCAAAGAATATTTGGAATTAGTGGATAAATG

GTGGCGGGCCACCAATTATTTGAGTGCCGGGATGATTTTTCTGAAAAGTAACCCCTTATTTTCCGTGACCAA

TACCCCCATTAAAGCCGAAGATGTGAAAGTGAAACCCATTGGTCATTGGGGGACCATTTCCGGTCAAACCT

53

TTTTATATGCCCATGCCAATCGCTTGATTAATAAATACGGGTTGAACATGTTTTACGTGGGCGGCCCCGGTC

ATGGCGGCCAAGTGATGGTGACCAATGCCTATTTGGATGGTGCCTATACCGAAGATTATCCCGAAATTACT

CAAGATATTGAAGGGATGAGTCATTTGTTTAAACGTTTTTCCTTTCCCGGTGGGATTGGCAGTCACATGACC

GCCCAAACCCCCGGTAGTTTGCATGAAGGCGGTGAATTGGGTTATTCCTTAAGTCATGCCTTTGGGGCCGT

GTTAGATAATCCCGATCAAGTGGCCTTTGCCGTGGTGGGCGATGGTGAAGCCGAAACCGGCCCCAGTATG

GCCTCCTGGCATTCCATTAAATTTTTGAACGCCAAAAACGATGGTGCCGTGTTACCCGTGTTGGATTTAAAC

GGGTTTAAAATTTCCAACCCCACCATTTTTAGTCGCATGTCCGATGAAGAAATTACCAAATTTTTCGAAGGG

TTGGGCTATAGTCCCCGTTTTATTGAAAACGATGATATTCATGATTATGCCACCTATCATCAATTGGCCGCCA

ACATTTTAGATCAAGCCATTGAAGATATTCAAGCCATTCAAAACGATGCCCGCGAAAATGGTAAATATCAA

GATGGGGAAATTCCCGCCTGGCCCGTGATTATTGCTCGGTTACCCAAAGGGTGGGGCGGCCCCACCCATG

ATGCTTCCAATAATCCCATTGAAAATAGTTTTCGGGCCCATCAAGTGCCCTTGCCCTTAGAACAACATGATTT

GGCCACCTTACCCGAATTTGAAGATTGGATGAATAGTTACAAACCCGAAGAATTATTTAACGCCGATGGGA

GTTTGAAAGATGAATTAAAAGCCATTGCCCCCAAAGGCGATAAACGCATGTCCGCCAATCCCATTACCAAT

GGTGGGGCCGATCGCAGTGATTTGAAATTGCCCAATTGGCGTGAATTTGCCAACGATATTAACGATGATAC

CCGCGGCAAAGAATTTGCCGATTCCAAACGCAATATGGATATGGCCACCTTGTCCAATTATTTAGGCGCCGT

GAGTCAATTGAATCCCACCCGGTTTCGGTTTTTCGGCCCCGATGAAACCATGTCCAATCGCTTGTGGGGTTT

ATTTAATGTGACTCCCCGGCAATGGATGGAAGAAATTAAAGAACCCCAAGATCAATTGTTGAGTCCCACCG

GCCGTATTATTGATAGTCAATTATCCGAACATCAAGCCGAAGGGTGGTTGGAAGGCTATACCTTAACCGGC

CGGGTGGGTATTTTTGCCAGTTATGAATCCTTTTTGCGCGTGGTGGATACTATGGTGACCCAACATTTTAAA

TGGTTACGTCATGCCAGTGAACAAGCCTGGCGGAATGATTATCCCTCCTTGAATTTAATTGCCACCAGTACC

GCCTTTCAACAAGATCATAATGGGTATACCCATCAAGATCCCGGCATGTTGACCCATTTGGCCGAAAAGAA

ATCCAACTTTATTCGTGAATATTTGCCCGCCGATGGTAATTCCTTGTTAGCCGTGCAAGAACGCGCCTTTAGT

GAACGTCATAAAGTGAACTTGTTGATTGCCAGTAAACAACCCCGGCAACAATGGTTTACCGTGGAAGAAGC

CGAAGTGTTGGCCAACGAAGGTTTGAAAATTATTGATTGGGCCTCCACCGCTCCCTCCAGTGATGTGGATA

TTACCTTTGCCAGTGCCGGGACCGAACCCACCATTGAAACCTTGGCCGCCTTGTGGTTGATTAATCAAGCCT

TTCCCGATGTGAAATTTCGTTATGTGAATGTGGTGGAATTGTTACGGTTGCAGAAAAAATCCGAACCCAAT

ATGAATGATGAACGCGAATTAAGTGCCGAAGAATTTAACAAATACTTTCAAGCCGATACCCCCGTGATTTTT

GGCTTTCATGCCTATGAAAACTTGATTGAATCCTTTTTCTTTGAACGTAAATTTACCGGTGATGTGTATGTGC

ATGGCTATCGGGAAGATGGTGATATTACCACCACCTATGATATGCGGGTGTATTCCCATTTGGATCGCTTTC

ATCAAGCCAAAGAAGCCGCCGAAATTTTAAGTGCCAATGGCAAAATTGATCAAGCCGCCGCCGATACCTTT

ATTGCCAAAATGGATGATACCTTGGCCAAACATTTTCAAGTGACCCGTAATGAAGGTCGGGATATTGAAGA

ATTTACCGATTGGACCTGGAGTCCCTTAAAATAA

pkLl MWSHPQFEKTEYNSEAYLKKLDKWWRAATYLGAGMIFLKENPLFSVTGTPIKAENLKANPIGHWGTVSGQTFL

YAHANRLINKYDQKMFYMGGPGHGGQAMVVPSYLDGSYTEAYPEITQDLEGMSRLFKRFSFPGGIGSHMTAQ

TPGSLHEGGELGYVLSHATGAILDQPEQIAFAVVGDGEAETGPLMTSWHSIKFINPKNDGAILPILDLNGFKISNP

TLFARTSDVDIRKFFEGLGYSPRYIENDDIHDYMAYHKLAAEVFDKAIEDIHQIQKDAREDNRYQNGEIPAWPIVI

ARLPKGWGGPRYNDWSGPKFDGKGMPIEHSFRAHQVPLPLSSKNMGTLPEFVKWMTSYQPETLFNADGSLK

EELRDFAPKGEMRMASNPVTNGGVDSSNLVLPDWQEFANPISENNRGKLLPDTNDNMDMNVLSKYFAEIVKL

54

NPTRFRLFGPDETMSNRFWEMFKVTNRQWMQVIKNPNDEFISPEGRIIDSQLSEHQAEGWLEGYTLTGRTGA

FASYESFLRVVDSMLTQHFKWIRQAADQKWRHDYPSLNVISTSTVFQQDHNGYTHQDPGMLTHLAEKKSDFIR

QYLPADGNTLLAVFDRAFQDRSKINHIVASKQPRQQWFTKEEAEKLATDGIATIDWASTAKDGEAVDLVFASAG

AEPTIETLAALHLVNEVFPQAKFRYVNVVELGRLQKKKGALNQERELSDEEFEKYFGPSGTPVIFGFHGYEDLIESI

FYQRGHDGLIVHGYREDGDITTTYDMRVYSELDRFHQAIDAMQVLYVNRKVNQGLAKAFIDRMKRTLVKHFEV

TRNEGVDIPDFTEWVWSDLKK

ATGTGGAGTCATCCTCAGTTCGAGAAGACCGAATACAACAGTGAAGCCTATTTGAAAAAATTAGATAAAT

GGTGGCGTGCTGCTACCTATTTGGGTGCTGGTATGATTTTTCTGAAAGAAAACCCCTTATTTAGTGTGACCG

GCACCCCCATTAAAGCCGAAAATTTAAAAGCCAATCCCATTGGGCATTGGGGCACCGTGTCCGGGCAAACC

TTTTTGTATGCCCATGCCAATCGGTTGATTAATAAATACGATCAAAAAATGTTTTACATGGGCGGCCCCGGT

CATGGCGGCCAAGCTATGGTGGTGCCCTCCTATTTGGATGGCAGTTATACCGAAGCCTATCCCGAAATTACT

CAAGATTTGGAAGGCATGTCCCGCTTATTTAAACGTTTTAGTTTTCCCGGTGGGATTGGTTCCCACATGACC

GCCCAAACCCCCGGCTCCTTGCATGAAGGCGGTGAATTGGGTTATGTGTTATCCCATGCCACCGGCGCCAT

TTTAGATCAACCCGAACAAATTGCCTTTGCCGTGGTGGGGGATGGCGAAGCCGAAACCGGTCCCTTAATGA

CCTCCTGGCATAGTATTAAATTTATTAACCCCAAAAACGATGGCGCCATTTTGCCCATTTTGGATTTAAACGG

TTTTAAAATTAGTAATCCCACCTTATTTGCCCGCACCTCCGATGTGGATATTCGTAAATTTTTCGAAGGTTTG

GGGTATAGTCCCCGGTACATTGAAAACGATGATATTCATGATTACATGGCCTACCATAAATTGGCCGCCGA

AGTGTTTGATAAAGCCATTGAAGATATTCATCAAATTCAAAAAGATGCCCGCGAAGATAATCGCTATCAAA

