65
11/4/2015 1 © 2015, New Buildings Institute Getting to Zero Energy Outcomes November 4, 2015 J. Craig Vetner Institute | LaJolla, CA Photo: Stephen Walker Photography Mark Frankel New Buildings Institute Paul Torcellini Principal Engineer, National Renewable Energy Laboratory Ryan Colker Director, Consultative Council/ Presidential Advisor National Institute of Building Sciences Ruwan Jayaweera Senior Associate, PAE Consulting Engineers © 2015, New Buildings Institute Today’s session sponsor:

ZeroEnergyOutcomes 11-04-15 - New Buildings Institutenewbuildings.org/sites/default/files/ZeroEnergyOutcomes_11-04-15.pdf · BedZED Attribution: Elekhh 0 1 2000 2010 2020 2030 Energy

Embed Size (px)

Citation preview

11/4/2015

1

© 2015, New Buildings Institute

Getting to Zero Energy Outcomes

November 4, 2015

J. Craig V

etnerInstitute | LaJolla, C

A P

hoto: Stephen W

alker Photography

Mark FrankelNew Buildings

Institute

Paul TorcelliniPrincipal Engineer,

National Renewable Energy Laboratory

Ryan ColkerDirector, Consultative Council/Presidential Advisor National Institute of Building Sciences

Ruwan JayaweeraSenior Associate, PAE Consulting

Engineers

© 2015, New Buildings Institute

Today’s session sponsor:

11/4/2015

2

Thank you to our sponsors!

redefining what’s possible in the built environment

11/4/2015

3

Upcoming Getting to Zero Webinars

All sessions 10-11:30 am Pacific/1-2:30 pm Eastern

January 13, 2016 Both Sides of the Meter

February 17, 2016 From Policy to Practice

March 16, 2016 Strategies for Getting to Zero

April 20, 2016 Beyond a Building

May 18, 2016 ZNE Policies within and Across Borders

More information at newbuildings.org/demand-webinars

Save the DateOctober 12-14, 2016 | Denver, CO

Ber

tsch

iS

cho

ol S

cien

ce W

ing

Sea

ttle

, W

A |

Ph

oto

: K

MD

Arc

hit

ects

11/4/2015

4

© New Buildings Institute, 2015

ZNE in the Occupancy Phase

Glazing performance –building orientation –cooling efficiency –infiltration –operating hours –climate –weather –occupant density –heating efficiency –duct design –fan size 

–window area –HVAC control sophistication –building mass –interior shading –occupant habits –data centers –kitchen equipment –lighting power density –filter 

condition –wall color –lighting controls ‐ furniture configuration –exterior vegetation ‐operable window use –insolation‐glazing orientation –wall insulation –ventilation rate ‐exposed interior surface characteristics ‐domestic hot water use –number of computers –copiers and printers –elevators –exterior lighting ‐occupant gender ratio –elevation –

photovoltaics ‐development density –register location –cooling distribution system –roof insulation –building manager training –cool roof –building surface to volume ratio –building use type –janitorial services –metering strategies –commissioning –structural system –acoustic treatment –slab edge detailing –night setback temperature –ground water temperature –humidity –occupant dress code –lamp replacement strategy –roof slope –daylight controls –sensor calibration –corporate culture –lease terms –utility meter characteristics –parking garage ventilation –HVAC system capacity –number of separate tenants –retail space –age of equipment –ceiling height –heating fuel –

transformer capacity –window mullion pattern –terms of maintenance contract –wall thickness –building height –lighting fixture layout –overhangs –thermostat location –exit lighting –private offices –refrigerators –solar hot water –utility meter –load diversity   

11/4/2015

5

Glazing performance –building orientation –cooling efficiency –infiltration –operating hours –climate –weather –occupant density –heating efficiency –duct design –fan size 

–window area –HVAC control sophistication –building mass –interior shading –occupant habits –data centers –kitchen equipment –lighting power density –filter 

condition –wall color –lighting controls ‐ furniture configuration –exterior vegetation ‐operable window use –insolation‐glazing orientation –wall insulation –ventilation rate ‐exposed interior surface characteristics ‐domestic hot water use –number of computers –copiers and printers –elevators–exterior lighting ‐occupant gender ratio –elevation –

photovoltaics ‐development density –register location –cooling distribution system –roof insulation –building manager training –cool roof –building surface to volume ratio –building use type –janitorial services –metering strategies –commissioning –structural system –acoustic treatment –slab edge detailing –night setback temperature –ground water temperature –humidity –occupant dress code –lamp replacement strategy –roof slope –daylight controls –sensor calibration –corporate culture –lease terms –utility meter characteristics –parking garage ventilation –HVAC system capacity –number of separate tenants –retail space –age of equipment –ceiling height –heating fuel –

transformer capacity –window mullion pattern –terms of maintenance contract –wall thickness–building height –lighting fixture layout –overhangs–thermostat location –exit lighting –private offices –refrigerators –solar hot water –utility meter –load diversity   

10

Performance Expectations vs. Outcome

140120100806040200

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Design EUI (Adj2)

Act

ual /

Des

ign

EUI

(Adj

2)

