14
i Annual Report Unmanned Aircraft for Precipitation Enhancement: Promoting Drought Resilience and Advancing Nevada’s UAS Industry July 11, 2016 Desert Research Institute Adam Watts, Ph.D., Principal Investigator Amber Broch Frank McDonough Marc Pitchford, Ph.D. Drone America Mike Richards AviSight James “Heidi” Fleitz

Year 1 Report UAS Cloud Seeding 2016 - diversifynevada.com · i" " Annual"Report" Unmanned’Aircraft’for’Precipitation’Enhancement:’Promoting’Drought’ Resilienceand’AdvancingNevada’s’UAS’Industry’

Embed Size (px)

Citation preview

i    

Annual  Report  

Unmanned  Aircraft  for  Precipitation  Enhancement:  Promoting  Drought  Resilience  and  Advancing  Nevada’s  UAS  Industry  

 

July  11,  2016  

 

Desert  Research  Institute  

Adam  Watts,  Ph.D.,  Principal  Investigator  Amber  Broch  

Frank  McDonough  Marc  Pitchford,  Ph.D.  Drone  America  

Mike  Richards  

AviSight  

James  “Heidi”  Fleitz  

   

ii    

 

Table  of  Contents  1   Background  and  Objectives  .................................................................................................................  1  

2   Partnerships  and  Participants  ..............................................................................................................  1  

3   Activities  and  Results  ...........................................................................................................................  1  

3.1   UAS  Design  and  Flight  Planning  ...................................................................................................  1  

3.1.1   Cloud  seeding  Payload  Design  and  Integration  ...................................................................  2  

3.1.2   Nevada  Test  Site  and  NIAS  Interaction  ................................................................................  2  

3.1.3   Cloud  seeding  Flight  Locations  .............................................................................................  2  

3.2   UAS  Cloud  seeding  Test  Flights  ....................................................................................................  3  

3.2.1   First  Ever  UAS  Flight  with  Cloud  seeding  Payload  ................................................................  3  

3.2.2   Ground  Test  of  Fixed  Wing  Aircraft  with  Cloud  seeding  Payload  ........................................  4  

3.2.3   Fixed  Wing  UAS  Test  Flight  with  Cloud  seeding  Payload  .....................................................  4  

3.2.4   Fixed  Wing  Test  Flight  with  Ejectable  Flares  ........................................................................  5  

3.3   Weather  Forecasting  for  UAS  Cloudseeding  Operations  .............................................................  6  

3.3.1   Winter  2015/2106  UAS  Flight  Forecasting  Summary  ..........................................................  6  

3.3.2   UAS  Forecasting  Case  Study  .................................................................................................  7  

3.3.3   Development  of  a  validation  methodology  .........................................................................  7  

3.3.4   Silver  Iodide  emissions  measurements  ................................................................................  8  

4   Future  Projects  and  Next  Steps  ...........................................................................................................  8  

Appendix  A  –  Press  Releases  .....................................................................................................................  10  

A-­‐1:    Press  Release  February  23,  2016  ...................................................................................................  10  

A-­‐2:  Press  Release  May  3,  2016  .............................................................................................................  11  

A-­‐3  Press  Release  June  23,  2016  ............................................................................................................  12  

 

 

 

 

 

 

 

   

UAS  Cloud  Seeding  2016  –  p.1    

1 Background  and  Objectives  DRI  has  been  involved  in  cloud  seeding  research  and  operations  since  the  1960’s.  Currently,  DRI  maintains  operational  programs  in  the  Tahoe  –Truckee  and  Walker  River  watersheds,  both  over  the  eastern  Sierra  Nevada,  as  well  as  several  other  locations  throughout  the  western  U.S.    In  Tahoe,  DRI’s  cloud  seeding  operations  use  remote  controlled  ground-­‐based  generators,  which  burn  a  solution  of  silver  iodide,  microscopic  crystals  which  aid  to  freeze  subfreezing  (supercooled)  cloud  drops  and  lead  to  the  formation  of  ice  crystals  and  additional  snow.  The  benefits  of  DRI’s  cloud  seeding  program  have  been  estimated  to  add  14,000  acre-­‐feet  to  the  Tahoe-­‐Truckee  snowpack  annually.    