ATGGCGAAATTCCCGCCTGGCCCATTGTGATTGCTCGGTTGCCCAAAGGTTGGGGCGGCCCCCGTTATAAT

GATTGGAGTGGCCCCAAATTTGATGGCAAGGGTATGCCCATTGAACATTCCTTTCGCGCCCATCAAGTGCC

CTTGCCCTTATCCAGTAAAAATATGGGCACCTTGCCCGAATTTGTGAAATGGATGACCAGTTATCAACCCGA

AACCTTATTTAATGCCGATGGCTCCTTGAAAGAAGAATTACGGGATTTTGCCCCCAAAGGTGAAATGCGCA

TGGCCTCCAATCCCGTGACCAATGGTGGGGTGGATTCCAGTAATTTGGTGTTACCCGATTGGCAAGAATTT

GCCAATCCCATTAGTGAAAATAATCGCGGGAAATTGTTACCCGATACCAACGATAACATGGATATGAACGT

GTTGTCCAAATACTTTGCCGAAATTGTGAAATTGAACCCCACCCGGTTTCGCTTATTTGGCCCCGATGAAAC

CATGAGTAATCGCTTTTGGGAAATGTTTAAAGTGACCAATCGTCAATGGATGCAAGTGATTAAAAACCCCA

ACGATGAATTTATTTCCCCCGAAGGCCGTATTATTGATTCCCAATTAAGTGAACATCAAGCCGAAGGCTGGT

TGGAAGGTTATACCTTAACCGGTCGTACCGGGGCCTTTGCCTCCTATGAATCCTTTTTGCGGGTGGTGGATA

GTATGTTGACCCAACATTTTAAATGGATTCGTCAAGCCGCCGATCAAAAATGGCGGCATGATTATCCCTCCT

TGAATGTGATTTCCACCAGTACCGTGTTTCAACAAGATCATAATGGTTATACCCATCAAGATCCCGGCATGT

TGACCCATTTAGCCGAAAAGAAATCCGATTTTATTCGGCAATATTTACCCGCCGATGGTAATACCTTGTTAG

CCGTGTTTGATCGTGCCTTTCAAGATCGGAGTAAAATTAACCATATTGTGGCCTCCAAACAACCCCGCCAAC

AATGGTTTACCAAAGAAGAAGCCGAAAAATTGGCCACCGATGGGATTGCCACCATTGATTGGGCCAGTACC

GCCAAAGATGGTGAAGCCGTGGATTTGGTGTTTGCTTCCGCCGGGGCTGAACCCACCATTGAAACCTTAGC

CGCCTTGCATTTAGTGAATGAAGTGTTTCCCCAAGCCAAATTTCGTTATGTGAATGTGGTGGAATTGGGCCG

GTTGCAAAAGAAAAAAGGTGCCTTGAATCAAGAACGGGAATTAAGTGATGAAGAATTTGAAAAATACTTT

GGCCCCTCCGGCACCCCCGTGATTTTTGGGTTTCATGGCTACGAAGATTTGATTGAAAGTATCTTTTATCAA

55

CGGGGTCATGATGGGTTAATTGTGCATGGGTATCGCGAAGATGGCGATATTACCACCACCTATGATATGCG

GGTGTATTCCGAATTAGATCGCTTTCATCAAGCCATTGATGCCATGCAAGTGTTGTATGTGAATCGCAAAGT

GAATCAAGGCTTAGCCAAAGCCTTTATTGATCGTATGAAACGGACCTTGGTGAAACATTTTGAAGTGACCC

GTAATGAGGGTGTGGATATTCCCGATTTTACCGAATGGGTGTGGTCCGATTTGAAAAAATAA

pkCa MWSHPQFEKQSIIGKHKDEGKITPEYLKKIDAYWRAANFISVGQLYLLDNPLLREPLKPEHLKRKVVGHWGTIPG

QNFIYAHLNRVIKKYDLDMIYVSGPGHGGQVMVSNSYLDGTYSEVYPNVSRDLNGLKKLCKQFSFPGGISSHMA

PETPGSINEGGELGYSLAHSFGAVFDNPDLITACVVGDGEAETGPLATSWQANKFLNPVTDGAVLPILHLNGYKI

SNPTVLSRIPKDELEKFFEGNGWKPYFVEGEDPETMHKLMAETLDIVTEEILNIQKNARENNDCSRPKWPMIVL

RTPKGWTGPKFVDGVPNEGSFRAHQVPLAVDRYHTENLDQLEEWLKSYKPEELFDENYRLIPELEELTPKGNKR

MAANLHANGGLLLRELRTPDFRDYAVDVPTPGSTVKQDMIELGKYVRDVVKLNEDTRNFRIFGPDETMSNRL

WAVFEGTKRQWLSEIKEPNDEFLSNDGRIVDSMLSEHLCEGWLEGYLLTGRHGFFASYEAFLRIVDSMITQHGK

WLKVTSQLPWRKDIASLNLIATSNVWQQDHNGYTHQDPGLLGHIVDKKPEIVRAYLPADANTLLAVFDKCLHT

KHKINLLVTSKHPRQQWLTMDQAVKHVEQGISIWDWASNDKGQEPDVVIASCGDTPTLEALAAVTILHEHLPE

LKVRFVNVVDMMKLLPENEHPHGLSDKDYNALFTTDKPVIFAFHGFAHLINQLTYHRENRNLHVHGYMEEGTI

TTPFDMRVQNKLDRFNLVKDVVENLPQLGNRGAHLVQLMNDKLVEHNQYIREVGEDLPEITNWQWHV

ATGTGGAGTCATCCTCAGTTCGAGAAGCAATCCATTATTGGCAAACATAAAGATGAAGGTAAAATTACCCC

CGAATATTTGAAGAAAATTGATGCCTATTGGCGGGCCGCCAACTTTATTAGTGTGGGTCAATTATACTTGTT

AGATAACCCCTTGTTACGCGAACCCTTGAAACCCGAACATTTAAAACGTAAAGTGGTGGGGCATTGGGGCA

CCATTCCCGGCCAAAACTTTATTTACGCCCATTTGAACCGTGTGATCAAAAAATACGATTTAGATATGATTTA

CGTTAGTGGCCCCGGTCATGGCGGCCAAGTGATGGTGTCCAATAGTTATTTGGATGGCACCTATTCCGAAG

TGTATCCCAATGTGAGTCGGGATTTAAATGGGTTGAAAAAATTATGTAAACAATTTTCCTTTCCCGGCGGCA

TTTCCAGTCACATGGCCCCCGAAACCCCCGGCTCCATTAATGAAGGTGGGGAATTGGGGTATTCCTTAGCC

CATAGTTTTGGCGCCGTGTTTGATAATCCCGATTTGATTACCGCCTGTGTGGTGGGTGATGGGGAAGCCGA

AACCGGTCCCTTAGCCACCTCCTGGCAAGCCAATAAATTTTTGAATCCCGTGACCGATGGTGCCGTGTTACC

CATTTTGCATTTGAACGGGTACAAAATTTCCAATCCCACCGTGTTGAGTCGGATTCCCAAAGATGAATTAGA

AAAATTTTTCGAAGGCAACGGTTGGAAACCCTATTTTGTGGAAGGCGAAGATCCCGAAACCATGCATAAAT

TGATGGCCGAAACCTTAGATATTGTGACCGAAGAAATTTTGAACATTCAGAAAAATGCCCGCGAAAATAAT

GATTGTAGTCGCCCCAAATGGCCCATGATTGTGTTACGCACCCCCAAAGGCTGGACCGGGCCCAAATTTGT

GGATGGGGTGCCCAATGAAGGCTCCTTTCGGGCCCATCAAGTGCCCTTGGCCGTGGATCGCTATCATACCG

AAAATTTGGATCAATTAGAAGAATGGTTGAAAAGTTACAAACCCGAAGAATTGTTTGATGAAAACTACCGG

TTGATTCCCGAATTGGAAGAATTAACCCCCAAAGGCAATAAACGCATGGCCGCCAATTTGCATGCCAATGG

CGGTTTGTTATTGCGGGAATTACGCACCCCCGATTTTCGCGATTATGCTGTGGATGTGCCCACCCCCGGCTC

CACCGTGAAACAAGATATGATTGAATTGGGTAAATACGTGCGTGATGTGGTGAAATTGAATGAAGATACCC

GTAATTTTCGGATTTTTGGCCCCGATGAAACCATGAGTAATCGTTTGTGGGCCGTGTTTGAAGGCACCAAAC

GGCAATGGTTGTCCGAAATTAAAGAACCCAACGATGAATTTTTGAGTAATGATGGTCGCATTGTGGATTCC

ATGTTGAGTGAACATTTATGTGAAGGCTGGTTGGAAGGTTATTTATTGACCGGCCGGCATGGCTTTTTCGC

CTCCTATGAAGCCTTTTTACGTATTGTGGATAGTATGATTACCCAACATGGCAAATGGTTGAAAGTGACCTC

56

CCAATTACCCTGGCGTAAAGATATTGCCTCCTTAAATTTGATTGCCACCAGTAATGTGTGGCAACAAGATCA

TAATGGTTATACCCATCAAGATCCCGGCTTATTGGGCCATATTGTGGATAAAAAACCCGAAATTGTGCGGG

