Transcript
Page 1: Analisis Pondasi Mesin (Kedalaman 1.8 m)

Data Sondir

S1 S2 S3

0.2 20 0.2 10 0.2 100.4 10 0.4 6 0.4 80.6 10 0.6 6 0.6 80.8 5 0.8 5 0.8 121 5 1 5 1 12

1.2 5 1.2 5 1.2 101.4 5 1.4 5 1.4 101.6 8 1.6 10 1.6 101.8 8 1.8 10 1.8 182 10 2 8 2 25

2.2 8 2.2 12 2.2 222.4 25 2.4 10 2.4 252.6 35 2.6 15 2.6 202.8 40 2.8 15 2.8 173 47 3 19 3 20

3.2 10 3.2 15 3.2 153.4 15 3.4 20 3.4 103.6 35 3.6 25 3.6 103.8 40 3.8 40 3.8 104 45 4 40 4 10

4.2 40 4.2 58 4.2 204.4 38 4.4 45 4.4 204.6 38 4.6 37 4.6 204.8 40 4.8 43 4.8 205 40 5 37 5 22

5.2 70 5.2 54 5.2 605.4 85 5.4 60 5.4 455.6 90 5.6 60 5.6 505.8 90 5.8 120 5.8 426 90 6 112 6 57

6.2 80 6.2 100 6.2 506.4 60 6.4 87 6.4 406.6 50 6.6 80 6.6 426.8 70 6.8 85 6.8 377 102 7 90 7 39

7.2 128 7.2 100 7.2 457.4 160 7.4 100 7.4 387.6 215 7.6 110 7.6 40

7.8 120 7.8 37

Kedalaman (m)

Konus (kg/cm2)

Kedalaman (m)

Konus (kg/cm2)

Kedalaman (m)

Konus (kg/cm2)

Page 2: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8 130 8 488.2 145 8.2 508.4 150 8.4 708.6 167 8.6 1098.8 215 8.8 130

9 215

Page 3: Analisis Pondasi Mesin (Kedalaman 1.8 m)

S4 S5

0.2 10 0.2 50.4 3 0.4 50.6 5 0.6 20.8 5 0.8 51 8 1 5

1.2 7 1.2 51.4 8 1.4 101.6 7 1.6 81.8 5 1.8 52 5 2 5

2.2 7 2.2 82.4 20 2.4 202.6 25 2.6 452.8 60 2.8 503 5 3 130

3.2 105 3.2 1703.4 62 3.4 2153.6 403.8 304 20

4.2 234.4 304.6 324.8 255 30

5.2 405.4 405.6 405.8 356 33

6.2 656.4 806.6 576.8 507 40

7.2 457.4 477.6 507.8 52

Kedalaman (m)

Konus (kg/cm2)

Kedalaman (m)

Konus (kg/cm2)

Page 4: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8 608.2 1008.4 1078.6 1508.8 1809 215

Page 5: Analisis Pondasi Mesin (Kedalaman 1.8 m)

STRATIFIKASI DAN PARAMETER TANAH

Water Table :

Soil Sample (m)Log Symbol

General Soil Description

1.50 ~ 1.95 6 12

3.00 ~ 3.45 7 34

4.50 ~ 4.95 9 56

6.00 ~ 6.45 23 78

7.50 ~ 7.95 26 910

9.00 ~ 9.45 32 11

10.50 ~ 10.95 Pasir campur gravel,padat, abu-abu 41

12.00 ~ 12.45 Pasir campur gravel,padat, abu-abu 45

13.50 ~ 13.73 50

15.00 ~ 15.45 55

16.50 ~ 16.75 50

18.00 ~ 18.36 50

19.50 ~ 19.85 50

21.00 ~ 21.45 58

22.50 ~ 22.95 Pasir, padat, hitam 43

24.00 ~ 24.45 Pasir, padat, hitam 47

25.50 ~ 25.95 Pasir, padat, hitam 49

27.00 ~ 27.45 Pasir, padat, hitam 46

28.50 ~ 28.95 55

30.00 ~ 30.45 55

Nilai NsptLapisan Tanah

Lanau kelempungan, konsistensi sedang, abu-abu kecoklatan

Lanau kelempungan, konsistensi sedang, abu-abu kecoklatan

Lanau kelempungan, teguh, abu-abu kecoklatan

Lanau kelempungan, sangat teguh, abu-abu kehitaman

Lanau kelempungan, sangat teguh, abu-abu kehitaman

Lanau kelempungan, keras, abu kehitaman

Pasir, sangat padat, abu-abu kehitaman

Pasir campur gravel, sangat padat, hitam dan coklat

Pasir campur gravel, sangat padat, hitam dan coklat

Pasir campur gravel, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Pasir, sangat padat, hitam dan coklat

Page 6: Analisis Pondasi Mesin (Kedalaman 1.8 m)

30.00 ~ 30.45 55Pasir, sangat padat, hitam dan coklat

Page 7: Analisis Pondasi Mesin (Kedalaman 1.8 m)

STRATIFIKASI DAN PARAMETER TANAH

Water Table : 5.5 m

Kedalaman (m) Jenis Tanahσ σ'

