Zimanyi2010noAni Mitchell

Embed Size (px)

Citation preview

  • 8/8/2019 Zimanyi2010noAni Mitchell

    1/95

    First Results from the RHICBeam Energy Scan Program

    Jeffery T. MitchellBrookhaven National Laboratory

  • 8/8/2019 Zimanyi2010noAni Mitchell

    2/95

    Outline

    The QCD Phase Diagram

    The RHIC Beam Energy Scan Program

    The Matter Created at the top RHIC Energy

    Experimental Challenges at Low Energies

    Recent Results from the Beam Energy Scan

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10 2

  • 8/8/2019 Zimanyi2010noAni Mitchell

    3/95

    Phases of Nuclear Matter

    3

    The original goal of therelativistic heavy ion programwas to create matter at highenough temperature andpressure that nucleons and

    mesons would decouple intoquarks and gluons. Effectively,we strive to recreate theconditions immediately after theBig Bang.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    4/95

    The Phase Diagram of H2OThere are many similarities between the phase diagramsof H2O and QCD

    4

    First order phasetransition

    Critical Point

    Crossover

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    5/95

    A Schematic Phase Diagram of QCD

    SB(T) 2

    30(Nbosons 7/8 Nfermions)T

    4

    5

    There are many similarities between the phase diagramsof H2O and QCD

    First orderphasetransition

    Critical Point

    Crossover

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    6/95

    QCD Phase Transition

    6

    QuantumChromodynamics (QCD)predicts a strong increasein the energy density ata critical temperature of

    Tc~170 MeV.

    There is a phasetransition from hadronicto partonic matter(quarks, gluons) at a

    critical energy density of0~1 GeV/fm3

    Z. Fodor et al., PLB 568 (2002) 73.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    7/95

    But, there is much room forexperimental input

    M. Stephanov hep-lat/0701002

    Large sensitivityto model inputs(such as quarkmasses), latticesizes, and otherassumptions

    7

    Each black andgreen pointrepresents thecritical pointlocation from

    differentcalculations.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    8/95

    Search for the QCD Critical Point:Experimental Strategy

    By systematicallyvarying the RHIC beam

    energy, heavy ioncollisions will be ableto probe differentregions of the QCDphase diagram.

    8Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    9/95

    Simulated Collision Trajectories

    9

    Shown are locations

    on the phasediagram forcollisions atdifferent energiestaken at varioustimes after the

    collision occurs.

    The simulation isfrom Ultra-Relativistic QuantumMolecular Dynamics(UrQMD).

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    10/95

    How big is the target?

    10

    M.Asakawa et al.,PRL 101,122302(2008)

    From a hydrodynamicscalculation.

    For a given chemicalfreeze-out point, 3isentropic trajectories(s/nB=constant) areshown.

    The presence of thecritical point can deformthe trajectories describingthe evolution of theexpanding fireball in the(T,B) phase diagram.

    A large region can beaffected, so we do notneed to hit the criticalpoint precisely.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    11/95

    Energy Scan Results from the SPS

    11

    Discontinuities in the average K/ ratio (the horn) and the kaon spectraslope (the step) are observed.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    12/95

    Enter the Beam Energy Scan Program atthe Relativistic Heavy Ion Collider

    12Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    13/95

    The Relativistic Heavy Ion Collider (RHIC)

    13Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    f

  • 8/8/2019 Zimanyi2010noAni Mitchell

    14/95

    RHIC Specifications

    14Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    A llid i ll f b

  • 8/8/2019 Zimanyi2010noAni Mitchell

    15/95

    A collider is an excellent for a beamenergy scan

    The detector occupancy in acollider is much less dependenton beam energy than in a fixedtarget accelerator. The acceptanceis independent of beam energy.

    Fixed targetCollider

    15Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Th RHIC B E S P

  • 8/8/2019 Zimanyi2010noAni Mitchell

    16/95

    The RHIC Beam Energy Scan Program:Overview

    Species: Gold + Gold

    Collision Energies [sqrt(sNN)]:200 GeV, 130 GeV, 62.4 GeV, 39 GeV, 19.6 GeV,18 GeV (2011), 11 GeV (STAR only)9.2 GeV (short test run), 7.7 GeV

    Species: Copper + Copper

    Collision Energies [sqrt(sNN)]:200 GeV, 62.4 GeV, 22 GeV

    Species: Deuteron + Gold

    Collision Energies [sqrt(sNN)]:200 GeV

    Species: Proton + ProtonCollision Energies [sqrt(sNN)]:

    500 GeV, 200 GeV, 62.4 GeV

    Coming Soon:Uranium + Uranium

    16Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    17/95

    200 GeV Au+Au Event Displays

    A head-on collision produces hundreds of particle tracks inthe detector.