CCTATTTGCCCGCCGATGCCAATACCTTATTGGCCGTGTTTGATAAATGTTTGCATACCAAACATAAAATTAA

CTTATTGGTGACCTCCAAACATCCCCGCCAACAATGGTTGACTATGGATCAAGCCGTGAAACATGTGGAAC

AAGGCATTTCCATTTGGGATTGGGCCAGTAATGATAAAGGGCAAGAACCCGATGTGGTGATTGCCAGTTGT

GGCGATACCCCCACCTTGGAAGCCTTAGCCGCCGTGACCATTTTGCATGAACATTTGCCCGAATTAAAAGTG

CGCTTTGTGAATGTGGTGGATATGATGAAATTGTTGCCCGAAAATGAACATCCCCACGGCTTGAGTGATAA

AGATTACAACGCCTTGTTTACCACCGATAAACCCGTGATTTTTGCCTTTCATGGCTTTGCCCATTTGATTAAT

CAATTAACCTACCATCGCGAAAACCGTAATTTGCATGTGCATGGTTATATGGAAGAAGGGACCATTACCAC

CCCCTTTGATATGCGTGTGCAAAACAAATTGGATCGGTTTAACTTGGTGAAAGATGTGGTGGAAAACTTGC

CCCAATTAGGTAATCGTGGGGCCCATTTGGTGCAATTAATGAACGATAAATTGGTGGAACATAATCAATAT

ATTCGGGAAGTGGGCGAAGATTTACCCGAAATTACCAATTGGCAATGGCATGTGTAA

pkPa MWSHPQFEKSQILPSQDELLAHAAAEPAFAAWLQGHGPLQHSAETRAAVFRTAHQLVQAGLQPDLASVYQLF

RALDRLTASALRIVVHMTYARRIRLDGQPLQAEDFKTQPEGHTGGALNMVPAYAGYLALNVLTGKTRAWLMG

QGHCVAAIDALNVLTGNLHPEQERAYADGEEGLNRLLQDFYGYAQAPNGAPAAPLGSHVNPHTAGGIAEGGY

LGFAELQYAHMPLPGETLVAFLSDGAAEEQRGSDWIPRWWRAEDCGAALPVMIANGRRIEQRTELGTHEGLE

GFKLHLRRCGFDPISFDGRDPAAFVCTLWEMEQRLERRVQEKNSGILRYPLPIPYGIAETVKGFGFYGAGSNAAH

NLPLPGNPHNDEQARQLFNQHANELWVEPEALELARRLFAEQRGERPLERDNPLALRHPIEPIIPPLRYRDDACS

PMAALDRFYTELVEANPDLRARVGNPDELASNRLGGVLKALKHRVSEPESELESVSGRVITALNEEAVVSACLAN

QGGLNLVASYEAFCVKMLGAVRQTLIFARQQKEVGRPAGWLGWPLVATSHTWENGKNQQSHQDTTFCEALL

GEMSDMVRVLFPADHNSALALLPTIYRSRGQLACLVIPKRDRPMVFDAVQAERLARDGAILVEERCGSDPLLLIA

NGSYQLEQMRRAAQRLAEAGQAYRLVYLQEPGRFRAPRDRWEVEAVADEALVERLFPDSHERRVLLTHMRAE

VARGHLWPILPDARRTSVLGYRNRGGTLDEAGMQFANRACWGNVLAACARLMEVPRTALLTPEEAAAVAGK

GDPALLR

ATGTGGAGTCATCCTCAGTTCGAGAAGTCCCAAATTTTGCCCAGTCAAGATGAATTGTTAGCCCATGCCGC

CGCCGAACCCGCTTTTGCTGCTTGGTTACAAGGTCATGGCCCCTTGCAACATTCCGCCGAAACCCGTGCCGC

CGTGTTTCGTACCGCTCATCAATTAGTGCAAGCCGGCTTACAACCCGATTTGGCCTCCGTGTATCAATTGTTT

CGGGCCTTAGATCGCTTGACCGCCAGTGCCTTACGCATTGTGGTGCACATGACCTATGCCCGGCGCATTCGT

TTAGATGGGCAACCCTTGCAAGCCGAAGATTTTAAAACCCAACCCGAAGGCCATACCGGCGGTGCCTTGAA

TATGGTGCCCGCCTATGCCGGGTATTTAGCCTTGAATGTGTTGACCGGCAAAACCCGCGCCTGGTTAATGG

GGCAAGGCCATTGTGTGGCCGCCATTGATGCCTTAAATGTGTTGACCGGCAATTTGCATCCCGAACAAGAA

CGGGCCTATGCCGATGGTGAAGAAGGGTTGAACCGCTTGTTACAAGATTTTTACGGTTATGCTCAAGCTCC

CAATGGGGCCCCCGCCGCCCCCTTGGGCTCCCATGTGAATCCCCATACCGCCGGGGGCATTGCCGAAGGTG

GGTATTTAGGCTTTGCCGAATTGCAATATGCCCACATGCCCTTACCCGGTGAAACCTTAGTGGCCTTTTTGTC

CGATGGTGCCGCCGAAGAACAACGGGGGAGTGATTGGATTCCCCGCTGGTGGCGGGCTGAAGATTGTGG

TGCTGCTTTGCCCGTGATGATTGCCAATGGTCGTCGGATTGAACAACGTACCGAATTAGGGACCCATGAAG

GCTTGGAAGGTTTTAAATTGCATTTGCGCCGTTGTGGCTTTGATCCCATTAGTTTTGATGGTCGCGATCCCG

57

CCGCCTTTGTGTGTACCTTATGGGAAATGGAACAACGGTTGGAACGTCGGGTGCAAGAAAAGAATAGTGG

GATTTTACGCTATCCCTTGCCCATTCCCTATGGCATTGCCGAAACCGTGAAAGGTTTTGGGTTTTATGGCGC

CGGTAGTAATGCCGCCCATAATTTACCCTTGCCCGGCAATCCCCATAATGATGAACAAGCCCGCCAATTGTT

TAACCAACATGCCAACGAATTATGGGTTGAACCCGAAGCCTTAGAATTGGCCCGTCGGTTGTTTGCCGAAC

AACGTGGTGAACGGCCCTTAGAACGTGATAATCCCTTAGCCTTGCGGCATCCCATTGAACCCATTATTCCTC

CCTTGCGCTATCGTGATGATGCCTGTTCCCCTATGGCCGCCTTAGATCGCTTTTATACCGAATTGGTGGAAG

CCAATCCCGATTTACGGGCCCGCGTGGGTAATCCCGATGAATTAGCCAGTAATCGTTTGGGCGGTGTGTTA

AAAGCCTTGAAACATCGGGTGTCCGAACCCGAAAGTGAATTGGAATCCGTGAGTGGGCGGGTGATTACCG

CCTTGAATGAAGAAGCCGTGGTGTCCGCCTGTTTAGCCAATCAAGGGGGCTTAAATTTGGTGGCCAGTTAT

GAAGCCTTTTGTGTGAAAATGTTGGGTGCCGTGCGCCAAACCTTAATTTTTGCCCGTCAACAAAAAGAAGT

GGGTCGGCCCGCCGGCTGGTTAGGTTGGCCCTTGGTGGCCACCTCCCATACCTGGGAAAATGGGAAAAAT

CAACAAAGTCATCAAGATACCACCTTTTGTGAAGCCTTGTTAGGCGAAATGAGTGATATGGTGCGCGTGTT

GTTTCCCGCCGATCATAATTCCGCCTTAGCCTTGTTACCCACCATTTATCGTAGTCGGGGCCAATTAGCCTGT

TTGGTGATTCCCAAACGCGATCGTCCTATGGTGTTTGATGCCGTGCAAGCCGAACGCTTGGCCCGTGATGG

TGCCATTTTAGTGGAAGAACGGTGTGGGTCCGATCCCTTGTTATTGATTGCCAATGGTAGTTATCAATTGGA

ACAAATGCGCCGTGCTGCTCAACGTTTAGCTGAAGCCGGTCAAGCCTATCGTTTAGTGTATTTGCAAGAACC

CGGTCGTTTTCGGGCTCCCCGCGATCGTTGGGAAGTGGAAGCCGTGGCCGATGAAGCCTTAGTGGAACGG

TTGTTTCCCGATTCCCATGAACGGCGCGTGTTATTGACCCACATGCGGGCTGAAGTGGCCCGTGGCCATTTA

TGGCCCATTTTGCCCGATGCCCGTCGGACCAGTGTGTTGGGTTATCGCAATCGTGGTGGGACCTTAGATGA

AGCCGGCATGCAATTTGCCAATCGCGCCTGTTGGGGTAATGTGTTAGCCGCCTGTGCTCGCTTGATGGAAG

TGCCCCGTACCGCTTTATTAACCCCCGAAGAAGCCGCCGCCGTGGCTGGGAAAGGCGATCCCGCCTTATTG

CGTTAA

pkAn MWSHPQFEKPGEVIERPNPAPKPSHVPDLVEKLIIPAQKTKLEKSDCDALHKYRRAAAYIAAGHWGTCPGLILVY

SHLNYLIKKQNLDMLYVVGPGHGAPGLLASLWLEGSLGKFYPQYTKDKEGLHNLISTFSTSAGLPSHINAETPGAI

HEGGELGYALSVSFGAVMDNPDLIVTCVVGDGEAETGPTATSWHAIKYIDPAESGAVLPILHVNGFKISERTIFG

