Ztransform

Embed Size (px)

Citation preview

  • 8/2/2019 Ztransform

    1/14

    The Z-transform

    1

    M. Sami Fadali

    Professor of Electrical Engineering

    UNR

    Z-transform Definition

    Definition 2.1 Given the causal sequence{u0, u1, u2, ... , uk, ... } then its z-transform is

    defined as

    2

    operatordelaytime

    ...)(

    1

    0

    2

    2

    1

    10

    =

    =

    +++++=

    =

    z

    zu

    zuzuzuuzU

    k

    k

    k

    k

    k L

    Example

    Obtain the z-transform of the sequence

    { } { }0,0,0,4,0,2,3,1)( =ku

    3

    Solution Definition 2.1 gives

    U(z) = 1+3z1 +2z2 + 4z4

    Z-transform Definition

    Definition 2.2 Laplace transform the impulsetrain representation of sampled signal

    k kTtuTtuTtututu +++++=

    ...)(...)2()()()( 210*

    4

    sT

    k

    k

    k

    k

    skT

    k

    skT

    k

    sT

    k

    k

    ezzu

    eu

    eueuuU*(s)

    tu

    ==

    =

    ++++=

    =

    =

    =

    =

    ,0

    0

    10

    0

    LL

  • 8/2/2019 Ztransform

    2/14

    Identities Used Repeatedly

    1,1

    1 1

    0

    =

    +

    = a

    a

    aa

    nn

    k

    k

    5

    1,1

    1

    0

    =

    =

    =

    =

    14

    Y z i j z

    i z j z F z F z

    j i

    ji

    i j

    ji

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( )=

    =

    =

    +

    =

    =

    =

    =

    f f

    f f

    1 2

    00

    1 2

    00

    1 2

    Example

    Find the z-transform of the convolution oftwo sampled step sequences.

    Solution:By the convolution theorem,

    15

    z- rans orm = pro uc o e z- rans orms otwo step sequences.

    F zz

    z

    z

    z

    z

    z

    ( ) =

    =

    1 1

    1

    2

    Multiplication by Exponential

    Proof

    { } )()(f zaFka k =Z

    16

    ( )

    LHS a k z

    k a z

    F a z

    k

    k

    k

    =

    =

    =

    =

    =

    f

    f

    ( )

    ( )

    ( )

    0

    0

  • 8/2/2019 Ztransform

    5/14

    Example

    Find the z-transform of the exponentialsequence

    f( ) =k e kkT = , , , , ...0 1 2 1 1

    17

    ( ){ }( ) TT

    kT

    ez

    z

    zeke

    =

    =

    11

    1)(fZ

    ( )f( ) =k e kTk =1 0 1 2, , , ,...

    - z z=

    (same as earlier example ak )

    Complex Differentiation

    Proof(Induction)(i) Establish validity for m = 1.

    { } )()(f zFzd

    dzkk

    m

    m

    =Z

    18

    m m .For m = 1, we have

    { }

    )()(f)(f

    )(f)(f

    00

    0

    zFzd

    dzzk

    zd

    dzz

    zd

    dzk

    zkkkk

    k

    k

    k

    k

    k

    k

    =

    =

    =

    =

    =

    =

    =

    Z

    Proof (Cont.) For any m f fm

    mk k k k ( ) ( ), , , , ...= = 0 1 2

    { } )(f)(f0

    d

    zkkkk

    k

    k

    k

    mm

    =

    =

    =

    Z

    19

    )()(f0

    0

    zFzd

    dzzk

    zd

    dz

    zd

    m

    k

    k

    m

    k

    m

    =

    =

    =

    =

    Substitute for Fm(z) { } )()(f1

    zFzd

    dzkk

    m

    m

    +

    =Z

    ExampleFind the z-transform of the sampled ramp sequence

    f(k) = k, k= 0, 1, 2,

    Solution: z-transform of a sampled step F zz

    z( ) =

    1

    20

    r te f(k) as: f(k) = k 1,k= 0, 1, 2,

    Apply the complex differentiation property

    { } ( )

    ( )

    ( ) ( )22 11

    1

    11 =

    =

    = z

    z

    z

    zz

    zz

    z

    zd

    d

    zkZ

  • 8/2/2019 Ztransform

    6/14

    Inversion of the z-Transform

    1. Long division: gives as many termsof series as desired.

    21

    .look-up: similar to Laplace transforminversion.

    Long Division

    (i) Using long division, expand F(z) as a series

    F z f f z f z

    z

    t i

    i

    ik

    ( ) ...= + + +

    =

    0 1

    1

    22

    k=0

    (ii) Write the inverse transform as the sequence

    { }f f fi0 1, ,..., ,...

    ExampleF z

    z

    z z( )

    . .=

    +

    + +

    1

    0 2 012

    Solution:(i) Long Division ......26.08.0

    1.02.0

    11.02.0

    321

    1-

    2++

    ++

    +++

    zzz

    zz

    zzz

    Inverse z-transform

    23

    ...26.0

    08.016.08.0

    10.08.0

    1

    21-

    1-

    ++

    z

    zz

    z

    321

    )26.0(8.00)(

    +++= zzzzFt

    (ii) Inverse Transformation { } { }fk = 0 108 0 26, , . , . ,...

    Partial Fraction Expansion

    (i) Find the partial fraction expansion of F(z)/z.

    (ii) Obtain the inverse transform f(k) using the

    z-transform tables.

    24

    Three types of z-domain functions F(z):

    1. F(z) with simple (non-repeated) real poles.

    2. F(z) with complex conjugate & real poles.

    3. F(z) with repeated poles.

  • 8/2/2019 Ztransform

    7/14

    I: Simple Real RootsResidue of a complex function F(z) at a simple polezi

    ]A z z F zi i z zi= ( ) ( )

    Residue = partial fraction coefficient of the ith

    25

    term o t e expans on

    ( )F zA

    z z

    i

    ii

    n

    ==

    1

    Example

    Obtain the inverse z-transform of the function

    F zz

    z z( )

    . .=

    +

    + +

    1

    0 3 0 022

    Solution:Solve using two different methods.

    26

    (i) Partial Fraction Expansion (dividing by z)

    F z

    z

    z

    z z z

    A

    z

    B

    z

    C

    z

    ( )

    ( . . )

    . .

    =+

    + +

    = ++

    ++

    1

    0 3 0 02

    01 0 2

    2

    Example (cont.)

    A zF z

    zF

    B zF z

    z

    z

    z

    =

    = = =

    = +

    =

    =

    =

    =

    ( )( )

    .

    ( . )( ) .

    ( . )( . ).

    0

    0 1

    01

    0 0250

    011 01

    01 0190

    27

    C zz

    z z= +

    =

    =

    =

    ( . )( ) .

    ( . )( . ).0 20 2

    1 0 2

    0 2 0140

    Partial fraction expansion

    F zz

    z

    z

    z

    z

    z( ) . .= + + +

    50 90

    01

    40

    0 2

    Example (cont.)

    (ii) Table Lookup

    f kk k

    k

    k k

    ( )( ) ( . ) ( . ) ,

    ,=

    +