1

CertifiedSilverGoldPlatinum

LEEDlevel

11/4/2015

6

Different Players Affect Building Performance

DesignOperation

Tenants

Computers and EquipmScheduleHabits

LayoutIntegrationInstallationComponents and Fea

StaffingControls

MaintenanceCommissioning

Components of energy outcomes

0

1

2000 2010 2020 2030

Ene

rgy

Use

Design Components

11/4/2015

7

Building Operation

Photo: DPR Construction

BedZEDAttribution: Elekhh

0

1

2000 2010 2020 2030

Ene

rgy

Use

Operating Characteristics

Design Components

Components of energy outcomes

11/4/2015

8

Occupancy

Hood River Middle School, OR . Courtesy: Michael Mathers

0

1

2000 2010 2020 2030

Ene

rgy

Use

Operating Characteristics

Design Components

Tenant Behavior

Components of energy outcomes

11/4/2015

9

Solar PV Production‐7% Elevator

2%

Plugs/Misc44%

Lighting23%

HVAC, DHW,Fans   31%

RFM: Energy End Use based on 2 years  

Solar Produced

Elevator

Plugs/Misc

Lighting

HVAC,DHW,Fans

End Use in HP Buildings

EUI = 20 kBtu/sf/yr

Net Zero Site Limits

11/4/2015

10

© New Buildings Institute, 2015

Operator & Occupant Engagement

© New Buildings Institute, 2015

Performance Analysis Tools

11/4/2015

11

Outcome Project Examples• Edith Green Wendell Wyatt Federal

Building; Portland -SERA• George Deukmejian Courthouse, Long

Beach –AECOM/Clark• Federal Center South; Seattle -ZGF

NBI 2015

11/4/2015

12

It’s High‐Performance NOT High‐Desires

Ryan M. Colker, J.D.Director, Consultative Council/Presidential Advisor

National Institute of Building Sciences1090 Vermont Ave., NW • Suite 700

Washington, DC 20005, USA202-289-7800 [email protected]

@rmcolker

Public Law 93‐383, Sect. 809

Develop and maintain performance criteria for maintenance of life, safety, health, and public welfare for the built environmentEvaluate and prequalify building technology and productsConduct related and needed investigationsAssemble, store, and disseminate technical data and related information

Congress directed the Institute to “exercise its functions and responsibilities in four general areas………..”

11/4/2015

13

The Institute at Work

Industry Advocacy & Outreach

Consultative Council

Council on Finance, Insurance and Real Estate (CFIRE)

Off‐Site Construction Council (OSCC)

Science, Technology, Engineering and Mathematics 

(STEM)

Commercial Workforce Credentialing Council (CWCC)

National Council of Governments on Building 

Codes and Standards (NCGBCS)

Facility Performance & Sustainability

Building Enclosure Technology and Environment Council 

(BETEC)

Sustainable Buildings Industry Council (SBIC)

High Performance Building Council (HPBC)

National Mechanical Insulation Committee

Facility Maintenance and Operation Committee (FMOC)

Information Resources & Technology

Whole Building Design Guide

National Clearinghouse for Educational Facilities

Building Research Information Knowledgebase (BRIK)

buildingSMART alliance

National BIM Standard‐U.S.

Security & Disaster 

Preparedness

Building Seismic Safety Council (BSSC)

Multihazard Mitigation Council (MMC)

Integrated Resilient Design Program

Multihazard Risk Assessment/HAZUS

High‐Performance building means a building that 

integrates and optimizes on a life‐cycle basis all 

major high‐performance attributes, including 

energy [and water] conservation, environment, 

safety, security, durability, accessibility, cost‐

benefit, productivity, sustainability, functionality, 

and operational considerations.‐Energy Independence and Security Act of 2007 §401 (PL 110‐140)

High-Performance Buildings

11/4/2015

14

Identifying a Path Forward

• Wide‐ranging examination of key issues with recommendations

• http://newbuildings.org/performance‐outcomes‐event‐report

• Follow‐on discussions in early 2016

11/4/2015

15

Common Definition for ZEB• Zero Energy Building (ZEB): 

– An energy‐efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on‐site renewable exported energy. 

• The designation Zero Energy Building (ZEB) should be used only for buildings that have demonstrated through actual annual measurements that the delivered energy is less than or equal to the on‐site renewable exported energy.

• http://energy.gov/eere/buildings/downloads/common‐definition‐zero‐energy‐buildings 

Mark Frankel, NBI

Role of Energy Codes

11/4/2015

16

Individual sub‐systems have become more efficient, but overall efficiency has been flat

BuildingCooling Sub Systems

GlazingSub Systems

Energy Efficient Buildings Hub/Consortium for Building Energy Innovation

Efficiency Improvements:Building Sector vs. Other Sectors

Aircraft Systems

Automobile

32Energy Efficient Buildings Hub/Consortium for Building Energy Innovation

11/4/2015

17

Driving to Outcomes• We’ve done the easy stuff

– Optimized current equipment/methodologies– Honed individual disciplines

• Drive for high‐performance– Integrate and optimize to achieve multiple requirements

• Owners, Occupants, Policymakers demanding results

• Fundamental shift to life‐cycle performance– Driving new tools, contracts, delivery methods