CMDNREIVCLFTGYGYQVRIVEDLEDIDNDLHSAMSWAVEEIRNIQKAARSGKPIMKPQWPMIVLRTPKGWS

GPKELHGQFIEGSFHSHQVPLPNAKKDDEELQALQKWLSSYKPDELFTESGDVIDEILSIIPSDDKKLGMRPEAYK

THLPPDLPDWRQFCVKKGDQFSAMKAIGSFIDQVFVKNPHTVRLFSPDELESNKLSAALSHTGRNFQWDEFSN

AKGGRVIEVLSEHLCQGFMQGYTLTGRTGIFPSYESFLGIIHTMMVQYAKFAKMAKETAWHHDVSSINYIETST

WARQEHNGFSHQNPSFIGAVLKLKPYAARVYLPPDANTFLTTLHHCLKSKNYINLMVGSKQPTPVYLSPEEAES

HCRAGASIFKFCSTDGGLRPDVVLVGIGVEVMFEVIKAAAILRERCPELRVRVVNVTDLFILENEGAHPHALKHEA

FDNLFTEDRSIHFNYHGYVNELQGLLFGRPRLDRATIKGYKEEGSTTTPFDMMLVNEVSRYHVAKAAVTGGARF

NEKVKLRHQELCSEFDHNIAETRKYIMNNHQDPEDTYNMPSFN

ATGTGGAGTCATCCTCAGTTCGAGAAGCCCGGAGAAGTTATTGAACGCCCCAACCCCGCCCCCAAACCCAG

CCATGTGCCCGATTTAGTTGAAAAATTGATTATTCCCGCCCAGAAAACCAAATTGGAAAAAAGTGATTGTG

ATGCCTTGCATAAATATCGTCGGGCTGCCGCCTATATTGCCGCCGGTCATTGGGGCACCTGTCCCGGCTTGA

TTTTAGTGTATTCCCATTTGAACTACTTGATTAAAAAACAAAATTTGGATATGTTATATGTGGTGGGCCCCG

58

GTCATGGCGCCCCCGGCTTGTTAGCCAGTTTGTGGTTAGAAGGTTCCTTGGGGAAATTTTACCCCCAATACA

CCAAAGATAAAGAAGGTTTGCATAACTTGATTAGTACCTTTTCCACCAGTGCCGGCTTACCCTCCCATATTA

ATGCCGAAACCCCCGGTGCCATTCATGAAGGCGGTGAATTGGGCTATGCCTTATCCGTGAGTTTTGGTGCC

GTGATGGATAATCCCGATTTGATTGTGACCTGTGTGGTGGGTGATGGTGAAGCTGAAACCGGTCCCACCGC

TACCAGTTGGCATGCTATTAAATATATTGATCCCGCCGAAAGTGGTGCCGTGTTGCCCATTTTGCATGTGAA

CGGCTTTAAAATTAGTGAACGGACCATTTTTGGTTGTATGGATAATCGCGAAATTGTGTGTTTATTTACCGG

TTATGGGTATCAAGTGCGTATTGTGGAAGATTTGGAAGATATTGATAACGATTTGCATTCCGCCATGAGTT

GGGCCGTGGAAGAAATTCGTAATATTCAAAAAGCCGCCCGGAGTGGCAAACCCATTATGAAACCCCAATG

GCCCATGATTGTGTTGCGCACCCCCAAAGGCTGGTCCGGTCCCAAAGAATTACATGGGCAATTTATTGAAG

GCTCCTTTCATAGTCATCAAGTGCCCTTGCCCAATGCCAAAAAAGATGATGAAGAATTGCAAGCCTTACAAA

AATGGTTGTCCAGTTATAAACCCGATGAATTATTTACCGAAAGTGGGGATGTGATTGATGAAATTTTGTCCA

TTATTCCCAGTGATGATAAAAAATTGGGCATGCGCCCCGAAGCCTATAAAACCCATTTGCCTCCCGATTTGC

CCGATTGGCGTCAATTTTGTGTGAAAAAAGGGGATCAATTTAGTGCCATGAAAGCCATTGGCTCCTTTATTG

ATCAAGTGTTTGTGAAAAACCCCCATACCGTGCGGTTGTTTTCCCCCGATGAATTAGAATCCAATAAATTGA

GTGCCGCCTTATCCCATACCGGCCGTAACTTTCAATGGGATGAATTTAGTAACGCCAAAGGGGGCCGGGTG

ATTGAAGTGTTGTCCGAACATTTATGTCAAGGTTTTATGCAAGGGTATACCTTGACCGGGCGCACCGGCATT

TTTCCCTCCTATGAATCCTTTTTGGGTATTATTCATACCATGATGGTGCAATATGCCAAATTTGCCAAAATGG

CCAAAGAAACCGCCTGGCATCATGATGTGTCCAGTATTAACTACATTGAAACCTCCACCTGGGCCCGCCAA

GAACATAACGGTTTTAGTCATCAAAACCCCTCCTTTATTGGGGCCGTGTTGAAATTGAAACCCTATGCCGCC

CGTGTGTATTTGCCTCCCGATGCCAATACCTTTTTGACCACCTTACATCATTGTTTGAAAAGTAAAAACTACA

TTAACTTGATGGTGGGTTCCAAACAACCCACCCCCGTGTATTTAAGTCCCGAAGAAGCCGAATCCCATTGTC

GGGCCGGGGCCAGTATTTTTAAATTTTGTTCCACCGATGGTGGGTTGCGCCCCGATGTGGTGTTAGTGGGC

ATTGGTGTGGAAGTGATGTTTGAAGTGATTAAAGCTGCCGCCATTTTGCGTGAACGGTGTCCCGAATTACG

CGTGCGTGTGGTGAACGTGACCGATTTGTTTATTTTAGAAAACGAAGGGGCCCATCCCCATGCCTTGAAAC

ATGAAGCCTTTGATAACTTGTTTACCGAAGATCGTAGTATTCATTTTAACTATCATGGTTACGTGAATGAATT

GCAAGGCTTGTTATTTGGTCGGCCCCGCTTAGATCGGGCCACCATTAAAGGTTATAAAGAAGAAGGGAGT

ACCACCACCCCCTTTGATATGATGTTGGTGAATGAAGTGTCCCGGTATCATGTGGCTAAAGCCGCCGTGAC

CGGCGGTGCCCGCTTTAACGAAAAAGTGAAATTGCGTCATCAAGAATTATGTTCCGAATTTGATCATAACAT

TGCCGAAACCCGCAAATACATTATGAACAACCACCAAGACCCCGAAGACACTTACAATATGCCCTCCTTTAA

CTAA

pkLp1 MWSHPQFEKSEAIKSKTVDYSSDEYLKRVDEYWRAANYISVGQLYLLNNPLLREPLKATDVKVHPIGHWGTIAG

QNFIYAHLNRAINKYGLNMFYIEGPGHGGQVMVSNSYLDGTYTETYPKITQDKAGMKRLFKQFSFPGGVASHA

DPKTPGSIHEGGELGYSILHGAGAVLDNPGLIAATVVGDGESETGPLATSWQVNKFLNPITDGTVLPILNLNGFKI

SNPTVLSRESHEELEDYFKGLGWDPHFVEGTDPAKMHKIMAEELDKVIEEIHAIRKNAKDNNDESRPKWPMIVF

RAPKGWTGPKSWDGEPIEGSFRAHQIPIPVDRNHMEHADKLVDWLKSYKPEELFDENGTLKPEIAAIIPEGQAR

MAANPVTNGGKLTKDLITPNIDDYALDNKSHGKEDGSDMTELGKYIRDLIELNKDNKNFRGWGPDETLSNKLG

AAFEDTKRQWMEPIHEPNDALLAPQGRIIDSMLSEHMDEGMLEAYNLTGRYGFFASYESFLRVVDSMLTQHFK

WLRNSHEETPWRADVPSLNVIASSTAFQQDHNGYSHQDPGIISHLAEKKTEYVRAYLPGDANTLIATFDKAIQSK

59

QLINLIIASKHPRPQWFTMDEAKRLVRDGLGVVDWASTDHGEEPDVVFATAGSEPTTESLAAVSILHARFPEMK

IRFINVVDLLKLKKDDPRGLSDAEFDAFFTKDKPVIFAYHAYDDLVKTIFFDRHNHNLHVHGYREEGDITTPFDMR

VRNELDRFHLVKAALLATPAYAEKGAHVIQEMNSILDKHHDYIRAEGTDIPEVENWKWTALK

ATGTGGAGTCATCCTCAGTTCGAGAAGTCCGAAGCCATTAAAAGTAAAACCGTGGATTATTCCAGTGATGA

ATATTTGAAACGCGTGGATGAATATTGGCGTGCCGCCAACTACATTAGTGTGGGCCAATTATACTTGTTGA

ACAACCCCTTGTTGCGCGAACCCTTGAAAGCCACCGATGTGAAAGTGCATCCCATTGGGCATTGGGGCACC

ATTGCCGGCCAAAACTTTATTTACGCCCATTTGAACCGTGCCATTAACAAATACGGTTTGAACATGTTTTACA

TTGAAGGCCCCGGTCATGGCGGCCAAGTGATGGTGTCCAATAGTTATTTAGATGGGACCTATACCGAAACC

TATCCCAAAATTACCCAAGATAAAGCCGGCATGAAACGGTTGTTTAAACAATTTAGTTTTCCCGGCGGCGTG

