9
1 Xylem Sap Ascent by Bulk Flow: A Review The movement of xylem sap against gravity is maintained by the transpira7on‐cohesion‐tension mechanism Transpira7on lowers water poten7al in leaves, and this generates nega7ve pressure (tension) that pulls water up through the xylem There is no energy cost to bulk flow of xylem sap Stomata regulate the rate of transpira<on Leaves generally have broad surface areas and high surface‐to‐volume ra7os These characteris7cs increase photosynthesis and increase water loss through stomata Stomata: Major Pathways for Water Loss About 95% of the water a plant loses escapes through stomata Each stoma Flanked by a pair of guard cells Control the diameter of the stoma by changing shape

Xylem Sap Ascent by Bulk Flow: A Revie · Xylem Sap Ascent by Bulk Flow: ... A Review •The movement of xylem sap against gravity is maintained by the ... stoma –Flanked by a pair

Embed Size (px)

Citation preview

1

XylemSapAscentbyBulkFlow:AReview

• Themovementofxylemsapagainstgravityismaintainedbythetranspira7on‐cohesion‐tensionmechanism

• Transpira7onlowerswaterpoten7alinleaves,andthisgeneratesnega7vepressure(tension)thatpullswaterupthroughthexylem

• Thereisnoenergycosttobulkflowofxylemsap

Stomataregulatetherateoftranspira<on

• Leavesgenerallyhavebroadsurfaceareasandhighsurface‐to‐volumera7os

• Thesecharacteris7csincreasephotosynthesisandincreasewaterlossthroughstomata

Stomata:MajorPathwaysforWaterLoss

• About95%ofthewateraplantlosesescapesthroughstomata

• Eachstoma

– Flankedbyapairofguardcells

– Controlthediameterofthestomabychangingshape

2

MechanismsofStomatalOpeningandClosing

• Changesinturgorpressureinguardcellsopenandclosestomata

– Primarilyfromthereversibleuptakeandlossofpotassiumions

• K+co‐transportedbyprotonpumps

Fig. 36-17

Radially orientedcellulose microfibrils

Cellwall

Guard cells turgid/Stoma open Guard cells flaccid/Stoma closed

VacuoleGuard cell

(a) Changes in guard cell shape and stomatal opening and closing (surface view)

Guard cells turgid/Stoma open Guard cells flaccid/Stoma closed

(b) Role of potassium in stomatal opening and closing

H2O H2O

H2O

H2O H2O

H2O H2O

H2O

H2OH2O

K+

S<muliforStomatalOpeningandClosing

• Generally,stomataopenduringthedayandcloseatnighttominimizewaterloss

• Stomatalopeningatdawnistriggeredby:

– Light

• Bluelightreceptorss7mulateK+uptake

– CO2deple7on

– Internal“clock”inguardcells

• Func7onseveninthedark

• circadianrhythm

– 24‐hourcyclesofbehavior

3

EffectsofTranspira<ononWil<ngandLeafTemperature

• Plantslosealargeamountofwaterbytranspira7on

– Ifnotreplacedplantwillwilt

• Transpira7onalsoresultsinevapora<vecooling

– Canlowerthetemperatureofaleafandpreventdenatura7onofvariousenzymesinvolvedinphotosynthesisandothermetabolicprocesses

Adapta<onsThatReduceEvapora<veWaterLoss

• Xerophytes

– plantsadaptedtoaridclimates

– Haveleafmodifica7onsthatreducetherateoftranspira7on

• Crassulaceanacidmetabolism(CAM)

– Specializedformofphotosynthesiswherestomatalgasexchangeoccursatnight

Fig. 36-18 Ocotillo (leafless)

Oleander leaf cross section and flowers

Cuticle Upper epidermal tissue

Ocotillo leaves

Trichomes(“hairs”)

Crypt Stomata Lower epidermaltissue

100 µm

Ocotillo after heavy rain Old man cactus

4

SugarTransport

• Transloca<on

– Processoftranspor7ngtheproductsofphotosynthesisthroughphloem

MovementfromSugarSourcestoSugarSinks

• Phloemsap

– Aqueoussolu7onthatishighinsucrose

– Travelsfromasugarsourcetoasugarsink

• Sugarsource

– Anorganthatisanetproducerofsugar,suchasmatureleaves

• Sugarsink

– Anorganthatisanetconsumerorstorerofsugar,suchasatuberorbulb

• Astorageorgancanbebothasugarsinkinsummerandsugarsourceinwinter

• Sugar

– Mustbeloadedintosieve‐tubeelementsbeforebeingexposedtosinks

• Dependingonthespecies

– Maymovebysymplas7corbothsymplas7candapoplas7cpathways

• Transfercells

– Modifiedcompanioncellsthatenhancesolutemovementbetweentheapoplastandsymplast

• Viaprotonpumpco‐transport

MovementfromSugarSourcestoSugarSinks

5

Fig. 36-19

Mesophyll cellCell walls (apoplast)