Ο†cu

0.00 ~ 0.70 Timbunan 1.00 1.38 1.52 0.97 0.48 0 0.710.70 ~ 3.60 Lanau 6.00 1.54 1.69 5.43 3.20 0 0.713.60 ~ 5.50 Lanau 9.00 1.58 1.74 8.44 6.93 0 2.865.50 ~ 8.50 Lanau 23.00 1.63 1.80 13.34 11.14 0 5.00

8.50 ~ 9.70 Lanau 32.00 1.66 1.82 15.33 11.44 0 15.369.70 ~ 12.50 Pasir 41.00 1.75 1.93 20.24 13.83 45 0

12.50 ~ 15.00 Pasir 50.00 1.83 2.02 24.82 15.76 47.5 015.00 ~ 18.65 Pasir 50.00 1.85 2.04 31.58 19.04 47.5 018.65 ~ 22.00 Pasir 50.00 1.94 2.13 38.07 22.00 47.5 022.00 ~ 27.50 Pasir 43.00 1.96 2.15 48.83 27.49 45.5 027.45 ~ 30.45 Pasir 46.00 1.97 2.17 54.75 30.14 46 0

Nilai Nspt

Ο’n Ο’sat

(t/m3) (t/m3) (t/m2) (t/m2) (kg/cm2)

Tabel Hubungan Shear Strain dan G/Su

Tabel Korelasi N Value Dengan Kuat Geser Tanah

Page 8: Analisis Pondasi Mesin (Kedalaman 1.8 m)

STRATIFIKASI DAN PARAMETER TANAH

E Su

7.60 0.35 0.7145.60 0.34 0.7168.40 0.33 2.86

174.80 0.31 5.00

243.20 0.29 15.36311.60 0.27 1.00380.00 0.25 1.09380.00 0.25 1.09380.00 0.25 1.09326.80 0.26 1.02349.60 0.26 1.04

Poisson's Ratio (Ξ½)

Shear Strain(ton/m2) (kg/cm2)

Tabel Hubungan Shear Strain dan G/Su

Page 9: Analisis Pondasi Mesin (Kedalaman 1.8 m)

BAB IIIANALISIS PONDASI DINAMIS

STRATIFIKASI DAN PARAMETER TANAH

Data Titik Sondir 5

Jenis Tanah Οƒ Οƒ' Ο† cu E Su

1 0.20 Timbunan 5.00 1.36 1.50 0.27 0.14 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42862 0.40 Timbunan 5.00 1.37 1.51 0.55 0.55 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42863 0.60 Timbunan 2.00 1.37 1.51 0.82 0.82 0 0.14 4.00 0.35 0.14 0.001 1600 0.035 228.57144 0.80 Lanau 5.00 1.40 1.54 1.10 1.10 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42865 1.00 Lanau 5.00 1.43 1.57 1.39 1.39 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42866 1.20 Lanau 5.00 1.46 1.61 1.68 1.68 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.42867 1.40 Lanau 10.00 1.47 1.62 1.97 1.97 0 0.71 20.00 0.35 0.71 0.001 1600 0.035 1142.8578 1.60 Lanau 8.00 1.49 1.64 2.27 2.27 0 0.57 16.00 0.35 0.57 0.001 1600 0.035 914.28579 1.80 Lanau 5.00 1.50 1.65 2.57 2.57 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.4286

10 2.00 Lanau 5.00 1.57 1.73 2.88 2.88 0 0.36 10.00 0.35 0.36 0.001 1600 0.035 571.428611 2.20 Lanau 8.00 1.68 1.85 3.22 3.22 0 0.57 16.00 0.35 0.57 0.001 1600 0.035 914.285712 2.4 Lanau 20 1.68 1.85 3.56 3.56 0 1.43 40.00 0.35 1.43 0.002 1600 0.035 2285.71413 2.6 Lanau 45 1.71 1.88 3.90 3.90 0 3.21 90.00 0.35 3.21 0.003 1600 0.035 5142.85714 2.8 Lanau 50 1.73 1.90 4.24 4.24 0 3.57 100.00 0.34 3.57 0.003 1500 0.035 5357.14315 3 Lanau 130 1.77 1.95 4.60 4.60 0 9.29 260.00 0.33 9.29 0.006 1300 0.035 12071.4316 3.2 Lanau 170 1.78 1.958 4.95 4.95 0 12.14286 340 0.33 12.14286 0.006 1300 0.035 15785.7117 3.4 Lanau 215 1.78 1.958 5.31 5.31 0 15.35714 430 0.25 15.35714 0.006 1300 0.035 19964.29

Lapisan Tanah

Kedalaman (m)

qc Ο’n Ο’sat Poisson's Ratio (Ξ½)

Shear Strain Dumping

Ratio

Shear Modulus(kg/cm2) (t/m3) (t/m3) (t/m2) (t/m2) (kg/cm2) (ton/m2) (kg/cm2)

𝐺/𝑆𝑒

Page 10: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 11: Analisis Pondasi Mesin (Kedalaman 1.8 m)

TR-51ECNC TAPPING CENTER SPECIFICATION

Page 12: Analisis Pondasi Mesin (Kedalaman 1.8 m)