• Comprehensive strategy, collaborative approach– Integrated Design, BIM, Delivery Methods, Contracts, Commissioning

11/4/2015

18

Tackling the Energy Code Challenges

• Bring wider focus to designconstructionoperations

• Tie to actual, measured results

• Limit burdens on code departments

• Incent smooth handover

• Move beyond prescriptive and component‐by‐component approach

• All energy uses covered

• Compliance through most cost‐effective means

Outcome‐based Pathway in the International Green Construction 

Code• Sets targets

– Table based on CBECS– Ratio of actual performance to table reference

• Compliance– Issue Temporary Certificate of Occupancy or Post Occupancy Verification Permit

– Owner bears burden of reporting to resolve TCO/POVP• 12 months compliant data within 3 years• Certified by registered design professional• Could hinder financing, insurance, leasing, sale, permitting, etc.

– Penalties/resolution up to AHJ– Requires links with other policies/departments

11/4/2015

19

Seattle Target Performance Path

• Outcome‐based pathway

• Establishes energy use targets

• Requires demonstration of operational energy use

• Financial security to be used as penalty ($4sqft)

– Proportion eligible for mitigation

Setting the Stage• Link with comprehensive policy approaches to 

performance goals

• Coupled with benchmarking & reporting can begin to develop localized targets

• Supports movement beyond one time demonstration to ongoing compliance

• Allows future focus on regulating performance of existing buildings

• Create feedback loops within & between AEC, O+M, government

• Drive improvements in performance data, modeling, turnover, integrated design and operations

11/4/2015

20

Establish Building Team

ArchitectEngineerContractorOwnerO&M

CommissioningSpecialists

Contract TypesIPD w/targets

DBOMPPP

Energy Saving Agreement

Energy Saving Purchase Agreement

Design‐Build Plus

Set Targets

Owner/

Team

Policies

Collaborative Design

Data collection

Model

Data collection

Construction

Commissioning

Operations

Monitor

Checkpoints

Data collectionFeedback

Codes + Regulation (benchmark & reporting, etc.)Incentives (utility, tax, permitting, etc.) 

IncentivesPenalties

A Pathway for Outcome‐Based 

Performance

It’s Not Just Codes. . .

• Emergence of Performance Contracting

– GSA

– Washington

– California

• Advancing past Design‐Bid‐Build

• New AIA Guide on PPP– http://www.aia.org/aiaucmp/groups/aia/documents/pdf/aiab104939.pdf

• Commission on Environmental Cooperation Integrated  Design & Delivery Guide

11/4/2015

21

Procurement methods

Design / Build Operate

Design Bid/Build Operate

Re‐examine Procurement Methods

Design / Build Operate/Maintain

11/4/2015

22

Governor Deukmejian Courthouse, Long Beach

• Public‐Private Partnership/DBFOM

• The performance‐based contract allowed the courthouse to be constructed without any public funding and provides for the ongoing maintenance and performance of the facility. Under the terms of the agreement, the Judicial Council can deduct a specific amount from the availability payment if components of the building do not work. For example, there is a $5,000 deduct for every two hours that certain elevators are inoperable.

GSA Federal Center South

11/4/2015

23

Olympia, Washington Government Project

Just having the map doesn’t mean you get the treasure. . .

• Need leaders to step up and lead the way

• Share your experiences/Educate peers

• Demand results/Deliver results

• Participate in development of tools, policies 

11/4/2015

24

Overall Needs for Effective Outcomes

• Education across industry

– AEC

– Code Officials

– Government

• Guidance documents

– Modeling

– Benchmarking

– Policy Frameworks

• Insurance Markets

• Contracting Tools

Overall Needs for Effective Outcomes

• Procurement guides

• Data protocols

• Links with 111(d) programs as measurable, verified reductions in energy/GHGs

• Shifts in processes, design fees, risk profiles, project scope, attitudes

• Case studies

11/4/2015

25

ResultsAchieve net zero energy

Reduce water consumption Protect environment

Reduced carbon footprintMeet LEED goals

Meet Energy Star GoalsAsset optimization

High Performance Buildings• Operationally Cost effective• Sustainable / Green / Energy 

Efficient• Resilient  / DR‐COOP• Supports Productivity / 

Mission• Functional / Operational• Preserve historical value• Safe to work in• Secure from threats• Accessible• Aesthetically pleasing

Improved Facility Delivery• Reduce product waste• Prefabrication• Improve supply chain• Process optimization• Systems analysis• Performance analysis• Commissioning• Improve product selection• Common information base• Coordinate decision making• Integrate scheduling• Optimize design• Design to sustain

Initial Investment Costs   +   Lifetime Cost Reductions    =     Zero or Net Positive 

Shifting Perceptions on the Cost of High Performance

11/4/2015

26

Utilizing BIM to Optimize Operations

• UK Government leading the way

– Soft Landings

– Focus on the “Golden Thread”

• Why we build the building in the first place

• BIM is not just a design tool, but a life‐cycle management tool

Courtesy of Autodesk

The Facility Lifecycle

52

11/4/2015

27

Simulations-Comfort-Ventilation, heating-Energy-Light, sound-Insulation-Fire, usage-Environment-Life time predictions-Crowd behavior- Safety