    17Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Wh i h i i i l ?

  • 8/8/2019 Zimanyi2010noAni Mitchell

    18/95

    What is the initial temperature?

    Hot matter emits thermal radiation, so thetemperature can be measured from theemission spectrum of thermal photons.

    18Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    19/95

    S f Ph

  • 8/8/2019 Zimanyi2010noAni Mitchell

    20/95

    Sources of Photons

    quark gluon

    g

    pQCD direct photons

    from initial hardscatteringof quarks andgluons

    g

    r

    Thermal photonsfromhadron gasafter

    hadronization

    g

    g

    Decay Photonsfrom hadrons(0, h, etc)

    background

    Thermal photons

    from hot quark gluonplasma

    20Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Di t Ph t S t (PHENIX)

  • 8/8/2019 Zimanyi2010noAni Mitchell

    21/95

    Direct Photon Spectra (PHENIX)

    pQCD consistent with p+pdata down to pT=1GeV/c

    Au+Au data lie above Ncoll-scaled p+p data for pT < 2.5GeV/c

    Fitting the excess data yields:

    TAuAu = 221 19stat 19syst MeV Lattice QCD predicts a phase

    transition to quark gluonplasma at Tc~ 170 MeV

    The initial temperature isabove the predicted criticaltemperature.

    exp + TAA scaled pp

    NLO pQCD (W. Vogelsang)Fit to pp

    A. Adare et al.,PRL accepted

    21Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Elli ti Fl

  • 8/8/2019 Zimanyi2010noAni Mitchell

    22/95

    Elliptic Flow

    v2>0: in-plane emission of particlesv2

  • 8/8/2019 Zimanyi2010noAni Mitchell

    23/95

    Elliptic Flow: Excitation Function

    There is atransition fromsqueeze-out

    flow to in-plane flow atAGS energies

    23Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    24/95

    Elliptic Flow Indicates that thematter behaves like a perfect fluid!

    STAR 200 GeV Au+Audata (black dots) withvarioushydrodynamicalcalculations overlayed.

    The system cannot bedescribed or simulatedunless the followingcondition is set:

    24Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    S li f Elli ti Fl

  • 8/8/2019 Zimanyi2010noAni Mitchell

    25/95

    Scaling of Elliptic Flow

    Phys. Rev. Lett.98, 162301

    (2007)

    Mesons

    Baryons

    Quark-Like Degrees of Freedomare Evident

    25Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    H d

  • 8/8/2019 Zimanyi2010noAni Mitchell

    26/95

    HadronSuppression

    26

    The medium isextremely opaque

    near away

    RAA(pT) d2

    NAA

    / dpTdhNbinary d

    2Npp / dpTdh

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    27/95

    Summary of RHIC 200 GeVAu+Au Collision Results

    The matter is very hot with a temperature well abovethe expected critical temperature for a phasetransition to a Quark-Gluon Plasma

    The matter behaves like a strongly interactingperfect fluid

    The matter is described by quark degrees of freedom

    The matter is very opaque

    27Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Triggering at Low Energy

  • 8/8/2019 Zimanyi2010noAni Mitchell

    28/95

    Triggering at Low EnergyThe problem:

    The placement of thetrigger detectors (BBCs)are not optimized for lowenergy running.They have a reducedacceptance, especially

    below RHIC energies of ~20 GeV.

    Fermi motion to therescue!

    At low energies, Fermimotion is enough tobring nucleons back intothe BBC acceptance.

    28Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Beam Quality at Low Energy

  • 8/8/2019 Zimanyi2010noAni Mitchell

    29/95

    Beam Quality at Low Energy

    29

    The problem:The quality of the

    RHIC beam tuningdegrades at lowerenergies. The beamposition is difficult tomonitor.

    Each point representsthe vertex coordinateof an eventreconstructed fromthe tracks in theSTAR TPC.