SPECIFICATION

A. Trial Dimensi Pondasi1. Dimensi "Badan" Pondasi

Panjang : 98 cm

Lebar : 39 cm

Tinggi : 110 cm

2. Dimensi "Kaki" Pondasi

Panjang : 109 cmLebar : 328 cmTinggi : 58 cm

3. Kontrol Berat Pondasi

Berat Badan = 1009.008 KgBerat Kaki = 4976.6784 KgBerat Total = 5985.6864 Kg

Berat Mesin = 42300 kg

Kontrol : Berat Pondasi > 3 x Berat Mesin

Page 13: Analisis Pondasi Mesin (Kedalaman 1.8 m)

5985.6864 >0.142

Page 14: Analisis Pondasi Mesin (Kedalaman 1.8 m)

B. Perhitungan Pondasi Statis

1. Peritungan Daya Dukung (Metode Terzaghi)0.98 m

0.39 m Pondasi diletakan pada kedalaman 2.4 m

1.1 m Maka, parameter tanahnya didapat :

Ο†

1.09 m 03.28 m0.58 m

Rumus Daya Dukung Tanah Metode Terzaghi :

qu = 1.3 C. Nc + q. Nq + 0.4 Ξ³m . B. NΞ³

BJ Beton = 2400 qu = DD =

Kontrol :

Berat Pondasi > 3 x Berat Mesin

Kg/m3

Page 15: Analisis Pondasi Mesin (Kedalaman 1.8 m)

423000.142 Kali Berat Mesin Cek

Page 16: Analisis Pondasi Mesin (Kedalaman 1.8 m)

B. Perhitungan Pondasi Statis

1. Peritungan Daya Dukung (Metode Terzaghi)

Pondasi diletakan pada kedalaman 2.4 m

Maka, parameter tanahnya didapat :

cNc Nq

1.43 1.68 1.85 5.70 1.00 0.00

Rumus Daya Dukung Tanah Metode Terzaghi :

qu = 1.3 C. Nc + q. Nq + 0.4 Ξ³m . B. NΞ³

3890.0013907.53 ton

DD > Berat Mesin + Pondasi13907.53 > 48.28569 OK!!

Ο’n Ο’satNΟ’

kg/cm2 kg/m3 kg/m3

t/m2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

(t/m2

)

(m)

Page 17: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 18: Analisis Pondasi Mesin (Kedalaman 1.8 m)

C. Resume1. Parameter Tanah dan Pondasi 3. Data Peralatan Mesin

Daya Dukung Tanah 3890.00 Weight of Table 250

Modulus Geser (G) 898990.00 Weight of Tools 3

Internal Damping Ratio 0.049 Weight of Machines 423000.39 Total Weight 42300

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.4

2. Data Pondasi 4. Data Mesin

"Badan Pondasi" Kecepatan blower 3890Panjang (P) 0.98 m Kecepatan motor 1589Lebar (l) 0.39 m Unbalanced Force 0.089

Tinggi (t) 1.1 m"Kaki Pondasi"

Panjang (P) 1.09 mLebar (l) 3.28 mTinggi (t) 0.58 m

t/m2

t/m2

Poisson's Ratio (Ξ½)t/m3

t/m3

Page 19: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3. Data Peralatan Mesin

kg

kg

kgkg

4. Data Mesin

rpmrpmton

Page 20: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3.245 kN 1.000 tm0.325 ton

0.261 tm0.847 kN0.085 ton

3. Geometri Pondasi 4. Geometri Mesin

B = 1.55 m0.39 m L = 2.52 m0.98 m H = 2.8 m1.1 m

3.28 m1.09 m0.58 m

h = 1.68 m

5. Spek Mesin

Kecepatan Spindle : 3890 rpmKecepatan Tapping : 1589 rpm

Berat Total Mesin 42.3 ton

6. Parameter Tanah

Daya Dukung Tanah 3890.00

Modulus Geser (G) ###Damping Ratio 0.05

0.39

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.40

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For Spindle

F0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = Mr =F0 = b. For Tappingb. For Tapping Mr = Fo x (h + hC.G Machine)

F0 = 0.001 x W x (rpm/1000)1.5 Mr =F0 =F0 =

"Badan Pondasi"Bp =Lp =Hp =

"Kaki Pondasi"Bk =Lk =Hk =

t/m2

t/m2

Poisson's Ratio (Ξ½)

t/m3

t/m3

Page 21: Analisis Pondasi Mesin (Kedalaman 1.8 m)

L/B Koefisien

0.3 2.190.3 10.3 0.5

7. Koefisien Ξ²v, Ξ²h, Ξ²r 8. Vertical Excitation Analysis

Ξ²v =Ξ²h =Ξ²r =

Page 22: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 23: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8.1 Spring Constant 8.2 Damping Ratio