Specifications-Specification sheets-Classification standards-Estimates, accounting

Briefing-Functional req.-Estimates-Conditions-Requirements

Knowledge databases-Best practise knowledge-Own practice

Laws and regulations-Building regulations-Building specifications

Design and Analysis-Drawings, calculations-Architect, engineer,…

Modeling-Visualisation, 3D models

Procurement-Product databases-Price databases

Facility management-Letting, sale, operations-Maintenance-Guaranties

Demolition, refurbishment-Rebuild-Demolition-Restoration

Construction management-Scheduling-Logistics, 4D

By Lars BjørkhaugIllustrations by: Byggforsk, Olof Granlund, NBLN University of California, Stanford University

Costing- Initial cost- Life-cycle- Value Engineering

Two Key Pieces in the Puzzle

Data Finance

11/4/2015

28

http://www.wbdg.org/resources/outcomebasedpathways.php

http://newbuildings.org/outcome‐based‐energy‐codes

11/4/2015

29

National Performance Based Design Guide

Go to http://npbdg.wbdg.org for latest version

National Performance Based Design Guide

Go to http://npbdg.wbdg.org for latest version

11/4/2015

30

Owner’s Performance Requirements Tool Assists the design community to plan new building designs and retrofit projects by analyzing different performance scenarios and producing cost effective strategies as outputs

Allows decision makers to make judgments in terms of how much exposure and cost is acceptable for:  

Resilience performance

Overall Risk levels

Seismic risk

Flood risk

Tornado risk

Blast range threat

Ballistic threat

Available at www.oprtool.org

CBR exposure

Exterior glazing

Air tightness/leakage

Unit energy cost

Natural ventilation

Solar energy

Noise control

OPR Enables Owner ROI AnalysisPlanning Process

Fire, SafetySecurityEnergyEnvironment

Retrofit

Owner Prioritized HP A&D

Owner Prioritized Engineering

Owner Prioritized Engineering

New Construction

OPR

OPR

HP ConsiderationsHP MaterialsMulti‐Hazards

Cost vs. Resilience (Return on Investment)

Performance Improvements Selected Results

• Illustrates how the OPR tool can show the ROI when increasing performance.

• Based on a realistic example of an office building.  Performance was increased  for all safety and security  attributes – CBR not included

Highest Improved Performance Scenario – Negligible damage, minor repairs required to the envelope, no disruption in operations

70%Increase in CapEx

1200%Decrease in Exposure

Moderate Improved PerformanceScenario ‐ Repairable damage to envelope, some disruption in operations

57%Increase In CapEx

230%Decrease in Exposure

Lowest Improved Performance Scenario (Life Safety) – Building destroyed but does not collapse

20%IncreaseIn CapEx

0 % Decrease in Exposure

OPR also evaluates ROI from operational improvements (energy savings, and durability)

11/4/2015

31

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Occupant Inputs =

Zero Energy Output

Paul A. Torcellini, Ph.D., P.E. Principal Engineer, NREL

November 4, 2015

62

• RSF uses 50% less energy than if it were built to current commercial codes at no extra capital cost

• RSF increases space at NREL by 60% but only increases energy use by 6%

NREL/17833

11/4/2015

32

63

RSF Built for “No Additional Cost”

PROJECTS AND LEED CERTIFICATION

RSF 1$259/sqftRSF 2

$246/sqft

Average$335/sqft

64

Measured Versus Modeled Monthly and Cumulative EUI

64

Cre

dit:

Cha

d Lo

bato

/NR

EL

0

4

8

12

16

20

24

28

32

36

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

Mod

el

RS

F

PV

October2010

November2010

December2010

January2011

February2011

March2011

April2011

May2011

June2011

July2011

August2011

September2011

An

nu

al E

UI

(kB

tu/f

t2)

Mo

nth

ly E

UI

(kB

tu/f

t2)

PV

Data Center

Mechanical Systems

Plug Loads

Lighting

Heating

Cooling

Model Annual EUI

RSF Annual EUI

The PV system is sized for an annual EUI of 35.1 kBtu/ft2.

Note: The annual EUI values are demand side valuesand do not include the

11/4/2015

33

65

Buildings Are For Occupants!

65

• Occupants and Operators ultimately control all the energy loads

• Frustration when Occupants are expected to “perform” but have no levers to control

• Plug loads

• Design elements for the Occupants

• Occupant training

66

RSF Energy Modeling

Space Heating24%

Space Cooling3%

Pumps1%

Ventilation Fans5%

Domestic Hot Water

3%

Exterior Lights0%

Lights6%

Office Plug Loads22%

Task Lights0%

Data Center35%

Data Center Cooling

0%

Data Center Fans1%

NREL RSF Energy Use Breakdown

Credit: Chad Lobato/NREL

Cre

dit:

Sta

ntec

End Use kBtu/ft2

Space Heating 8.58Space Cooling 0.85Pumps 0.48Ventilation Fans 1.88Domestic Hot Water 0.90Exterior Lights 0.12Lights 2.07Office Plug Loads 7.87Task Lights 0.10Data Center 12.11Data Center Cooling 0.02Data Center Fans 0.20

11/4/2015

34

67

Day vs. Night Plug and Process Loads

Annual Plug Load Energy Use Intensity (kBtu/ft2)