GCTAGTCATGCCGATCCCAAAACCCCCGGTTCCATTCATGAAGGTGGGGAATTGGGGTATAGTATTTTACA

TGGTGCCGGGGCCGTGTTGGATAATCCCGGTTTAATTGCCGCCACCGTGGTGGGCGATGGTGAATCCGAA

ACCGGGCCCTTAGCCACCAGTTGGCAAGTGAACAAATTTTTGAACCCCATTACCGATGGCACCGTGTTGCCC

ATTTTGAACTTGAACGGTTTTAAAATTTCCAATCCCACCGTGTTGTCCCGCGAAAGTCATGAAGAATTGGAA

GATTACTTTAAAGGGTTAGGCTGGGACCCCCATTTTGTGGAAGGCACCGATCCCGCCAAAATGCATAAAAT

TATGGCCGAAGAATTAGATAAAGTGATTGAAGAAATTCATGCCATTCGTAAAAACGCCAAAGATAACAACG

ATGAAAGTCGTCCCAAATGGCCCATGATTGTGTTTCGTGCCCCCAAAGGTTGGACCGGGCCCAAATCCTGG

GATGGTGAACCCATTGAAGGGAGTTTTCGGGCCCATCAAATTCCCATTCCCGTGGATCGCAATCACATGGA

ACATGCCGATAAATTGGTGGATTGGTTGAAATCCTACAAACCCGAAGAATTGTTTGATGAAAACGGCACCT

TAAAACCCGAAATTGCCGCCATTATTCCCGAAGGTCAAGCTCGTATGGCTGCTAATCCCGTGACCAATGGC

GGTAAATTGACCAAAGATTTAATTACCCCCAACATTGATGATTACGCCTTAGATAACAAAAGTCATGGCAAA

GAAGATGGCAGTGATATGACCGAATTGGGTAAATATATTCGGGATTTGATTGAATTAAACAAAGATAACAA

AAACTTTCGCGGTTGGGGGCCCGATGAAACCTTGAGTAATAAATTGGGGGCCGCCTTTGAAGATACCAAAC

GTCAATGGATGGAACCCATTCATGAACCCAATGATGCCTTGTTAGCTCCCCAAGGCCGGATTATTGATTCCA

TGTTGAGTGAACACATGGATGAAGGCATGTTGGAAGCCTATAATTTAACCGGCCGCTATGGCTTTTTCGCCT

CCTATGAATCCTTTTTGCGTGTGGTGGATTCCATGTTAACCCAACATTTTAAATGGTTGCGCAATAGTCATGA

AGAAACCCCCTGGCGTGCCGATGTGCCCTCCTTAAATGTGATTGCCTCCAGTACCGCCTTTCAACAAGATCA

TAATGGGTATTCCCATCAAGATCCCGGCATTATTAGTCATTTGGCCGAAAAGAAAACCGAATATGTGCGGG

CCTATTTACCCGGCGATGCCAATACCTTGATTGCCACCTTTGATAAAGCCATTCAATCCAAACAATTGATTAA

TTTGATTATTGCCAGTAAACATCCCCGCCCCCAATGGTTTACTATGGATGAAGCCAAACGTTTGGTGCGGGA

TGGCTTGGGTGTGGTGGATTGGGCCAGTACCGATCATGGGGAAGAACCCGATGTGGTGTTTGCTACCGCC

GGCTCCGAACCCACCACCGAATCCTTGGCCGCCGTGAGTATTTTACATGCCCGGTTTCCCGAAATGAAAATT

CGCTTTATTAACGTGGTGGATTTGTTGAAATTGAAAAAAGATGATCCCCGCGGTTTGAGTGATGCCGAATTT

GATGCCTTTTTCACCAAAGATAAACCCGTGATTTTTGCCTATCATGCCTATGATGATTTGGTGAAAACCATTT

TCTTTGATCGTCATAACCATAACTTGCATGTGCATGGCTATCGGGAAGAAGGTGATATTACCACCCCCTTTG

ATATGCGGGTGCGCAACGAATTGGATCGTTTTCATTTGGTGAAAGCCGCCTTGTTAGCCACCCCCGCCTATG

CCGAAAAAGGGGCCCATGTGATTCAAGAAATGAATAGTATTTTAGATAAACATCATGATTATATTCGGGCC

GAAGGCACCGATATTCCCGAAGTGGAAAATTGGAAATGGACCGCCTTGAAATAA

60

pkLp2 MWSHPQFEKTTDYSSPAYLQKVDKYWRAANYLSVGQLYLKDNPLLQRPLKASDVKVHPIGHWGTIAGQNFIY

AHLNRVINKYGLKMFYVEGPGHGGQVMVSNSYLDGTYTDIYPEITQDVEGMQKLFKQFSFPGGVASHAAPETP

GSIHEGGELGYSISHGVGAILDNPDEIAAVVVGDGESETGPLATSWQSTKFINPINDGAVLPILNLNGFKISNPTIF

GRTSDAKIKEYFESMNWEPIFVEGDDPEKVHPALAKAMDEAVEKIKAIQKHARENNDATLPVWPMIVFRAPKG

WTGPKSWDGDKIEGSFRAHQIPIPVDQNDMEHADALVDWLESYQPKELFNEDGSLKDDIKEIIPTGDSRMAAN

PITNGGVDPKALNLPNFRDYAVDTSKEGANVKQDMIVWSDYLRDVIKKNPDNFRLFGPDETMSNRLYGVFETT

NRQWMEDIHPDSDQYEAPAGRVLDAQLSEHQAEGWLEGYVLTGRHGLFASYEAFLRVVDSMLTQHFKWLRK

ANELDWRKKYPSLNIIAASTVFQQDHNGYTHQDPGALTHLAEKKPEYIREYLPADANTLLAVGDVIFRSQEKINY

VVTSKHPRQQWFSIEEAKQLVDNGLGIIDWASTDQGSEPDIVFAAAGTEPTLETLAAIQLLHDSFPEMKIRFVNV

VDILKLRSPEKDPRGLSDAEFDHYFTKDKPVVFAFHGYEDLVRDIFFDRHNHNLYVHGYRENGDITTPFDVRVM

NQMDRFDLAKSAIAAQPAMENTGAAFVQSMDNMLAKHNAYIRDAGTDLPEVNDWQWKGLK

ATGTGGAGTCATCCTCAGTTCGAGAAGACCACCGATTATTCCAGTCCCGCCTATTTGCAAAAAGTGGATAA

ATATTGGCGGGCCGCCAATTATTTATCCGTGGGCCAATTGTACTTGAAAGATAACCCCTTGTTACAACGCCC

CTTGAAAGCCAGTGATGTGAAAGTGCATCCCATTGGTCATTGGGGGACCATTGCCGGCCAAAATTTTATTT

ATGCCCATTTGAATCGGGTGATTAACAAATACGGTTTGAAAATGTTTTACGTGGAAGGCCCCGGTCATGGC

GGCCAAGTGATGGTGTCCAATAGTTATTTGGATGGCACCTATACCGATATTTATCCCGAAATTACCCAAGAT

GTGGAAGGGATGCAAAAATTGTTTAAACAGTTTAGTTTTCCCGGCGGCGTGGCTAGTCATGCTGCTCCCGA

AACCCCCGGCTCCATTCATGAAGGTGGGGAATTGGGTTATTCCATTAGTCATGGTGTGGGGGCCATTTTAG

ATAATCCCGATGAAATTGCCGCCGTGGTGGTGGGCGATGGTGAAAGTGAAACCGGTCCCTTGGCCACCTCC

TGGCAAAGTACCAAATTTATTAACCCCATTAACGATGGGGCCGTGTTACCCATTTTGAACTTGAACGGCTTT

AAAATTTCCAATCCCACCATTTTTGGTCGGACCAGTGATGCCAAAATTAAAGAATATTTTGAATCCATGAAC

TGGGAACCCATTTTTGTGGAAGGGGATGATCCCGAAAAAGTGCATCCCGCCTTGGCCAAAGCTATGGATG

AAGCCGTGGAAAAAATTAAAGCCATTCAAAAACATGCCCGCGAAAATAATGATGCCACCTTACCCGTGTGG

CCCATGATTGTGTTTCGTGCCCCCAAAGGCTGGACCGGTCCCAAATCCTGGGATGGCGATAAAATTGAAGG

TAGTTTTCGCGCCCATCAAATTCCCATTCCCGTGGATCAAAATGATATGGAACATGCCGATGCCTTGGTGGA

TTGGTTAGAATCCTACCAACCCAAAGAATTGTTTAACGAAGATGGCAGTTTAAAAGATGATATTAAAGAAA

TTATTCCCACCGGTGATTCCCGTATGGCCGCCAATCCCATTACCAATGGCGGCGTTGATCCCAAAGCCTTGA

ATTTACCCAATTTTCGGGATTATGCCGTGGATACCTCCAAAGAAGGTGCCAATGTGAAACAAGATATGATT

GTGTGGAGTGATTATTTGCGCGATGTGATTAAGAAAAATCCCGATAACTTTCGTTTGTTTGGGCCCGATGA

AACCATGAGTAATCGTTTATATGGCGTGTTTGAAACCACCAATCGGCAATGGATGGAAGATATTCATCCCG