2.329

1.067 m

0.3621.474

Ξ²v = 2.191.646

0.05

8982051.183 t/m

1.695

8. Vertical Excitation Analysis

a. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio

Ξ±v =

rov =b. Mass Ratio

b. Embedment Factor for Spring Constant

Bv = (1-Ξ½)/4 x W/(Ο’ x rov3)Ξ·v = 1 + 0.6 x (1-Ξ½) x (h/rov) Bv = Ξ·v =

c. Geometrical Damping Ratioc. Spring Constant Coefficient

Dv =d. Equivalent Spring Constant for Rectangular Foundation

d. Internal Damping

Dvi =

Kv = d. Total Damping Ratio

Dvt = Dv + Di

Dvt =

π‘Ÿ_π‘œπ‘£= √((𝐡_π‘˜ π‘₯ 𝐿_π‘˜)/πœ‹)

𝐾_𝑣=𝐺/((1βˆ’π‘£)) . 𝛽_(𝑣 ). √(𝐡 π‘₯ 𝐿) . 𝑛_𝑣

𝛼_𝑣= [1+1.9.(1βˆ’π‘£). β„Ž/π‘Ÿ_π‘œπ‘£ ]/√(𝑛_𝑣 )

𝐷_𝑣=0.425/√(𝐡_𝑣 ).𝛼_𝑣

Page 24: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 25: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8.3 Frequency Check

### rpm

#NUM! # 3.390428 RESONANCE NOT POSSIBLE !!!

0.302 0.123

7.31E-01 OK

9.35E-01 OK

e. Transmissibility Factor

1.045

1.013

1.17E-07 m

Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnv =

b. Resonance Frequency (rpm)

Frv = 2 x Dvt =

c. Frequency Ratio

rv (spindle) = rv (tapping) =

d. Magnification Factor

Mv(spindle) =

Mv(tapping) =

Tv(spindle) =

Tv(tapping) =

f. Vibration Amplitude

V(spindle) = Mv(spindle) + Fo(spindle) / Kv Vrocking(spindle) =V(spindle) = Vrocking(spindle) =

𝛼_𝑣= [1+1.9.(1βˆ’π‘£). β„Ž/π‘Ÿ_π‘œπ‘£ ]/√(𝑛_𝑣 ) 𝐹_𝑛𝑣=60/(2π‘₯πœ‹)π‘₯√((𝐾_𝑣/π‘š))

𝐹_π‘Ÿπ‘£= 𝐹_𝑛𝑣 π‘₯√([1βˆ’[2π‘₯𝐷_𝑣𝑑^2 ]] )

γ€–π‘Ÿπ‘£γ€— _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_𝑣/𝐹_𝑛𝑣 γ€–π‘Ÿπ‘£γ€— _π‘‘π‘Žπ‘π‘π‘–π‘›π‘”= 𝑓_𝑣/𝐹_𝑛𝑣

𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€– (2 _ _( (𝐷 𝑣𝑑 π‘₯π‘Ÿ 𝑣 𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑀_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€– (2 _ _( (𝐷 𝑣𝑑 π‘₯π‘Ÿ 𝑣 π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

𝑇_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€– (2 _ _( (𝐷 𝑣𝑑 π‘₯π‘Ÿ 𝑣 𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑇_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+γ€– (2 _ _( (𝐷 𝑣𝑑 π‘₯π‘Ÿ 𝑣 π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

Page 26: Analisis Pondasi Mesin (Kedalaman 1.8 m)

1.14E-07 m

2.31E-07 m

V(tapping) = Mv(tapping) + Fo(tapping) / Kv Vrocking(tapping) =V(tapping) = Vrocking(tapping) =

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal =

Page 27: Analisis Pondasi Mesin (Kedalaman 1.8 m)

RESONANCE NOT POSSIBLE !!!

0.00E+00 mR(spindle) x (l/2)

Page 28: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.00E+00 mR(tapping) x (l/2)

Vrocking(tapping))

Page 29: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3.245 kN 1.000 tm0.325 ton

0.261 tm0.847 kN0.085 ton

4. Geometri Pondasi 5. Geometri Mesin

B = 1.55 m0.39 m L = 2.52 m0.98 m H = 2.8 m1.1 m

3.28 m1.09 m0.58 m

h = 1.68 m

6. Spek Mesin

Kecepatan Spindle : 3890 rpmKecepatan Tapping : 1589 rpm

Berat Total Mesin 42.3 ton

7. Parameter Tanah

Daya Dukung Tanah 3890.00

Modulus Geser (G) ###Damping Ratio 0.05

0.39

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.40

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For Spindle

F0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = Mr =F0 = b. For Tappingb. For Tapping Mr = Fo x (h + hC.G Machine)

F0 = 0.001 x W x (rpm/1000)1.5 Mr =F0 =F0 =

"Badan Pondasi"Bp =Lp =Hp =

"Kaki Pondasi"Bk =Lk =Hk =

t/m2

t/m2

Poisson's Ratio (Ξ½)

t/m3

t/m3

Page 30: Analisis Pondasi Mesin (Kedalaman 1.8 m)

L/B Koefisien

0.3 2.20.3 10.3 0.52

3. Koefisien Ξ²v, Ξ²h, Ξ²r 9. Horizontal Excitation Analysis

Ξ²v =Ξ²h =Ξ²r =

𝐾_β„Ž=2π‘₯(1+𝑣).𝐺 . 𝛽_(β„Ž ). √(𝐡 π‘₯ 𝐿) . 𝑛_β„Ž

Page 31: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 32: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9.1 Spring Constant 9.2 Damping Ratio