Unoccupied Hours Power Density (W/ft2)0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

Occ

up

ied

Ho

urs

Po

wer

D

ensi

ty(W

/ft2

)

0.10 3.0 5.2 7.4 9.7 11.9 14.1 16.3 18.6 20.8 23.0 25.2 27.4 29.7 31.9 34.10.20 3.8 6.0 8.2 10.4 12.7 14.9 17.1 19.3 21.5 23.8 26.0 28.2 30.4 32.7 34.90.30 4.5 6.8 9.0 11.2 13.4 15.6 17.9 20.1 22.3 24.5 26.8 29.0 31.2 33.4 35.60.40 5.3 7.5 9.7 12.0 14.2 16.4 18.6 20.9 23.1 25.3 27.5 29.7 32.0 34.2 36.40.50 6.1 8.3 10.5 12.7 15.0 17.2 19.4 21.6 23.8 26.1 28.3 30.5 32.7 35.0 37.20.60 6.8 9.1 11.3 13.5 15.7 17.9 20.2 22.4 24.6 26.8 29.1 31.3 33.5 35.7 38.00.70 7.6 9.8 12.0 14.3 16.5 18.7 20.9 23.2 25.4 27.6 29.8 32.1 34.3 36.5 38.70.80 8.4 10.6 12.8 15.0 17.3 19.5 21.7 23.9 26.2 28.4 30.6 32.8 35.0 37.3 39.50.90 9.1 11.4 13.6 15.8 18.0 20.3 22.5 24.7 26.9 29.1 31.4 33.6 35.8 38.0 40.31.00 9.9 12.1 14.4 16.6 18.8 21.0 23.2 25.5 27.7 29.9 32.1 34.4 36.6 38.8 41.01.10 10.7 12.9 15.1 17.3 19.6 21.8 24.0 26.2 28.5 30.7 32.9 35.1 37.3 39.6 41.81.20 11.4 13.7 15.9 18.1 20.3 22.6 24.8 27.0 29.2 31.4 33.7 35.9 38.1 40.3 42.61.30 12.2 14.4 16.7 18.9 21.1 23.3 25.5 27.8 30.0 32.2 34.4 36.7 38.9 41.1 43.31.40 13.0 15.2 17.4 19.6 21.9 24.1 26.3 28.5 30.8 33.0 35.2 37.4 39.7 41.9 44.11.50 13.7 16.0 18.2 20.4 22.6 24.9 27.1 29.3 31.5 33.8 36.0 38.2 40.4 42.6 44.9

Only occupied about ⅓ of the  me‐Nights Unoccupied‐Weekends Unoccupied‐Holidays Unoccupied

68

Plug Loads

• 4 Quads—20% of commercial building energy use  

• Office equipment is 7% of total electrical use

• Very diverse and diffuse making them hard to manage and control

• Evaluated current plug loads• Developed a process to reduce

o Unused equipmento Space conditioningo Lighting needs

11/4/2015

35

69

RSF Plug Load Reduction Strategies

• Elevators– Use energy efficient traction elevators– Change elevator lighting to energy efficient 

fluorescent lighting– Turn off elevator lighting when the elevator is 

unoccupied• Break Rooms

– Increase the number of people that use each break room from approximately 40 to 60

– Eliminate the cooler on the drinking fountain• Task Lights

– Move from 35W fluorescent task lights to 6W LED task lights

• Phones– Go from 1000 standard phones to 1000 VOIP phone 

that consumes 2W each• Copiers, Printers, Fax Machines

– Decrease the number people that use individual copiers, printers and fax machines

– Increase the number of people that use common, or group, copiers, printers and fax machines from 15 to 20

– Increase the use of all‐in‐one machines• Computers

– Go from approximately 260 laptops, 33% of staff, to 720, 90% of staff, ensure standby mode works for all workstations

• Data Center– Blade Servers with Virtualization– High efficiency UPS– 65W/employee current to 48W/employee in RSF

• The result of these strategies is a 47% reduction in plug loads 

0.00

5.00

10.00

15.00

20.00

Baseline RSF

EU

I (k

Btu

/ft2

)

Baseline vs RSF Plug Load EUICoffee Kiosk

Elevator Lighting

Elevators

Drinking Fountains

Vending Machines

Microwaves

Coffee Pots

Refrigerators

Task Lights

Phones

Fax Machines

Copiers

Printers

Computers

Data Center

Conference RoomEquipment

Telecom RoomEquipment

Misc

70

Graphics and Technical Resources

70

Technical Resources

• Utility Incentives Spreadsheet

• “How To” 1‐Pager for Office Desk

• Decision Trees

11/4/2015

36

71

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 2 4 6 8 10 12 14 16 18 20 22 24

Po

wer

Den

sity

(W

/ft2

)

Time of Day

Model Average

October 2010

November 2010

December 2010

January 2011

February 2011

March 2011

April 2011

May 2011

June 2011

July 2011

August 2011

October 2010 – August 2011 Plug Load Power Density

Note: The elevators are included in the plug loadsCredit: Chad Lobato/NREL

72

Tools Deployed

• Effective break rooms

o Water

o Refrigeration

o Thermal comfort

• Advanced Power Strips

• Automatically turn off outlets when not needed

11/4/2015

37

73

Lighting Control

• Must look like an on/off switch

• Give the users control

• Vacancy control strategy

73

7474

Is this photo significant?