ATTCCGATCAATATGAAGCTCCCGCCGGTCGCGTGTTGGATGCTCAATTAAGTGAACATCAAGCCGAAGGT

TGGTTGGAAGGTTATGTGTTAACCGGGCGGCATGGCTTGTTTGCCTCCTATGAAGCCTTTTTGCGCGTGGT

GGATAGTATGTTGACCCAACATTTTAAATGGTTGCGGAAAGCCAATGAATTAGATTGGCGCAAAAAATACC

CCTCCTTAAACATTATTGCCGCCAGTACCGTGTTTCAACAAGATCATAATGGTTATACCCATCAAGATCCCG

GCGCCTTGACCCATTTAGCCGAAAAGAAACCCGAATACATTCGTGAATATTTGCCCGCCGATGCCAATACCT

TGTTAGCCGTGGGTGATGTGATTTTTCGTTCCCAAGAAAAAATTAACTACGTGGTGACCTCCAAACATCCCC

GGCAACAATGGTTTAGTATTGAAGAAGCCAAACAATTGGTGGATAATGGGTTAGGCATTATTGATTGGGCC

61

TCCACCGATCAAGGTAGTGAACCCGATATTGTGTTTGCCGCCGCCGGCACCGAACCCACCTTGGAAACCTT

AGCCGCCATTCAATTGTTGCATGATAGTTTTCCCGAAATGAAAATTCGCTTTGTGAATGTGGTGGATATTTT

GAAATTGCGTTCCCCCGAAAAAGATCCCCGCGGCTTGAGTGATGCCGAATTTGATCATTACTTTACCAAAGA

TAAACCCGTGGTGTTTGCCTTTCATGGCTATGAAGATTTGGTGCGGGATATTTTCTTTGATCGCCATAACCA

TAACTTGTACGTGCATGGGTATCGCGAAAATGGCGATATTACCACCCCCTTTGATGTGCGCGTGATGAATC

AAATGGATCGTTTTGATTTGGCCAAATCCGCCATTGCCGCCCAACCCGCTATGGAAAATACCGGCGCCGCCT

TTGTGCAAAGTATGGATAACATGTTGGCCAAACATAACGCCTACATTCGTGATGCCGGGACCGATTTGCCC

GAAGTGAATGATTGGCAATGGAAAGGCTTAAAATAA

pkSs MWSHPQFEKVGSTLVGKCTSLGVFSMVTSPFSLSPFGQARSTVTGNPLDPTELNQMHGFWRAANYLAVGMI

YLRDNPLLREPLQPEQIKHRLLGHWGSSPGISFLYTHLNRIIRKFDQDMLYMVGPGHGAPGFLGPCYLEGSYSRF

FAECSEDEDGMKRFFKQFSFPGGIGSHCTPETPGSIHEGGELGYCLSHAYGAAFDNPNLIVVGLAGDGESETGPL

ATSWHSNKFINPIRDGAVLPVLHLNGYKINNPSVLSRISHEELKALFEGYGYTPYFVEGSDPESMHQAMAATLDH

CVSEIHQIQQEARSTGIAVRPRWPMVVMRTPKGWTGPDYVDGHKVEGFWRSHQVPMGGMHENPAHLQQL

EAWMRSYKPEELFDEQGTLKPGFKAIAPEGDKRLGSTPYANGGLLRRGLKMPDFRQYGIDVDQPGTIEAPNTA

PLGVFLRDVMANNMTNFRLFGPDENSSNKLHAVYEVSKKFWIAEYLEEDQDGGELSPDGRVMEMLSEHTLEG

WLEAYLLTGRHGFFATYESFAHVITSMVNQHAKWLDICRHLNWRADISSLNILMTSTVWRQDHNGFTHQDPG

FLDVILNKSPDVVRIYLPPDVNSLLSVADHCLQSKNYINIIVCDKQAHLQYQDMTSAIRNCTKGVDIWEWASNDA

GTEPDVVMAAAGDIPTKEALAATAMLRQFFPNLRIRFVSVIDLLKLQPESEHPHGLSDRDFDSLFTTDKPIIFNFH

AYPWLIHRLTYRRTNHGNLHVRGYKEKGNINTPMDLAIQNQIDRFSLAIDVIDRLPQLRVAGAHIKEMLKDMQI

DCTNYAYEHGIDMPEIVNWRWPL

ATGTGGAGTCATCCTCAGTTCGAGAAGGTGGGTAGTACCTTGGTGGGGAAATGTACCTCCTTAGGCGTGT

TTAGTATGGTGACCTCCCCCTTTTCCTTGAGTCCCTTTGGCCAAGCCCGGTCCACCGTGACCGGTAATCCCTT

AGATCCCACCGAATTAAATCAAATGCATGGTTTTTGGCGCGCCGCCAATTATTTGGCCGTGGGGATGATTTA

CTTGCGTGATAACCCCTTGTTGCGGGAACCCTTGCAACCCGAACAAATTAAACATCGGTTGTTAGGGCATTG

GGGCTCCAGTCCCGGCATTTCCTTTTTGTACACCCATTTGAACCGTATTATTCGGAAATTTGATCAAGATATG

TTATATATGGTGGGCCCCGGTCATGGCGCCCCCGGCTTTTTGGGGCCCTGTTATTTAGAAGGTTCCTATTCC

CGGTTTTTCGCCGAATGTAGTGAAGATGAAGATGGGATGAAACGGTTTTTCAAACAATTTAGTTTTCCCGG

CGGTATTGGTTCCCATTGTACCCCCGAAACCCCCGGCTCCATTCATGAAGGGGGCGAATTGGGGTATTGTTT

ATCCCATGCCTATGGCGCCGCCTTTGATAATCCCAATTTGATTGTGGTGGGCTTAGCCGGTGATGGGGAAA

GTGAAACCGGTCCCTTGGCCACCTCCTGGCATAGTAACAAATTTATTAACCCCATTCGGGATGGGGCCGTG

TTGCCCGTGTTGCATTTGAACGGCTACAAAATTAACAACCCCTCCGTGTTAAGTCGCATTTCCCATGAAGAA

TTGAAAGCCTTATTTGAAGGCTATGGTTATACCCCCTATTTTGTGGAAGGTAGTGATCCCGAATCCATGCAT

CAAGCTATGGCCGCCACCTTAGATCATTGTGTGAGTGAAATTCATCAAATTCAACAAGAAGCCCGCTCCACC

GGTATTGCTGTGCGCCCCCGTTGGCCTATGGTGGTGATGCGTACCCCCAAAGGCTGGACCGGTCCCGATTA

TGTGGATGGCCATAAAGTGGAAGGTTTTTGGCGTAGTCATCAAGTGCCTATGGGCGGCATGCATGAAAAT

CCCGCCCATTTGCAACAATTAGAAGCCTGGATGCGGTCCTATAAACCCGAAGAATTGTTTGATGAACAAGG

GACCTTAAAACCCGGTTTTAAAGCCATTGCCCCCGAAGGTGATAAACGTTTGGGGTCCACCCCCTATGCCAA

62

TGGCGGTTTGTTACGTCGGGGCTTAAAAATGCCCGATTTTCGGCAATATGGGATTGATGTGGATCAACCCG

GCACCATTGAAGCCCCCAATACCGCCCCCTTGGGCGTGTTTTTACGCGATGTGATGGCCAACAACATGACC

AACTTTCGTTTGTTTGGTCCCGATGAAAATTCCAGTAATAAATTGCATGCCGTGTACGAAGTTAGTAAAAAA

TTTTGGATTGCCGAATATTTGGAAGAAGATCAAGATGGGGGCGAATTAAGTCCCGATGGGCGCGTGATGG

AAATGTTGTCCGAACATACCTTGGAAGGCTGGTTAGAAGCCTATTTGTTAACCGGCCGGCATGGCTTTTTCG

CCACCTATGAAAGTTTTGCCCATGTGATTACCAGTATGGTGAATCAACATGCCAAATGGTTGGATATTTGTC

GCCATTTAAATTGGCGTGCCGATATTTCCAGTTTGAACATTTTGATGACCAGTACCGTGTGGCGCCAAGATC

ATAATGGTTTTACCCATCAAGATCCCGGCTTTTTGGATGTGATTTTAAATAAATCCCCCGATGTGGTGCGTAT

TTATTTGCCTCCCGATGTGAATAGTTTGTTATCCGTGGCCGATCATTGTTTACAAAGTAAAAACTACATTAAC

ATTATTGTGTGTGACAAACAAGCCCATTTGCAATATCAAGATATGACCAGTGCCATTCGCAATTGTACCAAA

GGCGTGGATATTTGGGAATGGGCCTCCAATGATGCCGGCACCGAACCCGATGTGGTGATGGCCGCCGCCG

GTGATATTCCCACCAAAGAAGCCTTGGCCGCCACCGCCATGTTACGGCAATTTTTCCCCAATTTGCGGATTC

GCTTTGTGAGTGTGATTGATTTGTTGAAATTACAACCCGAATCCGAACATCCCCACGGCTTGAGTGATCGCG

ATTTTGATTCCTTGTTTACCACCGATAAACCCATTATTTTTAACTTTCATGCCTATCCCTGGTTGATTCATCGTT

TAACCTATCGTCGGACCAATCATGGCAATTTACATGTGCGGGGCTACAAAGAAAAGGGTAACATTAACACC