    Due to the lowerquality beam tune,some backgroundexists.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    30/95

    STAR 7 7 GeV Au+Au Event Displays

  • 8/8/2019 Zimanyi2010noAni Mitchell

    31/95

    STAR 7.7 GeV Au+Au Event Displays

    31

    Beam + Beam pipe collision

    Downstream collision

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    PHENIX 7 7 GeV Au+Au Event Displays

  • 8/8/2019 Zimanyi2010noAni Mitchell

    32/95

    32

    PHENIX 7.7 GeV Au+Au Event Displays

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    STAR Particle Identification:

  • 8/8/2019 Zimanyi2010noAni Mitchell

    33/95

    STAR Particle Identification:7.7 GeV Au+Au

    33

    Excellent Particle Identification Demonstrated

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    STAR 7 7 G V P i l Id ifi i

  • 8/8/2019 Zimanyi2010noAni Mitchell

    34/95

    STAR 7.7 GeV Particle Identification

    34Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    PHENIX 0 Yields

  • 8/8/2019 Zimanyi2010noAni Mitchell

    35/95

    PHENIX 0 Yields

    Enhanced pT reach

    (Run-10)

    Previous pT reach

    (Run-4)

    62 GeV

    39 GeV

    35Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    PHENIX Dilepton Expectations at 39 GeV

  • 8/8/2019 Zimanyi2010noAni Mitchell

    36/95

    PHENIX Dilepton Expectations at 39 GeV

    mee

    1/Nevtd

    N/dmee

    36

    How does the dilepton excess and modification at SPSevolve into the large low-mass excess at RHIC?

    200M simulated events in 20cm vertex

    If excess is the same at 39 GeVas 200, expect a 6 result

    Black: simulation withsame enhancement asat 200 GeVBlue: no enhancement

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    37/95

    Experimental Approaches to theBeam Energy Scan

    1. Search for the onset of deconfinement. Breakdown of the constituent quark number scaling of

    elliptic flow Disappearance of hadron suppression in central

    collisions

    Local parity violation

    2. Search for direct signals of the critical point and/or phasetransition.

    Fluctuation measurements Measurements of higher moments (kurtosis) Excitation functions

    37Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    38/95

    Searching for the Onset of

    Deconfinement

    38Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Charged Particle Multiplicity

  • 8/8/2019 Zimanyi2010noAni Mitchell

    39/95

    Charged Particle Multiplicity

    The dN/dh perparticipant pair

    at mid-rapidityin central heavyion collisionsincreases withln s from AGSto RHIC

    energies

    The sdependence isdifferent for pp

    and AAcollisions

    39Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    l l d ( )

  • 8/8/2019 Zimanyi2010noAni Mitchell

    40/95

    Multiplicity at 7.7 and 39 GeV (Raw)

    40Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Identified Particle Yields

  • 8/8/2019 Zimanyi2010noAni Mitchell

    41/95

    Identified Particle Yields

    Identified particle yields areconsistent with measurementsat the SPS.

    41

    Pions

    Protons

    Kaons

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Identified Particle Ratios

  • 8/8/2019 Zimanyi2010noAni Mitchell

    42/95

    Identified Particle Ratios

    pbar/p

  • 8/8/2019 Zimanyi2010noAni Mitchell

    43/95

    Exploring the Horn

    RHIC results so far are consistent with the SPS results

    43Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Directed Flow (v1)

  • 8/8/2019 Zimanyi2010noAni Mitchell

    44/95

    Directed Flow (v1)Directed flowdescribescollective

    sideways motion.

    Directed flow issensitive to theEquation of State.Expect non-linear

    behavior nearmid-rapidity neara 1st-order phasetransition..

    ybeam at 200 GeV = 5.4

    ybeam at 62 GeV = 4.2

    ybeam at 9 GeV = 2.3

    The 9.2 GeV data show a different trendcompared to the 200 and 62 GeV data. Results at7 GeV coming soon.