3.761

1.067 m

0.4712.395

Ξ²h = 11.579

0.0511311275.126 t/m

1.628

9. Horizontal Excitation Analysis

a. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio

Ξ±h =

roh =b. Mass Ratio

b. Embedment Factor for Spring Constant

Bh = (7-8Ξ½)/(32x(1-Ξ½))x W/(Ο’ x roh3)Ξ·h = 1 + 0.55 x (2-Ξ½) x (h/roh) Bh = Ξ·h =

c. Geometrical Damping Ratioc. Spring Constant Coefficient

Dh =d. Equivalent Spring Constant for Rectangular Foundation

d. Internal Damping

Dhi =Kv =

d. Total Damping Ratio

Dht = Dv + Di

Dht =

𝐾_β„Ž=2π‘₯(1+𝑣).𝐺 . 𝛽_(β„Ž ). √(𝐡 π‘₯ 𝐿) . 𝑛_β„Ž

𝛼_β„Ž= [1+1.9.(2βˆ’π‘£). β„Ž/π‘Ÿ_π‘œβ„Ž ]/√(𝑛_β„Ž )

𝐷_β„Ž=0.288/√(𝐡_β„Ž ).𝛼_β„Ž

π‘Ÿ_π‘œβ„Ž= √((𝐡_π‘˜ π‘₯ 𝐿_π‘˜)/πœ‹)

Page 33: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 34: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9.3 Frequency Check

### rpm

#NUM! # 3.255032 RESONANCE NOT POSSIBLE !!!

0.269 0.110

7.84E-01 OK

9.52E-01 OK

e. Transmissibility Factor

1.042

1.011

9.80E-08 m

Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnh =

b. Resonance Frequency (rpm)

Ξ½)/(32x(1-Ξ½))x W/(Ο’ x roh3)Frh = 2 x Dvt =

c. Frequency Ratio

rh (spindle) = rh (tapping) =

d. Magnification Factor

Mh(spindle) =

Mh(tapping) =

Th(spindle) =

Th(tapping) =

f. Vibration Amplitude

V(spindle) = Mh(spindle) + Fo(spindle) / Kh Vrocking(spindle) =V(spindle) = Vrocking(spindle) =

𝛼_β„Ž= [1+1.9.(2βˆ’π‘£). β„Ž/π‘Ÿ_π‘œβ„Ž ]/√(𝑛_β„Ž ) 𝐹_π‘›β„Ž=60/(2π‘₯πœ‹)π‘₯√((𝐾_β„Ž/π‘š))

𝐹_π‘Ÿβ„Ž= 𝐹_π‘›β„Ž π‘₯√([1βˆ’[2π‘₯𝐷_β„Žπ‘‘^2 ]] )

β„Žγ€–π‘Ÿ γ€— _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_β„Ž/𝐹_π‘›β„Ž β„Žγ€–π‘Ÿ γ€— _π‘‘π‘Žπ‘π‘π‘–π‘›π‘”= 𝑓_β„Ž/𝐹_π‘›β„Ž

𝑀_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€– (2𝐷_β„Žπ‘‘ π‘₯π‘Ÿ_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑀_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€– (2 _𝐷 β„Ž _(𝑑 π‘₯π‘Ÿ β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

𝑇_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€– (2 _𝐷 β„Ž _(𝑑 π‘₯π‘Ÿ β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑇_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+γ€– (2 _𝐷 β„Ž _(𝑑 π‘₯π‘Ÿ β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

Page 35: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9.16E-08 m

1.90E-07 m

V(tapping) = Mh(tapping) + Fo(tapping) / Kh Vrocking(tapping) =V(tapping) = Vrocking(tapping) =

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal =

Page 36: Analisis Pondasi Mesin (Kedalaman 1.8 m)

RESONANCE NOT POSSIBLE !!!

0.000 mR(spindle) x (h+C.G)

Page 37: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.000 mR(tapping) x (l/2)

Vrocking(tapping))

Page 38: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3.245 kN 1.000 tm0.325 ton

0.298 tm0.967 kN

0.097 ton

4. Geometri Pondasi 5. Geometri Mesin

B = 1.55 m

0.39 m L = 2.52 m

0.98 m H = 2.8 m1.1 m

3.28 m1.09 m

0.58 m

h = 1.68 m

6. Spek Mesin

Kecepatan Spindle : 3890 rpmKecepatan Tapping : 1589 rpm

Berat Total Mesin 42.3 ton

7. Parameter Tanah

Daya Dukung Tanah 3890.00

Modulus Geser (G) ###Damping Ratio 0.05

0.39

Berat Jenis Tanah 16.80

Berat Jenis Beton 2.40

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For Spindle

F0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = Mr =F0 = b. For Tappingb. For Tapping Mr = Fo x (h + hC.G Machine)

F0 = 0.001 x W x (rpm/1000)1.5 Mr =F0 =

F0 =

"Badan Pondasi"