Aircraft  are  occasionally  used  to  augment  ground-­‐seeding  operations.  Although  this  is  not  currently  part  of  the  Tahoe-­‐Truckee  project,  it  is  part  of  the  Walker  Basin  project.  Cloud  seeding  flights  can  present  safety  risks,  as  the  aircraft  have  to  fly  at  low  altitudes  over  the  mountains  within  strong  winter  storms  with  icing  conditions  (Figure  1).    The  use  of  unmanned  aircraft  systems  (UAS)  offers  the  potential  to  expand  cloud  seeding  operations  and  reduce  safety  risks  to  human  life.    UAS  can  increase  the  frequency  of  seeding  operations  by  targeting  supercooled  clouds  that  are  above  the  range  of  the  ground  generators,  but  below  the  minimum  flight  altitude  of  manned  aircraft.  

Within  this  project,  DRI  has  partnered  with  Drone  America  and  AviSight  Data  to  develop  and  test  technologies  that  utilize  unmanned  aircraft  systems  to  increase  snowpack  in  the  Lake  Tahoe  region  through  cloud  seeding  operations.    

2 Partnerships  and  Participants    Led  by  the  Desert  Research  Institute’s  (DRI),  and  supported  by  Nevada’s  Knowledge  Fund,  this  first-­‐of-­‐its-­‐kind  project  combines  more  than  30  years  of  weather  modification  research  and  expertise  at  DRI  with  the  proven  experience  in  aerospace  manufacturing  and  flight  operations  of  Reno-­‐based  Drone  America;  and  the  industry  leading  unmanned  aerial  data  services  of  Las  Vegas-­‐based  AviSight.  AviSight,  formed  in  2015,  provides  manned-­‐aircraft  and  logistics  support  services  for  the  project,  including  airspace-­‐access  expertise  and  consulting.  Drone  America’s  contributions  to  the  project  include  their  DAX8  and  Savant  unmanned  aircraft  systems,  as  well  as  piloting  and  manufacturing  expertise  needed  to  design  and  successfully  integrate  payloads  for  cloud-­‐seeding.      

3 Activities  and  Results  3.1 UAS  Design  and  Flight  Planning  Activities  for  the  design  of  the  UAS  and  flight  planning  operations  were  led  by  Drone  America  with  support  from  DRI.      

Figure  1:  Frozen  supercooled  cloud  drops  (icing)  on  the  wing  of  the  NASA  Glenn  research  aircraft.  

UAS  Cloud  Seeding  2016  –  p.2    

3.1.1 Cloud  seeding  Payload  Design  and  Integration  Drone  America  led  the  design  and  integration  of  the  cloud  seeding  payload  with  support  from  DRI.    Drone  America  first  conducted  a  test  burn  of  one  of  the  silver-­‐iodide  flares  to  obtain  a  visual  of  the  burning  patterns  for  safe  integration  into  the  aircraft  payload.    The  test  confirmed  that  the  flares  burn  with  very  little  visible  flame,  and  primarily  create  a  smoke  plume  that  presented  less  danger  to  the  UAS.      

Drone  America  designed  two  different  racking  systems  to  carry  and  ignite  the  flares  during  flight.    One  rack  was  integrated  onto  the  DAX8  octocopter  and  held  two  flares.    A  second  rack  mounted  onto  the  Savant  fixed  wing  aircraft  held  two  flares  under  each  wing.    

3.1.2 Nevada  Test  Site  and  NIAS  Interaction    During  the  course  of  this  project,  interaction  with  NIAS  has  produced  mutually  beneficial  relationships  among  the  Test  Site  and  all  parties.  NIAS  and  the  Test  Site  have  benefitted  from  increased  activity  and  visibility,  while  our  industry  partners  and  DRI  have  benefitted  from  expedited  processes  to  get  our  aircraft  in  the  sky.  Most  recently  and  notably,  DRI  has  become  the  latest  addition  to  the  Test  Site  Node  Network,  and  in  June  2016  conducted  the  first  UAS  cloud-­‐seeding  flights  as  a  Test  Site  Node  under  NIAS  supervision.  