CCTATGGATTTGGCCATTCAAAACCAAATTGATCGTTTTTCCTTGGCCATTGATGTGATTGATCGTTTACCCC

AATTACGGGTGGCTGGGGCCCATATTAAAGAAATGTTGAAAGATATGCAAATTGATTGTACCAACTACGCC

TATGAACATGGCATTGATATGCCCGAAATTGTGAATTGGCGCTGGCCCTTATAA

ptaBs MHHHHHHADLFSTVQEKVAGKDVKIVFPEGLDERILEAVSKLAGNKVLNPIVIGNENEIQAKAKELNLTLGGVKI

YDPHTYEGMEDLVQAFVERRKGKATEEQARKALLDENYFGTMLVYKGLADGLVSGAAHSTADTVRPALQIIKTK

EGVKKTSGVFIMARGEEQYVFADCAINIAPDSQDLAEIAIESANTAKMFDIEPRVAMLSFSTKGSAKSDETEKVA

DAVKIAKEKAPELTLDGEFQFDAAFVPSVAEKKAPDSEIKGDANVFVFPSLEAGNIGYKIAQRLGNFEAVGPILQG

LNMPVNDLSRGCNAEDVYNLALITAAQAL

ATGCATCATCATCATCATCATGCCGACTTGTTTAGCACTGTTCAGGAAAAAGTGGCTGGCAAAGACGTGAA

AATTGTGTTTCCCGAAGGGCTGGACGAACGGATTCTGGAAGCCGTGTCCAAATTGGCCGGGAATAAAGTG

TTGAATCCCATTGTGATTGGCAACGAAAACGAAATTCAAGCCAAAGCCAAAGAATTGAATTTAACCTTGGG

CGGTGTGAAAATTTACGATCCCCATACCTATGAAGGCATGGAAGATTTAGTGCAAGCCTTTGTGGAACGTC

GGAAAGGGAAAGCCACCGAAGAACAAGCCCGGAAAGCCTTGTTAGATGAAAACTACTTTGGCACCATGTT

GGTGTACAAAGGTTTAGCTGATGGGTTGGTGTCCGGTGCTGCTCATAGTACCGCCGATACCGTGCGTCCCG

CCTTGCAAATTATTAAAACCAAAGAAGGCGTGAAGAAAACCTCCGGTGTGTTTATTATGGCCCGCGGCGAA

GAACAATATGTGTTTGCCGATTGTGCCATTAATATTGCCCCCGATTCCCAAGATTTAGCCGAAATTGCCATT

GAAAGTGCCAATACCGCCAAAATGTTTGATATTGAACCCCGCGTGGCCATGTTGTCCTTTAGTACCAAAGG

CTCCGCCAAAAGTGATGAAACCGAAAAAGTGGCCGATGCCGTGAAAATTGCCAAAGAAAAAGCCCCCGAA

TTAACCTTGGATGGCGAATTTCAATTTGATGCCGCCTTTGTGCCCTCCGTGGCCGAAAAGAAAGCCCCCGAT

AGTGAAATTAAAGGTGATGCCAATGTGTTTGTGTTTCCCTCCTTAGAAGCCGGGAATATTGGCTATAAAATT

GCCCAACGTTTGGGGAATTTTGAAGCCGTGGGTCCCATTTTACAAGGGTTGAATATGCCCGTGAATGATTT

GAGTCGGGGATGCAATGCTGAAGATGTGTATAACTTGGCTTTGATTACTGCTGCCCAGGCTTTGTAA

63

a, The bold letters indicate amino-acid and nucleotide sequence of N-terminal tag:

Strep-tag amino-acid sequence: WSHPQFEK nucleotide sequence: TGGAGTCATCCTCAGTTCGAGAAG

Flag-tag amino-acid sequence: DYKDDDDK nucleotide sequence: GACTACAAGGATGACGATGACAAG

His-tag amino-acid sequence: HHHHHH nucleotide sequence: CATCATCATCATCATCAT

b, The bold and red letters represent the mutation points of proteins with amino acid substitutions.

64

References for Supplementary Information

1. Anfelt, J. et al. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis

for n-butanol production. Microb. Cell Fact. 14, 167 (2015).

2. Lan, E.I. & Liao, J.C. Metabolic engineering of cyanobacteria for 1-butanol production

from carbon dioxide. Metab. Eng. 13, 353-363 (2011).

3. Lan, E.I. & Liao, J.C. ATP drives direct photosynthetic production of 1-butanol in

cyanobacteria. Proc. Natl. Acad. Sci. USA 109, 6018-6023 (2012).

4. Lan, E.I., Ro, S.Y. & Liao, J.C. Oxygen-tolerant coenzyme A-acylating aldehyde

dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in

cyanobacteria. Energy Environ. Sci. 6, 2672-2681 (2013).

5. Fathima, A.M. et al. Iterative cycle of widely targeted metabolic profiling for the

improvement of 1-butanol titer and productivity in Synechococcus elongatus.

Biotechnol. Biofuels 11, 188 (2018).

6. Atsumi, S., Hanai, T. & Liao, J.C. Non-fermentative pathways for synthesis of

branched-chain higher alcohols as biofuels. Nature 451, 86-89 (2008).

7. Shen, C.R. & Liao, J.C. Metabolic engineering of Escherichia coli for 1-butanol and 1-

propanol production via the keto-acid pathways. Metab. Eng. 10, 312-320 (2008).

8. Atsumi, S. & Liao, J.C. Directed evolution of Methanococcus jannaschii citramalate

synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl.

Environ. Microbiol. 74, 7802-7808 (2008).

9. Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production.

Metab. Eng. 10, 305-311 (2008).

10. Inui, M. et al. Expression of Clostridium acetobutylicum butanol synthetic genes in

Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305-1316 (2008).

11. Nielsen, D.R. et al. Engineering alternative butanol production platforms in

heterologous bacteria. Metab. Eng. 11, 262-273 (2009).

12. Shen, C.R. et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in

Escherichia coli. Appl. Environ. Microbiol. 77, 2905-2915 (2011).

13. Bond-Watts, B.B., Bellerose, R.J. & Chang, M.C. Enzyme mechanism as a kinetic

control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222-227

(2011).

65

14. Dellomonaco, C., Clomburg, J.M., Miller, E.N. & Gonzalez, R. Engineered reversal of

the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355-359

(2011).