Bp =

Lp =Hp =

"Kaki Pondasi"Bk =Lk =

Hk =

t/m2

t/m2

Poisson's Ratio (Ξ½)

t/m3

t/m3

Page 39: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 40: Analisis Pondasi Mesin (Kedalaman 1.8 m)

L/B Koefisien

0.3 2.20.3 10.3 0.54

3. Koefisien Ξ²v, Ξ²h, Ξ²r 10. Rocking Excitation Analysis

Ξ²v =Ξ²h =Ξ²r =

𝐾_π‘Ÿ=𝐺/((1βˆ’π‘£) ) π‘₯ γ€– 〗𝛽 _π‘Ÿ π‘₯ 𝐿 π‘₯ 𝐡^3 π‘₯ 𝑛_π‘Ÿ

Page 41: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 42: Analisis Pondasi Mesin (Kedalaman 1.8 m)

10.1 Spring Constant 10.2 Damping Ratio

1.020 m 3.153

3.646 401.27472

6.2745194692Ξ²r = 0.54

407.549239469

5.028111415421.972 t/m

1.010

0.030

10. Rocking Excitation Analysis

a. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio

ror = Ξ±r =

b. Embedment Factor for Spring Constant b. Mass Ratio

Ξ·r = 1 + 1.2 x (1-Ξ½) x (h/ror) + 0.2 x (2-Ξ½) x (h/ror)3 Imachine = W x (h + C.G)2

Ξ·r = Imachine =

c. Spring Constant Coefficient Ifoundation = Ξ£(Wf /12.(a2+b2) + Wf.k2)

Ifoundation =

Io= Imachine + Ifoundation

d. Equivalent Spring Constant for Rectangular Foundation Io=

Br = 3 x (1-Ξ½)/8 x Io /(Ο’ x ror5)Br =

Kr =

c. Effective Damping Coefficient

Ξ·r =

d. Geometrical Damping Ratio

Dr =

e. Internal Damping

π‘Ÿ_π‘œπ‘Ÿ= [(𝐿_π‘˜ π‘₯ 𝐡_π‘˜^3 )/(3 π‘₯ πœ‹)]^(1/4)

𝐾_π‘Ÿ=𝐺/((1βˆ’π‘£) ) π‘₯ γ€– 〗𝛽 _π‘Ÿ π‘₯ 𝐿 π‘₯ 𝐡^3 π‘₯ 𝑛_π‘Ÿ

𝛼_π‘Ÿ= (1+0.7 π‘₯ (1βˆ’π‘£)π‘₯ (β„Ž/π‘Ÿ_π‘œπ‘Ÿ )+0.6 π‘₯ (2βˆ’π‘£)π‘₯ (β„Ž/π‘Ÿ_π‘œπ‘Ÿ )^3)/√(𝑛_π‘Ÿ )

𝐷_π‘Ÿ=0.15 π‘₯ 𝛼_π‘Ÿ/[(1+ 𝑛_π‘Ÿ+ 𝛽_π‘Ÿ )π‘₯ √((𝑛_π‘Ÿ π‘₯ 𝛽_π‘Ÿ))]

Page 43: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.05

0.079

Dri =

d. Total Damping Ratio

Drt = Dr + Di

Drt =

Page 44: Analisis Pondasi Mesin (Kedalaman 1.8 m)

10.3 Frequency Check

4992.913 rpm

4961.7951 RESONANCE NOT POSSIBLE !!!

0.779 0.318

2.43E+00 cek

1.11E+00 OK

e. Transmissibility Factor

2.45E+00

1.11E+00

Moment Arm =

Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnr =

b. Resonance Frequency (rpm)

t/m2 Frr=

/12.(a2+b2) + Wf.k2) c. Frequency Ratio

t/m2

machine + Ifoundation

t/m2 rr(spindle) = rr (tapping) =

3 x (1-Ξ½)/8 x Io /(Ο’ x ror5) d. Magnification Factor

Effective Damping Coefficient

Mr(spindle) =

Mr(tapping) =

Tr(spindle) =

Geometrical Damping Ratio

Tr(tapping) =

f. Vibration Amplitude

R(spindle) = Mr(spindle) + Fr(spindle) / Kr

𝛼_π‘Ÿ= (1+0.7 π‘₯ (1βˆ’π‘£)π‘₯ (β„Ž/π‘Ÿ_π‘œπ‘Ÿ )+0.6 π‘₯ (2βˆ’π‘£)π‘₯ (β„Ž/π‘Ÿ_π‘œπ‘Ÿ )^3)/√(𝑛_π‘Ÿ )

𝐷_π‘Ÿ=0.15 π‘₯ 𝛼_π‘Ÿ/[(1+ 𝑛_π‘Ÿ+ 𝛽_π‘Ÿ )π‘₯ √((𝑛_π‘Ÿ π‘₯ 𝛽_π‘Ÿ))]

𝐹_π‘›π‘Ÿ=60/((2π‘₯πœ‹) ) π‘₯ √(𝐾_π‘Ÿ/𝐼_0 )

𝐹_π‘Ÿπ‘Ÿ= 𝐹_π‘›π‘Ÿ π‘₯√([1βˆ’[2π‘₯𝐷_π‘Ÿπ‘‘^2 ]] )