3.1.3 Cloud  seeding  Flight  Locations  Two  potential  locations  to  conduct  UAS  icing  and  cloud  seeding  testing  were  identified  by  DRI.  The  first  location  was  chosen  to  allow  the  testing  of  the  UAS  capability  to  remain  in  icing  conditions  for  a  prolonged  period,  and  to  keep  the  aircraft  near  the  highway.  The  second  location  is  where  effective  cloud  seeding  testing  would  be  conducted  in  heavy  icing.  These  flights  would  be  expected  to  produce  increased  precipitation  in  the  downstream  target  area.  

Test  Site  1:  This  area  is  bounded  by  the  Sierra  Crest  on  the  west,  39.35N  Latitude  on  the  south,  -­‐120.8W  Longitude  on  the  east,  and  39.6N  Latitude  on  the  north  (Figure  2-­‐A).  The  site  was  selected  due  to  access  to  highway  89  north  of  Truckee,  CA.    The  UAS  could  fly  altitudes  between  ground  level  and  FL140  in  light  icing  conditions.    

Test  Site  2:  This  area  is  bound  by  -­‐120.45W  Longitude  on  the  west,  I-­‐80  on  the  north,  the  Sierra  Crest  on  the  east,  and  39.1N  Latitude  on  the  south  (Figure  2-­‐B).  This  site  is  where  typical  cloud  seeding  tests  could  be  conducted  during  heavy  icing  conditions.    The  flight  altitude  of  the  UAS  would  occur  between  ground  level  and  FL160.    

UAS  Cloud  Seeding  2016  –  p.3    

 

Figure  2:  Proposed  UAS  cloud  seeding  test  site  perimeters  inside  red  boxes..    A)  Test  Site  1  north  of  Truckee,  CA  along  Highway  89,  and  B)  Test  site  2,  southwest  of  Truckee.  

3.2  UAS  Cloud  seeding  Test  Flights  3.2.1 First  Ever  UAS  Flight  with  Cloud  seeding  Payload  February  3,  2016,  a  team  from  Drone  America  and  DRI  assembled  at  the  Reno  R/C  Field,  just  north  of  Spanish  Springs,  NV  to  conduct  a  first-­‐ever  test  of  a  UAS  carrying  a  cloud-­‐seeding  payload.      

The  flight  was  conducted  under  Drone  America’s  CoA  using  their  DAx8,  a  multi-­‐rotor  aircraft  with  payload  capacity  up  to  3.5  lbs.      

Planning  and  scheduling  of  the  test  flight  included  a  weather  forecast  by  DRI,  which  predicted  cold  temperatures  in  the  low  20’s  but  no  winds.    Drone  America  filed  a  NOTAM  (Notice  to  Airmen)  with  the  FAA.    Additional  preparation  included  a  test  ignition  of  the  flares  to  determine  the  burning  pattern  and  length.        

The  DAx8  was  outfitted  with  a  flare  rack  equipped  with  two  silver  iodide  flares  which  were  wired  to  be  remotely  triggered.  The  flight  of  the  DAx8  was  fully  autonomous,  with  the  UAS  flying  in  a  circular  pattern  in  a  restricted  area  of  approximately  200  ft  radius  flight  path  with  a  maximum  altitude  of  150ft  above  the  R/C  field.    The  DAx8  successfully  flew  a  few  laps  prior  to  remotely  igniting  the  flares.    The  flares  were  ignited  in  sequence,  and  each  burned  for  approximately  2.5  minutes,  

A.  Test  Site  1 B.  Test  Site  2

Figure  3:  Test  flight  of  DAx8  with  smoking  flares  

UAS  Cloud  Seeding  2016  –  p.4    

after  which  the  UAS  was  safely  and  autonomously  landed  on  the  air  field.      A  press  release  from  the  test  flight  is  attached  in  Appendix  A-­‐1.              