Credit: Jennifer Scheib/NREL

11/4/2015

38

75

76

11/4/2015

39

77

Radiant Ceilings

Thermal Mass Walls

Operable Windows

UnderfloorVentilation

78

6 watt task light50 fc

Daylight

Ambient lighting with daylight sensors for 25 fc

Hallway Glare Control

11/4/2015

40

79

Space Layout

79

• Inviting stairwells

• Hallways with bright ends

• Elevators only in the center spline

80

11/4/2015

41

81

82

11/4/2015

42

83

Summary

• Keep the building simple

• Let the occupants help with the controls—engage them

• Default is maximum energy savings

• Make the user interface SIMPLE

• Design the building to be robust and to work with the occupants, not ignore the occupants

• Occupants can be come your biggest ally.

www.nrel.gov/rsf

Buildingdata.energy.gov/cbrd

Paul Torcellini

[email protected]

11/4/2015

43

Results from a Living Building

The Bullitt Center Turns Two

Presented By: Ruwan Jayaweera, PE, LEED AP, Senior Associate

High Performance

Goal

High Performance

Goal

EnableHIGH

PERFORMANCE BUILDING

ProveMEASUREMENT

&VERIFICATION

MotivateBEHAVIOR

&AWARENESS

11/4/2015

44

So, Did We Hit the Mark?

Certified March 2015

Bullitt CenterHVAC System Overview

11/4/2015

45

Proposed Building Energy Use

Actual Performance

11/4/2015

46

Net positive building

EUI under 10 in 2014 | Predicted EUI of 16

85% occupied

Bullitt Center Performance

Predicted vs. ActualBullitt Center Performance

-40,000

-30,000

-20,000

-10,000

0

10,000

20,000

30,000

40,000

50,000

60,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Elec

tric

Con

sum

ptio

n, k

Wh

Bullitt Center PerformanceActuals, 10/1/15

SCL Power Used PV Exported to SCL PV Used by BullittSavings over Baseline Bullitt Building Use Est. Code BaselineSCL Net Meter - SVC 4 Proposed Tenant Building

11/4/2015

47

Bullitt Center EnergyPredicted Energy Production & Consumption

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Ener

gy C

onsu

mpt

ion

(kW

h)

PREDICTED Energy Consumption 100% OCCUPIED PREDICTED Energy Production

Bullitt Center EnergyPredicted Energy Production & Consumption

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Ener

gy C

onsu

mpt

ion

(kW

h)

ACTUAL Energy ConsumptionACTUAL Energy Production

11/4/2015

48

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Ener

gy

Co

nsu

mp

tio

n (

kWh

)

ACTUAL Energy Consumption ACTUAL Energy Production

PREDICTED Energy Consumption 100% OCCUPIED PREDICTED Energy Consumption 75% OCCUPIED

PREDICTED Energy Consumption 50% OCCUPIED PREDICTED Energy Consumption 25% OCCUPIED