π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))= 𝑓_π‘Ÿ/𝐹_π‘›π‘Ÿ π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))= 𝑓_π‘Ÿ/𝐹_π‘›π‘Ÿ

𝑀_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑀_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

𝑇_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑇_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+ γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

Page 45: Analisis Pondasi Mesin (Kedalaman 1.8 m)

2.43E+00 rad Moment Arm =

1.11E+00 rad

R(spindle) =

R(tapping) = Mr(tapping) + Fr(tapping) / Kr

R(tapping) =

Page 46: Analisis Pondasi Mesin (Kedalaman 1.8 m)

11. Amplitudo Check

2.31E-07 m0.000 cm

RESONANCE NOT POSSIBLE !!! 1.90E-07 m0.000 cm

0.00001 in

Moment Arm = (h + C.G)

11.1 Total Amplitudoa. Vertical Amplitudo

Vtotal = Vertical Vibration Amplitude + Rocking Vibration Amplitude x (B/2)Vtotal =Vtotal =

b. Horizontal Amplitude

Htotal = Horizontal Vibration Amplitude + Rocking Vibration Amplitude x (h + C.G)

Htotal =Htotal =

Htotal =

c. Maximum Velocity

𝑀_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑀_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

𝑇_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑇_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+ γ€– (2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

Page 47: Analisis Pondasi Mesin (Kedalaman 1.8 m)

Moment Arm = 3.080 m

Velocity = 0.01 in/secVelocity = 0.00025 m/sec

6.14E-07

Vertical Velocity

4.79E-05

1.89E-05

At(spindle) =

At(spindle) =

c. Vibration Velocity

Vv(spindle) = (V(spindle) + Vrocking(spindle)) x (2 x Ο€ x f/60)Vv(spindle) =

Vv(tapping) = (V(tapping) + Vrocking(tapping)) x (2 x Ο€ x f/60)Vv(tapping) =

π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦/(2.πœ‹.π‘šπ‘Žπ‘β„Žπ‘–π‘›π‘’(π‘Ÿπ‘π‘š))

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) γ€— ^2+ 〖𝑉_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) γ€— ^2 )

Page 48: Analisis Pondasi Mesin (Kedalaman 1.8 m)

5.15E-05

Horizontal Velocity

3.99E-05

1.52E-05

4.27E-05

Vv(total) =Vv(total) =

Vh(spindle) = (H(spindle) + Hrocking(spindle)) x (2 x Ο€ x f/60)Vh(spindle) =

Vh(tapping) = (H(tapping) + Hrocking(tapping)) x (2 x Ο€ x f/60)Vh(tapping) =

Vh(total) =Vh(total) =

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) γ€— ^2+ 〖𝑉_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) γ€— ^2 )

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) γ€— ^2+ 〖𝑉 _(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) γ€— ^2 )

Page 49: Analisis Pondasi Mesin (Kedalaman 1.8 m)

0.3392613 ton

0.09798289 ton

0.43724419 ton

0.33815314 ton

0.09776211 ton

0.43591525 ton

7.18E+00

9.32370151 ton m

12. Soil Bearing Check12.1 Transmissibility Forcea. Transmissibility Vertical Force

Rocking Vibration Amplitude x (B/2) Pv (spindle) = (Tv(spindle) x F0(spindle))Pv (spindle) =

Pv (tapping) = (Tv(tapping) x F0(tapping))Pv (tapping) =

Rocking Vibration Amplitude x (h + C.G) Pv (total) = Pv (spindle) + Pv (tapping)

Pv (total) =

b. Transmissibility Horizontal Force

Ph (spindle) = (Th(spindle) x F0(spindle))

Ph (spindle) =

Ph (tapping) = (Th(tapping) x F0(tapping))

Ph(tapping) =

Ph (total) = Ph(spindle) + Ph (tapping)

Ph (total) =

c. Transmissibility Moment

Pr = (Tr(spindle) x Mr(spindle)) + (Tr(tapping) x Mr(tapping))

Pr =

12.2 Total Transmissibility Moment

Ptr = Pr + (Pv(total) x (PL/2 + Edx) + (Ph(total) x (C.G + h))Ptr =

Page 50: Analisis Pondasi Mesin (Kedalaman 1.8 m)

6.00963E-05

cek

cek

At(motor) =

At(motor) =

) x (2 x Ο€ x f/60)

) x (2 x Ο€ x f/60)

π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦/(2.πœ‹.π‘šπ‘Žπ‘β„Žπ‘–π‘›π‘’(π‘Ÿπ‘π‘š))

Page 51: Analisis Pondasi Mesin (Kedalaman 1.8 m)

cek

cek

cek

cek

) x (2 x Ο€ x f/60)

) x (2 x Ο€ x f/60)

Page 52: Analisis Pondasi Mesin (Kedalaman 1.8 m)

(ΞΎ) = 1.5

0.75 x qu

2917.5

20.23

6.78

19.20

7.81

Qall = 2917.5

20.23

Qall > Psta+dyn Ok !!