3.2.2 Ground  Test  of  Fixed  Wing  Aircraft  with  Cloud  seeding  Payload  To  ensure  the  safety  of  the  Savant  fixed  wing  aircraft  with  burning  silver  iodide  flares,  a  ground-­‐test  was  completed  on  March  18,  2016  at  Tiger  Air  Field  near  Fernley,  NV.      During  this  test,  the  Savant  was  equipped  with  a  flare  rack  capable  of  holding  two  flares  under  each  wing,  shown  in  Figure  4  inset.    The  aircraft  was  mounted  to  a  telescoping  rack  on  a  trailer  driven  behind  a  vehicle  as  shown  in  Figure  4.    The  rack  had  a  swivel  that  allowed  the  aircraft  to  track  into  the  wind.  Ground  tests  were  conducted  with  the  vehicle  driving  at  about  50  miles  per  hour  to  simulate  the  nautical  speed  of  the  aircraft  during  flight.    Once  at  speed,  the  flares  were  ignited,  two  in  sequence,  to  observe  burning  patterns.    From  these  tests,  it  was  concluded  that  the  burning  flares  did  not  present  any  significant  flight  hazard  as  only  smoke  is  emitted  during  burning.    

   

 

 

3.2.3 Fixed  Wing  UAS  Test  Flight  with  Cloud  seeding  Payload  On  April  29,  2016,  the  flight  team  from  Drone  America,  DRI,  AviSight  and  NIAS  assembled  at  the  Hawthorne  Industrial  Airport  in  Hawthorne,  NV  to  conduct  a  cloud  seeding  flight  of  the  Savant  fixed  wing  UAS,  named  the  “Sandoval  Silver  State  Seeder.”  The  flight  was  conducted  under  an  FAA  agreement  in  partnership  with  the  Nevada  Institute  of  Autonomous  Systems  (NIAS),  using  the  Nevada  Test  Site’s  Certificate  of  Authorization  (COA).      

Prior  to  the  flight,  NIAS  representatives  held  a  safety  and  operational  briefing  for  the  entire  team,  which  included  two  UAS  pilots  from  Drone  America,  four  visual  observers  from  Drone  America,  a  flight  crew  

Figure  4:  Savant  aircraft  on  swiveling  trailer  mount  for  ground  test.    Inset:  Two  silver  iodide  flares  mounted  under  each  wing  of  the  Savant.    

UAS  Cloud  Seeding  2016  –  p.5    

from  AviSight,  and  observers  from  DRI.    The  AviSight  flight  crew  operated  and  piloted  a  Cessna  XXX  during  the  test  flight  to  ensure  visual  contact  with  the  UAS  and  to  collect  aerial  footage.          

Following  the  briefing,  the  Cessna  took  off  and  began  its  flight  pattern  circling  the  airport  at  1200  feet.  The  Savant  was  then  successfully  launched  and  flown  by  DA  pilots  for  18  minutes  at  just  under  400  feet,  during  which  time  two  silver  iodide  flares  were  successfully  ignited  and  burned.    The  pilots  then  belly  landed  the  UAS  on  the  airstrip.      

This  flight  represented  a  first-­‐ever  flight  of  a  fixed  wing  unmanned  aircraft  carrying  and  delivering  a  cloud  seeding  payload.    Examples  of  the  press-­‐release  and  related  news  coverage  is  provided  in  Appendix  A-­‐2.    The  flight  was  also  used  to  collect  data  to  develop  autonomous  flight  programming  for  the  aircraft.    The  success  of  the  test  flight  can  be  attributed  to  effective  working  partnership  between  the  three  project  partners  along  with  NIAS  representatives.    

3.2.4 Fixed  Wing  Test  Flight  with  Ejectable  Flares  On  the  evening  of  June  7,  2016,  the  flight  team  from  DRI,  Drone  America  and  AviSight  once  again  assembled  at  the  Hawthorne  Industrial  Airport  to  demonstrate  the  Savant’s  capability  to  deploy  ejectable  cloud  seeding  flares.    To  reduce  the  risk  of  fire,  the  UAS  was  flown  75  feet  above  the  airport  runway  to  ensure  safe  landing  of  the  flares  directly  on  the  runway.    Local  fire  crews  were  also  on  location  and  helped  hose  down  the  runway  and  surrounding  area  to  minimize  fire  risk  (Figure  5).  The  UAS  was  equipped  with  14  ejectable  silver  

iodide  flares,  which  were  successfully  deployed  against  a  spectacular  backdrop  of  the  setting  sun  (Figure  6).      The  flight  also  represented  the  first  flight  with  DRI  operating  as  a  NIAS  Test  Flight  Node.    A  press  release  of  these  activities  is  included  in  Appendix  A-­‐3.    