    44Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Elliptic Flow vs Beam Energy

  • 8/8/2019 Zimanyi2010noAni Mitchell

    45/95

    Elliptic Flow vs. Beam Energyand System Size

    45

    The scaling of elliptic flow persistsin 62.4 GeV Au+Au collisions. Dataat lower energies coming soon.Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Elliptic Flow at 39 GeV

  • 8/8/2019 Zimanyi2010noAni Mitchell

    46/95

    Elliptic Flow at 39 GeV

    46

    No surprises at these energies.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Elliptic Flow at 9 2 GeV

  • 8/8/2019 Zimanyi2010noAni Mitchell

    47/95

    Elliptic Flow at 9.2 GeV

    47Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Pion Interferometry

  • 8/8/2019 Zimanyi2010noAni Mitchell

    48/95

    Pion Interferometry

    48

    STAR 9.2 GeV: Phys. Rev. C81(2010) 024911.

    x

    adapted from

    Annu. Rev. Nucl. Part. Sci. 200555:357-402Detector

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Freeze-out Volume from Pion Interferometry

  • 8/8/2019 Zimanyi2010noAni Mitchell

    49/95

    Freeze out Volume from Pion InterferometryA freeze-out volumecan be extracted fromthe interferometryresults:

    Vfo = R2sideRlong

    A minimum in thisquantity exists at ~7GeV

    9 GeV results areconsistent with SPSresults.

    The particle emission lifetime is

    related to:

    t Rout/RsideAn increase is expected nearthe critical point. This is notobserved.

    49Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    50/95

    Local Parity Violation

  • 8/8/2019 Zimanyi2010noAni Mitchell

    51/95

    Local Parity Violation

    Under a strong magnetic field,

    when the system isdeconfined and chiralsymmetry is restored, localfluctuations may lead to parityviolation.

    Experimentally, look forseparation of the charges inhigh energy nuclear collisions.

    Searching for thedisappearance of this effect

    can signal the location of thephase boundary.

    D.E. Kharzeev et al., NPA 803 (2008) 227.K. Fukushima et al., PRD 78 (2008) 074033.

    51Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Local Parity Violation Results

  • 8/8/2019 Zimanyi2010noAni Mitchell

    52/95

    Local Parity Violation Results

    52

    The signal is consistent with local parity violation in 200 GeV and62.4 GeV Au+Au collisions. Lower energy results are coming soon.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    The Mach cone feat re

  • 8/8/2019 Zimanyi2010noAni Mitchell

    53/95

    The Mach cone feature

    STAR : Phys. Rev. Lett. 102, 052302 (2009)

    QM09 : Teiji Kunihiro

    From a model withrelativistic dissipativehydrodynamics couplingdensity fluctuations tothermal energy. Thermallyinduced density fluctuationsand sound modes getsuppressed at the criticalpoint. The disappearance ofthe mach cone featurecould be a signature of thecritical point.

    53

    PHENIX arXiv:0801.4545

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    The Ridge Feature

  • 8/8/2019 Zimanyi2010noAni Mitchell

    54/95

    The Ridge Feature

    There is a ridge feature that

    extends in pseudorapidity. It persistsat 62 GeV.

    54Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    55/95

    Searching for Signals of the

    Critical Point and PhaseTransition

    55Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Antiproton/Proton Ratio vs. pT

  • 8/8/2019 Zimanyi2010noAni Mitchell

    56/95

    Antiproton/Proton Ratio vs. pT

    Fitting Procedure :y = a (mT - m) + b

    Observable proposed as a signature offocusing near the critical point.No large drop in ratio observedfor intermediate p

    T

    range

    Phys. Rev. C73, 044910 (2006)

    Phys.Rev. C78, 034918 (2008)

    STAR : PLB 655, 104 (2007)PRL 97, 152301 (2006) STAR

    56Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Divergent Quantities at the Critical Point

  • 8/8/2019 Zimanyi2010noAni Mitchell

    57/95

    57

    Divergent Quantities at the Critical PointNear the critical point, several properties of a system diverge. The rateof the divergence can be described by a set of critical exponents. For

    systems in the same universality class, all critical exponent valuesshould be identical.