15. Pasztor, A., Kallio, P., Malatinszky, D., Akhtar, M.K. & Jones, P.R. A synthetic O2-

tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli.

Biotechnol. Bioeng. 112, 120-128 (2015).

16. Steen, E.J. et al. Metabolic engineering of Saccharomyces cerevisiae for the

production of n-butanol. Microb. Cell Fact. 7, 36 (2008).

17. Krivoruchko, A., Serrano-Amatriain, C., Chen, Y., Siewers, V. & Nielsen, J. Improving

biobutanol production in engineered Saccharomyces cerevisiae by manipulation of

acetyl-CoA metabolism. J. Ind. Microbiol. Biotechnol. 40, 1051-1056 (2013).

18. Lian, J., Si, T., Nair, N.U. & Zhao, H. Design and construction of acetyl-CoA

overproducing Saccharomyces cerevisiae strains. Metab. Eng. 24, 139-149 (2014).

19. Swidah, R. et al. Butanol production in S. cerevisiae via a synthetic ABE pathway is

enhanced by specific metabolic engineering and butanol resistance. Biotechnol.

Biofuels 8, 97 (2015).

20. Schadeweg, V. & Boles, E. Increasing n-butanol production with Saccharomyces

cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA

reductase expression. Biotechnol. Biofuels 9, 257 (2016).

21. Branduardi, P., Longo, V., Berterame, N.M., Rossi, G. & Porro, D. A novel pathway to

produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol. Biofuels 6,

68 (2013).

22. Si, T., Luo, Y., Xiao, H. & Zhao, H. Utilizing an endogenous pathway for 1-butanol

production in Saccharomyces cerevisiae. Metab. Eng. 22, 60-68 (2014).

23. Shi, S. et al. Metabolic engineering of a synergistic pathway for n-butanol production

in Saccharomyces cerevisiae. Sci. Rep. 6, 25675 (2016).

24. Lian, J. & Zhao, H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for

production of fuels and chemicals. ACS Synth. Biol. 4, 332-341 (2015).

25. Schadeweg, V. & Boles, E. n-Butanol production in Saccharomyces cerevisiae is

limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol.

Biofuels 9, 44 (2016).

66

26. Matsumoto, K. et al. Directed evolution and structural analysis of NADPH-dependent

acetoacetyl coenzyme A (acetoacetyl-CoA) reductase from Ralstonia eutropha

reveals two mutations responsible for enhanced kinetics. Appl. Environ. Microbiol. 79,

6134-6139 (2013).

27. Kim, E.J. & Kim, K.J. Crystal structure and biochemical characterization of PhaA from

Ralstonia eutropha, a polyhydroxyalkanoate-producing bacterium. Biochem. Biophys.

Res. Commun. 452, 124-129 (2014).

28. Taroncher-Oldenburg, G., Nishina, K. & Stephanopoulos, G. Identification and analysis

of the polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A

reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl.

Environ. Microbiol. 66, 4440-4448 (2000).

29. Kunert, A., Hagemann, M. & Erdmann, N. Construction of promoter probe vectors for

Synechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB.

J. Microbiol. Methods 41, 185-194 (2000).

30. Lindberg, P., Park, S. & Melis, A. Engineering a platform for photosynthetic isoprene

production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng.

12, 70-79 (2010).

31. Englund, E., Liang, F. & Lindberg, P. Evaluation of promoters and ribosome binding

sites for biotechnological applications in the unicellular cyanobacterium

Synechocystis sp. PCC 6803. Sci. Rep. 6, 36640 (2016).

32. Huang, H.H., Camsund, D., Lindblad, P. & Heidorn, T. Design and characterization of

molecular tools for a synthetic biology approach towards developing cyanobacterial

biotechnology. Nucleic Acids Res. 38, 2577-2593 (2010).

33. Camsund, D., Heidorn, T. & Lindblad, P. Design and analysis of LacI-repressed

promoters and DNA-looping in a cyanobacterium. J. Biol. Eng. 8, 4 (2014).

34. Mutalik, V.K. et al. Precise and reliable gene expression via standard transcription

and translation initiation elements. Nat. Methods 10, 354-360 (2013).

35. Lou, C., Stanton, B., Chen, Y.J., Munsky, B. & Voigt, C.A. Ribozyme-based insulator

parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137-1142

(2012).

36. Clifton, K.P. et al. The genetic insulator RiboJ increases expression of insulated genes.

J. Biol. Eng. 12, 23 (2018).

67

37. Zhou, J. et al. Discovery of a super-strong promoter enables efficient production of

heterologous proteins in cyanobacteria. Sci. Rep. 4, 4500 (2014).

38. Englund, E., Andersen-Ranberg, J., Miao, R., Hamberger, B. & Lindberg, P. Metabolic

engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid

manoyl oxide. ACS Synth. Biol. 4, 1270-1278 (2015).

39. Thiel, K. et al. Translation efficiency of heterologous proteins is significantly affected

by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis

sp. PCC 6803. Microb. Cell Fact. 17, 34 (2018).

40. Heidorn, T. et al. Synthetic biology in cyanobacteria engineering and analyzing novel

functions. Methods Enzymol. 497, 539-579 (2011).

41. Presecan-Siedel, E. et al. Catabolite regulation of the pta gene as part of carbon flow

pathways in Bacillus subtilis. J. Bacteriol. 181, 6889-6897 (1999).

42. Suzuki, R. et al. Overexpression, crystallization and preliminary X-ray analysis of

xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from Bifidobacterium

breve. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 941-943 (2010).

43. Chinen, A., Kozlov, Y.I., Hara, Y., Izui, H. & Yasueda, H. Innovative metabolic pathway

design for efficient L-glutamate production by suppressing CO2 emission. J. Biosci.

Bioeng. 103, 262-269 (2007).

44. Cleusix, V., Lacroix, C., Dasen, G., Leo, M. & Le Blay, G. Comparative study of a new

quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate

phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in

situ hybridization methods. J. Appl. Microbiol. 108, 181-193 (2010).

45. Berthoud, H., Chavagnat, F., Haueter, M. & Casey, M.G. Comparison of partial gene

sequences encoding a phosphoketolase for the identification of bifidobacteria. LWT-

Food Sci. Technol. 38, 101-105 (2005).

46. Gupta, R.S., Nanda, A. & Khadka, B. Novel molecular, structural and evolutionary

characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales.

PLoS One 12, e0172176 (2017).

47. Yin, X., Chambers, J.R., Barlow, K., Park, A.S. & Wheatcroft, R. The gene encoding

xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved

among Bifidobacterium species within a more variable region of the genome and

both are useful for strain identification. FEMS Microbiol. Lett. 246, 251-257 (2005).

68

48. Bergman, A., Siewers, V., Nielsen, J. & Chen, Y. Functional expression and evaluation

of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Expr. 6, 115

(2016).

49. Bogorad, I.W., Lin, T.S. & Liao, J.C. Synthetic non-oxidative glycolysis enables

complete carbon conservation. Nature 502, 693-697 (2013).

50. Lee, J.M. et al. Cloning and characterization of the gene encoding phosphoketolase in

Leuconostoc mesenteroides isolated from kimchi. Biotechnol. Lett. 27, 853-858 (2005).

51. Petrareanu, G. et al. Phosphoketolases from Lactococcus lactis, Leuconostoc

mesenteroides and Pseudomonas aeruginosa: dissimilar sequences, similar substrates

but distinct enzymatic characteristics. Appl. Microbiol. Biotechnol. 98, 7855-7867

(2014).

52. Yevenes, A. & Frey, P.A. Cloning, expression, purification, cofactor requirements, and

steady state kinetics of phosphoketolase-2 from Lactobacillus plantarum. Bioorg.

Chem. 36, 121-127 (2008).

53. Jeong, D.W., Lee, J.M. & Lee, H.J. Cloning and characterization of a gene encoding

phosphoketolase in a Lactobacillus paraplantarum isolated from Kimchi. J. Microbiol.

Biotechnol. 17, 822-829 (2007).

54. Sanchez, B., Zuniga, M., Gonzalez-Candelas, F., de los Reyes-Gavilan, C.G. & Margolles,

A. Bacterial and eukaryotic phosphoketolases: phylogeny, distribution and evolution.

J. Mol. Microbiol. Biotechnol. 18, 37-51 (2010).

55. Moriyama, T., Tajima, N., Sekine, K. & Sato, N. Characterization of three putative

xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium

Anabaena sp. PCC 7120. Biosci. Biotechnol. Biochem. 79, 767-774 (2015).

56. Xiong, W. et al. Phosphoketolase pathway contributes to carbon metabolism in

cyanobacteria. Nat. Plants 2, 15187 (2015).

57. Miao, R., Liu, X., Englund, E., Lindberg, P. & Lindblad, P. Isobutanol production in

Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases.

Metab. Eng. Commun. 5, 45-53 (2017).