Plasma membranePlasmodesmata

Companion(transfer) cell

Sieve-tubeelement

High H+ concentration CotransporterProtonpump

Low H+ concentration

Key

Apoplast

Symplast Mesophyll cellBundle-sheath cell

Phloemparenchyma cell

SucroseATP

H+

H+ H+

S

S

Fig. 36-19a

Key

Apoplast

Symplast

Mesophyll cellCell walls (apoplast)

Plasma membranePlasmodesmata

Companion(transfer) cell

Sieve-tubeelement

Mesophyll cellBundle-sheath cell

Phloemparenchyma cell

• Inmanyplants

– Phloemloadingrequiresac7vetransport

• ProtonpumpingandcotransportofsucroseandH+

– Enablethecellstoaccumulatesucrose

• Atthesink

– Sugarmoleculesdiffusefromthephloemtosink7ssues

• followedbywater

MovementfromSugarSourcestoSugarSinks

6

BulkFlowbyPosi<vePressure

• Sapmovesthroughasievetubebybulkflowdrivenbyposi7vepressure

– Calledpressureflow

• Increasingpressureatsourceend

• Reducedpressureatsinkend

Animation: Translocation of Phloem Sap in SummerAnimation: Translocation of Phloem Sap in Summer

Animation: Translocation of Phloem Sap in SpringAnimation: Translocation of Phloem Sap in Spring

4

Fig. 36-20

3

2

1

1

2

34

Vessel(xylem)

Sieve tube(phloem)

Source cell(leaf) Loading of sugar

Uptake of water

Unloading of sugar

Water recycled

Sink cell(storageroot)

Sucrose

H2O

H2O

Bul

k flo

w b

y ne

gativ

e pr

essu

re

H2OSucrose

Bul

k flo

w b

y po

sitiv

e pr

essu

re

• Thepressureflowhypothesis

– Explainswhyphloemsapalwaysflowsfromsourcetosink

• Experimentshavebuiltastrongcaseforpressureflowasthemechanismoftransloca7oninangiosperms

MovementfromSugarSourcestoSugarSinks

7

Fig. 36-21

Sapdroplet

25 µm

Sieve-tubeelement

Stylet Sap droplet

Aphid feeding Stylet in sieve-tubeelement

Separated styletexuding sap

EXPERIMENT

Thesymplastishighlydynamic

• Thesymplastisaliving7ssueandisresponsiblefordynamicchangesinplanttransportprocesses

Plasmodesmata:Con<nuouslyChangingStructures

• Plasmodesmata

– Canchangeinpermeability(openorclose)inresponseto

• Turgorpressure

• Cytoplasmiccalciumlevels

• CytoplasmicpH

• Plantvirusescancauseplasmodesmatatodilate

– Normally~2.5nm

• Dilateto>10nm

– Allowingvirusestofitthrough

8

ElectricalSignalinginthePhloem

• Thephloemallowsforrapidelectricalcommunica7onbetweenwidelyseparatedorgans

– Responsibleforrapidmovementsintouchsensi7veplants

• Venusflytrap

– Canini7atechangesin

• geneexpression

• Photosynthesis

• Respira7on

Phloem:AnInforma<onSuperhighway

• Phloem

– isapassagewayforsystemictransportofmacromoleculesandviruses

• Systemiccommunica7on

– Helpsintegratefunc7onsofthewholeplant

• Iesignalsforconversionofvegeta7vemeristemstofloralmeristems

Youshouldnowbeableto:

1. Describehowprotonpumpsfunc7onintransportofmaterialsacrossmembranes

2. Definethefollowingterms:osmosis,waterpoten7al,flaccid,turgorpressure,turgid

3. Explainhowaquaporinsaffecttherateofwatertransportacrossmembranes

4. Describethreeroutesavailableforshort‐distancetransportinplants

9

5. Relatestructuretofunc7oninsieve‐tubecells,vesselcells,andtracheidcells

6. Explainhowtheendodermisfunc7onsasaselec7vebarrierbetweentherootcortexandvascularcylinder

7. Defineandexplainguha7on

8. Explainthisstatement:“Theascentofxylemsapisul7matelysolarpowered”

9. Describetheroleofstomataanddiscussfactorsthatmightaffecttheirdensityandbehavior

10. Tracethepathofphloemsapfromsugarsourcetosugarsink;describesugarloadingandunloading