Figure  5:  Local  fire  crews  hose  down  the  runway  before  test  flight  of  the  ejectable  flares  on  June  7,  2016.  

UAS  Cloud  Seeding  2016  –  p.6    

 

Figure  6:    “The  Sandoval  Silver  State  Seeder”  deploys  ejectable  cloud  seeding  flares  over  the  Hawthorne  Industrial  Airport  runway  on  the  evening  of  June  7,2016.  

3.3 Weather  Forecasting  for  UAS  Cloudseeding  Operations  3.3.1 Winter  2015/2106  UAS  Flight  Forecasting  Summary  The  potential  for  UAS  cloud  seeding  operations  over  the  Tahoe-­‐Truckee  watershed  was  included  in  daily  weather  forecasts  from  DRI’s  Weather  Modification  team.  This  team  maintains  and  communicates  the  ground  and  aircraft  cloud  seeding  potential  for  the  Tahoe-­‐Truckee  region,  the  Walker  River  Basin  and  locations  in  the  Rocky  Mountains.  These  forecasts  are  produced  on  a  twice-­‐daily  basis  throughout  the  winter  season.    An  example  of  these  forecasts  for  22  January  2016  is  shown  in  Box  1.  

As  part  of  their  reporting  for  the  2015/2016  winter  season  in  the  Tahoe  region,  the  team  included  an  assessment  of  when  and  if  aircraft  operations  could  occur.    During  this  winter  season,  there  were  38  storms  that  were  seeded  via  ground-­‐based  generators  in  the  Tahoe-­‐Truckee  Basin.  These  seeding  efforts  are  estimated  to  have  contributed  up  to  20,000  acre-­‐feet  of  water  to  the  snowpack.    However,  forecasts  predicted  that  UAS  aircraft  could  have  been  used  to  seed  nearly  all  of  these  storms  along  with  several  

Jan  22 Synopsis:  Very  strong  zonal  flow  is  present  across  the  western  half  of  the  Pacific.  Over  the  eastern  Pacific  a  low  amplitude  ridge  is  over  the  western  Gulf  of  Alaska,  and  a  trough  is  just  west  of  the  West  Coast  from  southeast  Alaska  to  Baja.  A  closed  low  is  embedded  within  the  trough  just  off  the  northwestern  CA  coast  with  a  strong  southwesterly  flow  coming  on  shore  across  Tahoe  and  Walker.  A  high  amplitude  ridge  extends  northeast  from  southwestern  NM  to  northwestern  MN.  Winter  Park  and  the  Laramie  Range  are  under  the  ridge  near  the  ridge  axis.  A  strong  closed  low  is  over  the  Ohio  Valley  with  a  very  strong  flow  to  the  south  and  east  of  the  low.     Tahoe/Walker:  Cold  topped-­‐clouds  (-­‐60C  at  250mb)  are  crossing  the  area.  Cloud  bases  across  the  area  are  low,  near  8,000’  MSL.  Rain,  heavy  at  times,  has  been  falling  all  day  across  the  lower  elevations  of  Lake  Tahoe  and  the  Walker  Basin  with  snow  above  8,000’  MSL.  Temperatures  at  Slide  have  held  steady  at  -­‐3C  for  most  of  the  event  with  winds  from  the  southwest  (235)  at  23  MPH.  Down  at  Walker,  along  the  Sierra  Crest  at  9,600’  MSL  temperatures  are  -­‐2C  and  have  been  as  warm  as  0C  earlier  today.  The  forecast  calls  for  the  deep  moisture  to  continue  to  stream  across  the  area  for  the  rest  of  the  night  with  a  sharp  cold  front  crossing  the  area  late  tonight.  This  will  cool  the  700mb  temperatures  below  -­‐5C  and  allow  ground  based  cloud  seeding  to  start.   Tahoe  ground  seeding:  No  ops  until  late  this  evening. Tahoe  UAS  aircraft  seeding:  Cloud  seeding  could  have  been  conducted  all  day  at  14,000’MSL  20  to  25  miles  from  the  target  area.  Seeding  opportunities  continue  through  the  night.    