    The critical exponent for compressibility, g:g )(

    C

    cT

    T

    TTk

    The critical exponent for heat capacity, a:g )(0

    C

    c

    T

    T

    TTT

    kk a )(

    C

    cV

    TTTC

    The critical exponent for correlation functions, h: )2()(h dRRC

    (d=3)

    g

    )(0

    C

    c

    T

    T

    T

    TT

    k

    k n

    )( C

    c

    T

    TT The critical exponent for correlation length, n:

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Susceptibilities at the Critical Point

  • 8/8/2019 Zimanyi2010noAni Mitchell

    58/95

    58

    pConsider quarksusceptibility, cq at thecritical point.

    cq = = n(T,m)/m

    This is related to theisothermal compressibility:

    kT = cq(T,m)/n2(T,m)

    In a continuous phasetransition, kT diverges at

    the critical point

    B.-J. Schaefer and J. Wambach, Phys. Rev. D75

    (2007) 085015.

    g )(C

    cT

    T

    TTk

    TBNBD

    N kV

    Tkk

    mm

    m 1

    2

    Grand Canonical Ensemble

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Multiplicity Distributions (PHENIX)

  • 8/8/2019 Zimanyi2010noAni Mitchell

    59/95

    59

    Multiplicity Distributions (PHENIX)200 GeV Au+Au

    62.4 GeV Au+Au

    200 GeV Cu+Cu 62.4 GeV Cu+Cu

    22.5 GeV Cu+CuRed lines

    represent the NBDfits. The

    distributions havebeen normalizedto the mean and

    scaled forvisualization.Distributionsmeasured for

    0.2

  • 8/8/2019 Zimanyi2010noAni Mitchell

    60/95

    60

    Multiplicity Fluctuation ResultsNear the critical point, the multiplicity fluctuations should exceed thesuperposition model expectation No significant evidence for criticalbehavior is observed. Low energy results coming soon.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Fluctuations Excitation Function

  • 8/8/2019 Zimanyi2010noAni Mitchell

    61/95

    pT

    a

    )(C

    c

    V

    T

    TTC

    Fluctuations in mean pT arerelated to the criticalexponent a:

    No increase in fluctuations have beenobserved. Results at 7 and 39 GeV are coming

    soon.

    SpT = (event-by-event pTvariance) [(inclusive pT

    variance)/(meanmultiplicity per event)],normalized by theinclusive mean pT.Random = 0.0.

    SpT is the mean of thecovariance of all particlepairs in an eventnormalized by theinclusive mean pT.

    SpT can be related to theinverse of the heatcapacity.

    61Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Like-Sign Pair Azimuthal Correlations

  • 8/8/2019 Zimanyi2010noAni Mitchell

    62/95

    62

    g

    62 GeVAu+Au,0-5%Central

    200 GeVAu+Au,0-5%Central

    PHENIXPreliminary PHENIXPreliminary

    0.2 < pT,1 < 0.4 GeV/c, 0.2 < pT,2 < 0.4 GeV/c, |Dh|

  • 8/8/2019 Zimanyi2010noAni Mitchell

    63/95

    Searching for the Critical Point with

  • 8/8/2019 Zimanyi2010noAni Mitchell

    64/95

    64

    gHBT Qinv Correlations

    T. Csorgo,S. Hegyi,T. Novk,W.A.Zajc,

    Acta Phys. Pol. B36 (2005) 329-337

    a = Levy index of stability = ha = 2 for Gaussian sourcesa = 1 for Lorentzian sources

    This technique proposes to searchfor variations in the exponent h. The exponent h can be extracted byfitting HBT Qinv correlations with a

    Levy function:C(Qinv) = l exp( -|Rq/hc|a)

    Measure a as a function of collisionenergy and look for a change fromGaussian-like sources to a sourcecorresponding to the expectationfrom the universality class of QCD.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Fluctuations of Particle Ratios

  • 8/8/2019 Zimanyi2010noAni Mitchell

    65/95

    65

    K/

    p/

    arXiv: 0901.1795

    Results consistent with previous NA49measurements.

    The event-by-event fluctuations of thekaon/pion ratio are expected toincrease at the critical point.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Measuring skewness or kurtosis

  • 8/8/2019 Zimanyi2010noAni Mitchell

    66/95

    g

    Skewness describes the asymmetry of the distribution Kurtosis describes the peakness of the distribution

    For a Gaussian distribution, skewness and kurtosis are both zero. These measures are ideal for measuring non-Gaussian fluctuations.