PREDICTED Energy Production

Bullitt Center EnergyPredicted vs. Actual Energy Production & Consumption

8.5 EUI

16.7 EUI

11.1 EUI

16.7 EUI

Performance Predicted Weather

0

500

1000

1500

2000

2500

HO

UR

S

TEMPERATURES

Predicted Values (TMY3)Temperature and Humidity Plot, Seattle, WA

All Hours

0 to 20 RH 20 to 40 RH 40 to 60 RH 60 to 80 RH 80 to 100 RH

11/4/2015

49

Performance Actual Weather

0

500

1000

1500

2000

2500

HO

UR

S

TEMPERATURES

Actual Values (from Bullitt DDC)Temperature and Humidity Plot, Seattle, WA

All Hours

0 to 20 RH 20 to 40 RH 40 to 60 RH 60 to 80 RH 80 to 100 RH

0

10

20

30

40

50

60

70

80

90

100

12:03:00 AM

3:18:00 AM

6:33:00 AM

9:48:00 AM

1:03:00 PM

4:18:00 PM

7:33:00 PM

10:48:00 PM

2:03:00 AM

5:18:00 AM

8:33:00 AM

11:48:00 AM

3:03:00 PM

6:18:00 PM

9:33:00 PM

12:48:00 AM

4:03:00 AM

7:18:00 AM

10:33:00 AM

1:48:00 PM

5:03:00 PM

8:18:00 PM

11:33:00 PM

2:48:00 AM

6:03:00 AM

9:18:00 AM

12:33:00 PM

3:48:00 PM

7:03:00 PM

10:18:00 PM

1:33:00 AM

4:48:00 AM

8:03:00 AM

11:18:00 AM

2: 33:00 PM

5:48:00 PM

9:03:00 PM

12:18:00 AM

3:33:00 AM

6:48:00 AM

10:03:00 AM

1:19:00 PM

4:34:00 PM

7:49:00 PM

11:04:00 PM

2:19:00 AM

5:34:00 AM

8:49:00 AM

12:04:00 PM

3:19:00 PM

6:34:00 PM

9:49:00 PM

North Zone Summer Temperature Profile

ZONE 1 SLAB TEMPERATURE ZONE 1 SPACE TEMPERATURE OUTSIDE AIR TEMPERATURE

Performance Thermal Comfort

11/4/2015

50

0

10

20

30

40

50

60

70

80

90

100

12:01:00 AM

3:16:00 AM

6:31:00 AM

9:46:00 AM

1:01:00 PM

4:16:00 PM

7:31:00 PM

10:46:00 PM

2:01:00 AM

5:16:00 AM

8:31:00 AM

11:46:00 AM

3:01:00 PM

6:16:00 PM

9:31:00 PM

12:46:00 AM

4:01:00 AM

7:16:00 AM

10:31:00 AM

1:46:00 PM

5:01:00 PM

8:16:00 PM

11:31:00 PM

2:46:00 AM

6:01:00 AM

9:16:00 AM

12:31:00 PM

3:46:00 PM

7:01:00 PM

10:16:00 PM

1:31:00 AM

4:46:00 AM

8:01:00 AM

11:16:00 AM

2: 31:00 PM

5:46:00 PM

9:01:00 PM

12:16:00 AM

3:31:00 AM

6:46:00 AM

10:01:00 AM

1:16:00 PM

4:31:00 PM

7:46:00 PM

11:01:00 PM

2:16:00 AM

5:31:00 AM

8:46:00 AM

12:01:00 PM

3:16:00 PM

6:31:00 PM

9:46:00 PM

South Zone Summer Temperature Profile

ZONE 1 SLAB TEMPERATURE ZONE 1 SPACE TEMPERATURE OUTSIDE AIR TEMPERATURE

Performance Thermal Comfort

0

10

20

30

40

50

60

70

80

90

100

12:03:00 AM

3:18:00 AM

6:33:00 AM

9:48:00 AM

1:03:00 PM

4:18:00 PM

7:33:00 PM

10:48:00 PM

2:03:00 AM

5:18:00 AM

8:33:00 AM

11:48:00 AM

3:03:00 PM

6:18:00 PM

9:33:00 PM

12:48:00 AM

4:03:00 AM

7:18:00 AM

10:33:00 AM

1:48:00 PM

5:03:00 PM

8:18:00 PM

11:33:00 PM

2:48:00 AM

6:03:00 AM

9:18:00 AM

12:33:00 PM

3:48:00 PM

7:03:00 PM

10:18:00 PM

1:34:00 AM

4:49:00 AM

8:04:00 AM

11:18:00 AM

2: 34:00 PM

5:49:00 PM

9:04:00 PM

12:19:00 AM

3:34:00 AM

6:49:00 AM

10:04:00 AM

1:19:00 PM

4:34:00 PM

7:49:00 PM

11:04:00 PM

2:19:00 AM

5:34:00 AM

8:49:00 AM

12:04:00 PM

3:19:00 PM

6:34:00 PM

9:49:00 PM

North Zone Shoulder Temperature Profile

ZONE 1 SLAB TEMPERATURE ZONE 1 SPACE TEMPERATURE OUTSIDE AIR TEMPERATURE

Performance Thermal Comfort

11/4/2015

51

0

10

20

30

40

50

60

70

80

90

100

12:02:00 AM

3:12:00 AM

6:22:00 AM

9:32:00 AM

12:42:00 PM

3:52:00 PM

7:02:00 PM

10:12:00 PM

1:22:00 AM

4:32:00 AM

7:42:00 AM

10:52:00 AM

2:02:00 PM

5:12:00 PM

8:22:00 PM

11:32:00 PM

2:42:00 AM

5:52:00 AM

9:02:00 AM

12:12:00 PM

3:22:00 PM

6:32:00 PM

9:42:00 PM

12:52:00 AM

4:02:00 AM

7:12:00 AM

10:22:00 AM

1:32:00 PM

4:42:00 PM

7:52:00 PM

11:02:00 PM

2:12:00 AM

5:22:00 AM

8:32:00 AM

11:42:00 AM

2:52:00 PM

6:02:00 PM

9:12:00 PM

12:22:00 AM

3:32:00 AM

6:42:00 AM

9:52:00 AM

1:02:00 PM

4:12:00 PM

7:22:00 PM

10:32:00 PM

1:42:00 AM

4:53:00 AM

8:03:00 AM

11:27:00 AM

2:37:00 PM

5:48:00 PM

8:58:00 PM

South Zone Shoulder Temperature Profile

ZONE 1 SLAB TEMPERATURE ZONE 1 SPACE TEMPERATURE OUTSIDE AIR TEMPERATURE

Performance Thermal Comfort

0

10

20

30

40

50

60

70

80

90

100

12:02:00 AM

3:17:00 AM

6:32:00 AM

9:47:00 AM

1:02:00 PM