Box  1:  Weather  forecast  discussion  for  the  Tahoe-­‐Truckee  project  on  22  January  2016.  This  is  a  case  where  UAS  cloud  seeding  was  possible  over  an  extended  period  while  temperatures  were  too  warm  for  ground  based  cloud  seeding.  

UAS  Cloud  Seeding  2016  –  p.7    

additional  storms,  that  were  either  too  warm  at  the  ground  generator  level  or  had  unfavorable  winds  for  the  stationary  ground  network.  

3.3.2 UAS  Forecasting  Case  Study  DRI  selected  one  of  the  storms  that  occurred  during  the  Winter  of  2015/2016  to  evaluated  as  a  case  study  for  UAS-­‐based  cloudseeding  activities.      

On  the  afternoon  of  22  January  2016  a  strong  storm  and  cold  front  was  approaching  the  California  coast  (Figure  7)  Through  much  of  the  day  the  Tahoe-­‐Truckee  area  remained  in  the  warm  sector  of  the  storm  associated  with  a  very  moist  atmospheric  river  (Figure  8).  Heavy  snow  was  observed  above  the  8,000  ft  Mean  Sea  Level  (MSL)  and  rain  was  observed  below  that  level.  More  than  1.6  inches  of  snow  water  equivalent  was  measured  at  the  Mt  Rose,  NV  SNOTEL  site.  Observed  cloud  bases  remained  at  approximately  8,000  ft  MSL  though  the  day.  The  observed  temperatures  at  the  mountain  top  sensor  at  Slide  Mountain,  NV  were  -­‐3oC  (26oF)  and  winds  were  from  the  southwest.  Although  the  winds  and  cloud  base  heights  were  favorable  to  operate  the  ground  based  generators,  the  temperatures  remained  too  warm.  Cloud  seeding  from  the  UAS  at  14,000  ft  MSL  would  have  placed  the  cloud  seeding  nuclei  directly  into  the  favorable  temperatures  of  the  cloud.  Assuming  a  10%  increase  in  precipitation  from  seeding  (Breed  et  al.  2014),  up  to  0.16  inches  of  liquid  may  have  been  added  to  the  target  snowpack  from  UAV  cloud  seeding  during  this  10-­‐hour  case  alone.  

   Figure  7:  Storm  approaching  the  Northern  California  coast  on  the  afternoon  of  22  January  2016  (GOES  satellite  visible  image).  

 

Figure  8:  Satellite,  radar,  surface  weather  map  composite  on  the  late  afternoon  of  22  January  2016.  The  atmospheric  river  is  seen  in  the  radar  reflectivity  enhancement  from  the  Tahoe  area  to  the  southwest.  

 3.3.3 Development  of  a  validation  methodology  During  the  UAS  cloud  seeding  flight  tests  a  key  activity  will  be  to  show  that  the  UAS  has  successfully  delivered  the  cloud  seeding  material  to  the  target  area.  A  second  key  activity  will  be  to  show  that  the  seeding  improved  the  clouds  snow  production  and  potentially  increased  the  precipitation  efficiency.  

UAS  Cloud  Seeding  2016  –  p.8    

A  validation  plan  including  testing  the  ability  of  the  UAS’s  to  deliver  cloud  seeding  material  to  the  target  area  and  an  ice  crystal  image  analysis  was  designed  and  tested.  An  initial  field  test  was  conducted  on  22  March  2016  while  ground  based  cloud  seeding  was  active.  Figure  9  shows  the  collection  of  snow  in  real  time.  This  snow  will  be  tested  to  detect  slightly  elevated  levels  of  silver  iodide  to  show  the  equipment  successfully  delivered  the  seeding  plume  to  the  target.  To  determine  if  the  cloud  seeding  material  may  have  changed  the  microstructure  of  the  cloud,  snowflake  images  were  collected  in  locations  both  within  and  outside  the  seeding  plume.  Figure  10  shows  snow  pellets  within  the  seeding  plume  from  the  ground-­‐based  generators.  These  same  methods  will  be  used  to  determine  the  effectiveness  of  the  UAS  seeding  flights  in  winter  2016-­‐2017.  