    66Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Kurtosis of proton/antiproton ratios

  • 8/8/2019 Zimanyi2010noAni Mitchell

    67/95

    67

    STAR: PRL 105(2010) 022302,aXiv:1004.4959

    No large non-Gaussian fluctuations seen.Lower energy results coming soon.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Summary and Outlook

  • 8/8/2019 Zimanyi2010noAni Mitchell

    68/95

    y At the top RHIC energies, the created matter is a hot, opaque, stronglyinteracting perfect fluid described by quark degrees of freedom.

    The location of the phase transition and QCD critical point remains anopen question.

    RHIC has embarked on an beam energy scan program to search for theQCD critical point.

    In 2010, RHIC executed a very successful run covering beam energies of62.4, 39, 11, and 7.7 GeV.

    First RHIC low energy results are consistent with measurements atsimilar energies from the SPS. So far, no clear signs of the critical point.

    RHIC plans to run at 18 GeV in the upcoming run that will start inJanuary 2011.

    Results have only just started to appear. We are looking forward to manynew results in the coming months!

    68Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    69/95

    Auxiliary Slides

    69Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Statistical Models: Estimating the Freeze-out

  • 8/8/2019 Zimanyi2010noAni Mitchell

    70/95

    Temperature

    AuAu - s=130 GeV

    Minimum ofc2 for: T=1665 MeV mB=3811 MeV

    A. Andronic et al., Nucl. Phys. A772 (2006) 167.

    Basic assumption: System is described by a grand canonical ensemble ofnon-interacting fermions and bosons in thermal and chemical equilbrium

    70Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Statistical Model Fits

  • 8/8/2019 Zimanyi2010noAni Mitchell

    71/95

    neutron star

    Baryonic Potential mB [MeV]

    early universe

    ChemicalTemperatureTch

    [MeV]

    0

    200

    250

    150

    100

    50

    0 200 400 600 800 1000 1200

    AGS

    SIS

    SPS

    RHIC

    quark-gluon plasma

    hadrongas

    deconfinementchiral restauration

    LatticeQCD

    atomic

    nuclei

    For s > 10 GeV , chemical freeze-out very close to phase boundary

    Extracted T & B values

    71Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    72/95

    Statistical Model Results

    Results from differentbeam energiesAnalysis of particle yieldswith statistical models

    Freeze-out points reach QGPphase boundary at top SPSenergies

    72Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Direct Photons: Comparisons to TheoryH d d i l d l

  • 8/8/2019 Zimanyi2010noAni Mitchell

    73/95

    Hydrodynamical models arecompared with the data

    D.dEnterria &D.Peressounko

    T=590MeV, t0=0.15fm/cS. Rasanen et al.

    T=580MeV, t0=0.17fm/c

    D. K. Srivastava

    T=450-600MeV, t0

    =0.2fm/c

    S. Turbide et al.

    T=370MeV, t0=0.33fm/c

    J. Alam et al.

    T=300MeV, t0=0.5fm/c

    F.M. Liu et al.

    T=370MeV, t0=0.6 fm/c

    Hydrodynamical modelsagree with the data within afactor of ~2

    A.Adare et al.arXiv:0912.0244

    73Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Temperature fit summary

  • 8/8/2019 Zimanyi2010noAni Mitchell

    74/95

    p y

    Significant yield of the exponential component (excess over the scaledp+p)

    The inverse slope TAuAu = 2211919 MeV (>Tc ~ 170 MeV) p+p fit funciton: App(1+pt

    2/b)-n

    If power-law fit is used for the p+p spectrum, TAuAu = 24021 MeV

    Lattice QCD predicts a phase transition to quark gluon plasma atTc ~ 170 MeV

    74Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Direct Photons: Initial temperature

  • 8/8/2019 Zimanyi2010noAni Mitchell

    75/95

    p

    From data: T in i > TAuAu ~ 220 MeVFrom models: T in i = 300 to 600 MeV for t0 = 0.15 to 0.6 fm/cLattice QCD predicts a phase transition to quark gluon plasma at Tc ~170 MeV

    TC from Lattice QCD ~ 170 MeVTAuAu(fit) ~ 220 MeV

    A.Adare et al.arXiv:0912.0244

    75Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    PHENIX DetectorCentral Arm Tracking

  • 8/8/2019 Zimanyi2010noAni Mitchell

    76/95

    Central Arm Tracking

    Drift Chamber

    Pad Chambers

    Time Expansion Chamb.