4:17:00 PM

7:32:00 PM

10:47:00 PM

2:03:00 AM

5:18:00 AM

8:32:00 AM

11:47:00 AM

3:03:00 PM

6:18:00 PM

9:33:00 PM

12:48:00 AM

4:03:00 AM

7:18:00 AM

10:33:00 AM

1:48:00 PM

5:03:00 PM

8:18:00 PM

11:33:00 PM

2:48:00 AM

6:03:00 AM

9:18:00 AM

12:33:00 PM

3:48:00 PM

7:03:00 PM

10:18:00 PM

1:33:00 AM

4:48:00 AM

8:03:00 AM

11:18:00 AM

2: 33:00 PM

5:48:00 PM

9:03:00 PM

12:18:00 AM

3:33:00 AM

6:48:00 AM

10:03:00 AM

1:18:00 PM

4:33:00 PM

7:48:00 PM

11:03:00 PM

2:18:00 AM

5:33:00 AM

8:48:00 AM

12:03:00 PM

3:18:00 PM

6:33:00 PM

9:48:00 PM

North Zone Winter Temperature Profile

ZONE 1 SLAB TEMPERATURE ZONE 1 SPACE TEMPERATURE OUTSIDE AIR TEMPERATURE

Performance Thermal Comfort

11/4/2015

52

0

10

20

30

40

50

60

70

80

90

100

12:02:00 AM

3:17:00 AM

6:32:00 AM

9:47:00 AM

1:02:00 PM

4:17:00 PM

7:32:00 PM

10:47:00 PM

2:02:00 AM

5:17:00 AM

8:32:00 AM

11:47:00 AM

3:02:00 PM

6:17:00 PM

9:32:00 PM

12:47:00 AM

4:02:00 AM

7:17:00 AM

10:32:00 AM

1:47:00 PM

5:02:00 PM

8:17:00 PM

11:32:00 PM

2:47:00 AM

6:02:00 AM

9:17:00 AM

12:32:00 PM

3:47:00 PM

7:02:00 PM

10:18:00 PM

1:33:00 AM

4:48:00 AM

8:02:00 AM

11:18:00 AM

2: 33:00 PM

5:48:00 PM

9:03:00 PM

12:18:00 AM

3:33:00 AM

6:48:00 AM

10:03:00 AM

1:18:00 PM

4:33:00 PM

7:48:00 PM

11:03:00 PM

2:18:00 AM

5:33:00 AM

8:48:00 AM

12:03:00 PM

3:18:00 PM

6:33:00 PM

9:48:00 PM

South Zone Winter Temperature Profile

ZONE 1 SLAB TEMPERATURE ZONE 1 SPACE TEMPERATURE OUTSIDE AIR TEMPERATURE

Performance Thermal Comfort

Living in a Living BuildingBuilding Culture

11/4/2015

53

0%

20%

40%

60%

80%

100%Modes of Arrival to the 6th Floor by

Week

Trips viaElevator

Trips viaStair

May July Sept. Nov. Jan. Mar.

2013 …………………………………………………………………………………………… 2014 ………………

Research by: Heather Burpee, University of Washington Integrated Design Lab

11/4/2015

54

Living in a Living BuildingThermal Comfort

Living in a Living BuildingDaylighting

11/4/2015

55

Living in a Living BuildingIndoor Air Quality

Living in a Living BuildingThe Restroom Experience

11/4/2015

56

Grrrrrrrrr…

Living in a Living Building

11/4/2015

57

Composting Toilet SystemFirst Compost Removal

Composting Toilet SystemFirst Compost Removal

No odors, just dry compost

11/4/2015

58

Lessons Learned

Living in a Living BuildingTenant Buy-In

11/4/2015

59

Living in a Living BuildingIssues

Living In A Living BuildingSolutions

11/4/2015

60

Post Occupancy Adjustments

Building Operation

Ensuring energy performance

Metering challenges

3rd party option

11/4/2015

61

Tenant Budgets

-

5,000

10,000

15,000

20,000

25,000

150 100 250 200 300 400 500 600 650

kWh

/yr

Suite

7.2%

10.4%

4.6%

6.8%

17.8% 17.8% 17.7%

6.9%

10.8%

What Metering Tells UsM&V at PAE’s Portland Office

11/4/2015

62

What Metering Tells UsM&V at PAE’s Portland Office

What Metering Tells UsM&V at PAE’s Portland Office

11/4/2015

63

What Metering Tells UsM&V at PAE’s Portland Office

The Bullitt Center Gates Foundation HQ Stone 34

Financial ConsiderationsComparisons

52,000 sf

$32.5 M

$625/sf

Seattle, WALiving Building,

Net Zero

900,000 sf

$500 M

$556/sf

Seattle, WA

LEED Platinum

120,000 sf

$70.1 M

$584/sf

Seattle, WA

LEED Platinum

11/4/2015

64

Ruwan Jayaweera, PE, LEED [email protected]

What Would You Like to Know?

Interested in Sponsoring?

© 2015, New Buildings Institute

We are actively seeking sponsors for these sessions. Are you interested in promoting

your business while helping provide leading edge information on zero net energy?

Contact [email protected]

11/4/2015

65

Thank you for joining us!J. C

raig Vetner

Institute | LaJolla, CA

Photo: S

tephen Walker P

hotographyr

© 2015, New Buildings Institute

Slides will be available tomorrow on our website:newbuildings.org/demand-webinars

A survey will open as you exit the webinar, please help us make the best webinars possible by answering the survey. Your opportunity to enter your

AIA member number for credits is in the survey.