   Figure  9:  Snow  collection  canister  near  Spooner  Summit,  NV  on  March  22,  2016.  Snow  is  collected  in  real  time  and  returned  to  DRI  for  trace  chemical  analysis.  

Figure  10:  Snow  pellets  collected  near  Mt  Rose,  NV  during  the  UAS  validation  exercise  on  22  March  2016.  

3.3.4 Silver  Iodide  emissions  measurements  The  DRI  ice  nucleus  counter  was  deployed  at  the  flight  test  locations  to  determine  if  the  UAS  seeding  flights  were  successfully  delivering  potential  cloud  seeding  silver  iodide  nuclei  to  the  local  flight  area  (Figure  11).  Measurements  from  the  instrument  showed  that  these  flights  were  associated  with  increased  ice  nuclei  in  the  area  during  and  shortly  after  the  flights.  This  instrument  may  be  deployed  in  the  field  during  testing  in  winter  2016-­‐2017.  

4 Future  Projects  and  Next  Steps  The  fast  pace  of  advancement  by  our  team  was  largely  able  to  accommodate  the  accelerated  timeline  for  milestones  and  deliverables  demanded  within  the  project’s  first  year.  In  addition  to  the  major  accomplishments  above,  one  significant  achievement  has  been  the  emergence  of  a  close  working  relationship  and  camaraderie  among  our  team  members.  The  advantages  that  this  group  cohesion  provide  are  substantial  and  include  increased  efficiency  of  operations,  smoother  communications,  and  even  an  improved  ability  to  mitigate  risks  or  respond  to  emergency  scenarios  should  these  occur.  

Figure  11:  DRI  ice  nucleus  counter,  deployed  during  ground  testing  on  Mary  6,  2016.  

UAS  Cloud  Seeding  2016  –  p.9    

The  team  is  excited  to  have  received  approval  by  GOED  Director  Steve  Hill  for  an  extension  of  the  project’s  deadline  by  one  year,  and  additional  funding  in  the  amount  of  $400,000.  This  increased  and  extended  support  will  allow  us  to  demonstrate  cloud  seeding  in  the  2016-­‐2017  winter  season,  and  use  the  successful  results  to  promote  a  commercial  cloud-­‐seeding  venture  which  will  be  formed  by  our  three  team  entities.  Our  activities  will  include  developing  business  for  this  commercial  venture  domestically  and  internationally,  while  also  pursuing  the  expansion  of  our  operations  using  the  Hawthorne  Industrial  Airport  as  a  base.  Such  a  focused  area  for  concentrated  UAS-­‐cloud-­‐seeding  work  will  attract  additional  support  for  research,  economic  development,  and  other  related  activities  which  will  enhance  the  economy  of  the  region  while  our  efforts  promote  Nevada’s  UAS  economy  and  augment  the  hydrology  of  the  Walker  Basin.  

UAS  Cloud  Seeding  2016  –  p.10    

Appendix  A  –  Press  Releases  A-­‐1:    Press  Release  February  23,  2016  Full  text  version  at:  http://www.dri.edu/news/dri-­‐news-­‐and-­‐press-­‐releases/5344-­‐dri-­‐unmanned-­‐cloud-­‐seeding-­‐project-­‐gains-­‐ejectable-­‐flare-­‐capability    

 

 

UAS  Cloud  Seeding  2016  –  p.11    

A-­‐2:  Press  Release  May  3,  2016  Full  text  version  at:  http://www.dri.edu/news/dri-­‐news-­‐and-­‐press-­‐releases/5294-­‐unmanned-­‐cloud-­‐seeding-­‐aircraft-­‐takes-­‐flight-­‐in-­‐nevada    

 

 

UAS  Cloud  Seeding  2016  –  p.12    

A-­‐3  Press  Release  June  23,  2016  Full  text  version  at:  http://www.dri.edu/news/dri-­‐news-­‐and-­‐press-­‐releases/5344-­‐dri-­‐unmanned-­‐cloud-­‐seeding-­‐project-­‐gains-­‐ejectable-­‐flare-­‐capability