    Muon Arm Tracking

    Muon Tracker

    Calorimetry

    PbGl

    PbSc

    MPC

    Particle Id

    Muon IdentifierRICH, HBD

    TOF E & W

    Aerogel

    TEC

    Global Detectors

    BBC

    ZDC/SMD Local Polarim.

    Forward Hadron Calo.

    RXNP

    DAQ and Trigger System

    Online Calib. & Production

    VTXReplaces HBDMuon Trigger:

    mTr FEERPC station 3

    76Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Elliptic Flow: Excitation Function

  • 8/8/2019 Zimanyi2010noAni Mitchell

    77/95

    p

    77

    There is atransition fromsqueeze-out

    flow to in-plane flowbetween AGSand SPSenergies

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    78/95

    78Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    PHENIX 39 GeV Au+Au Event Displays

  • 8/8/2019 Zimanyi2010noAni Mitchell

    79/95

    79Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    STAR 9.2 GeV Au+Au Event Displays

  • 8/8/2019 Zimanyi2010noAni Mitchell

    80/95

    80Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Multiplicity Measurements!

  • 8/8/2019 Zimanyi2010noAni Mitchell

    81/95

    central

    central

    peripheralperipheral

    energy s81Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    STAR 39 GeV Particle Identification

  • 8/8/2019 Zimanyi2010noAni Mitchell

    82/95

    82Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    J/: analyzed 25% of 62 GeV

  • 8/8/2019 Zimanyi2010noAni Mitchell

    83/95

    J/ ystatistics

    per semi cen

    83 Recombination

    (e.g. Rapp et al.)J/ yield at 200 GeV isdominantly fromrecombination

    Predict suppression

    greater at 62 GeVJ/ yield down by 1/3Recombination down

    1/10

    600 M min. bias events 500 J/ measure J/ suppression

    Key test of recombination!

    83Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    CLAN ModelA Giovannini et al Z Phys C30 (1986) 391

  • 8/8/2019 Zimanyi2010noAni Mitchell

    84/95

    84

    The CLAN model was developed toattempt to explain the reason thatp+p multiplicities are described by

    NBD rather than Poissondistributions.

    Hadron production is modeled asindependent emission of a numberof hadron clusters, Nc, each with amean number of hadrons, nc.

    These parameters can be relatedto the NBD parameters:

    Nc = kNBD log(1 + ch/kNBD) and = (ch/kNBD)/log(1 +ch/kNBD).

    A+A collsions exhibit weakclustering characteristics,independent of collision energy.

    A. Giovannini et al., Z. Phys. C30 (1986) 391.

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Enhancement of low pT particles?

  • 8/8/2019 Zimanyi2010noAni Mitchell

    85/95

    85Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Velocity of Sound in the Medium

  • 8/8/2019 Zimanyi2010noAni Mitchell

    86/95

    86Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    87/95

    87Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Quark Number Susceptibilities

  • 8/8/2019 Zimanyi2010noAni Mitchell

    88/95

    Q p

    88Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    STAR fluctuations

  • 8/8/2019 Zimanyi2010noAni Mitchell

    89/95

    Jeffery T. Mitchell - Zimnyi 2010 Winter School - 12/2/10 89

  • 8/8/2019 Zimanyi2010noAni Mitchell

    90/95

    Fluctuationsa

    )(C

    c

    V

    T

    TTC

  • 8/8/2019 Zimanyi2010noAni Mitchell

    91/95

    Jeffery T. Mitchell - Zimnyi 2010 Winter School - 12/2/10 91

    Above Npart~30, the data can be described by a power law in Npart,independent of the pT range down to 0.2

  • 8/8/2019 Zimanyi2010noAni Mitchell

    92/95

    92

    PHENIX PRELIMINARY

    Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

  • 8/8/2019 Zimanyi2010noAni Mitchell

    93/95

  • 8/8/2019 Zimanyi2010noAni Mitchell

    94/95

    94Jeffery T. Mitchell - Zimnyi Winter School / Ortvay Colloquium - 12/2/10

    Mach Cone at the SPS

  • 8/8/2019 Zimanyi2010noAni Mitchell

    95/95

    Mach Cone at the SPS

    f = -900

    Wave Energy at Circle BoundaryPb-Au 17.3 GeV 0-5%

    CERESPreliminary