12.3 Soil Bearing Preassure (Static + Dynamic,Static)a. Fatigue Factor (ΞΎ)

b. Qall

Qall =

Qall = t/m2

c. Psta+dyn

Psta+dyn (+) = t/m2

Psta+dyn (-) = t/m2

Psta+dyn (+) = t/m2

Psta+dyn (-) = t/m2

x Mr(spindle)) + (Tr(tapping) x Mr(tapping)) t/m2

Psta+dyn = t/m2

x (PL/2 + Edx) + (Ph(total) x (C.G + h))

𝑃_(π‘ π‘‘π‘Ž+𝑑𝑦𝑛)= π‘Š_𝑑/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(𝑣(π‘‘π‘œπ‘‘π‘Žπ‘™)))/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(β„Ž(π‘‘π‘œπ‘‘π‘Žπ‘™)) π‘₯ (𝐢.𝐺_π‘ β„Žπ‘Žπ‘“π‘‘+β„Ž)π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 ) Β± ("ΞΎ" π‘₯ 𝑃_π‘Ÿ π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 )

𝑃_(π‘ π‘‘π‘Ž+𝑑𝑦𝑛)= π‘Š_𝑑/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(𝑣(π‘‘π‘œπ‘‘π‘Žπ‘™)))/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_π‘‘π‘Ÿ π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 )

Page 53: Analisis Pondasi Mesin (Kedalaman 1.8 m)

𝑃_(π‘ π‘‘π‘Ž+𝑑𝑦𝑛)= π‘Š_𝑑/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(𝑣(π‘‘π‘œπ‘‘π‘Žπ‘™)))/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(β„Ž(π‘‘π‘œπ‘‘π‘Žπ‘™)) π‘₯ (𝐢.𝐺_π‘ β„Žπ‘Žπ‘“π‘‘+β„Ž)π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 ) Β± ("ΞΎ" π‘₯ 𝑃_π‘Ÿ π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 )

𝑃_(π‘ π‘‘π‘Ž+𝑑𝑦𝑛)= π‘Š_𝑑/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(𝑣(π‘‘π‘œπ‘‘π‘Žπ‘™)))/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_π‘‘π‘Ÿ π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 )

Page 54: Analisis Pondasi Mesin (Kedalaman 1.8 m)

A. Trial Dimensi Pondasi1. Dimensi "Badan" Pondasi

Panjang : 262 cm 2.62 mLebar : 165 cm 1.65 mTinggi : 180 cm 1.8 m

2. Dimensi "Kaki" Pondasi

Panjang : 1500 cm 15 mLebar : 1500 cm 15 mTinggi : 60 cm 0.6 m

3. Kontrol Berat Pondasi

Berat Bada 18675.36 Kg BJ Beton = 2400 Kg/m3Berat Kaki 324000 KgBerat Total 342675.36 Kg

Berat Mesi 3200 kg

Kontrol : Berat Pondasi > 3 x Berat Mesin342675.36 > 3200

107 Kali Berat Mesin OK!!

B. Perhitungan Pondasi Statis

1. Peritungan Daya Dukung (Metode Terzaghi)

Pondasi diletakan pada kedalaman 2.4 mMaka, parameter tanahnya didapat :

Ο† c Ο’n Ο’sat Nc Nq NΟ’kg/cm2 kg/m3 kg/m3

0 1.43 1.68 1.85 5.70 1.00 0.00

Rumus Daya Dukung Tanah Metode Terzaghi :

qu = 1.3 C. Nc + q. Nq + 0.4 Ξ³m . B. NΞ³qu = 451.73 t/m2DD = 101639.81 ton

Kontrol : DD > Berat Mesin + Pondasi101639.81 > 345.8754 OK!!

2. Distribusi Tegangan Metode 2 : 1

h (m)

0.00 1.5370.10 1.517

0.20 1.497

0.30 1.478

0.40 1.458

0.50 1.440

0.60 1.421

0.70 1.403

0.80 1.385

0.90 1.368

1.00 1.351

1.10 1.334

1.20 1.318

1.30 1.302 Rumus :1.40 1.286

1.50 1.270

1.60 1.255 Dimana : Q = Beban Kerja (ton)1.70 1.240 B = Lebar Pondasi (m)1.80 1.225 L = Panjang Pondasi (m)1.90 1.211 z = Kedalaman (m)2.00 1.197

2.10 1.183

2.20 1.169

2.30 1.156

2.40 1.142

2.50 1.129

2.60 1.117

2.70 1.104

2.80 1.092

2.90 1.079

3.00 1.068

3.10 1.056

3.20 1.044

3.30 1.033

3.40 1.022

Δσv' (t/m2)

0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.0000.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Page 55: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 56: Analisis Pondasi Mesin (Kedalaman 1.8 m)

3. Perhitungan Settlement

Dimana ; B = 15.00 m Df/B = 0.16 q = 1.54 t/m2L = 15.00 m h/B = 0.07 Es = 100 kg/cm2Df = 2.40 m L/B = 1.00h = 1.00 m Β΅1 = 0.99

Β΅2 = 0.36Df/B Β΅1 Mencari Β΅2

0 1h/B Circle L/B

2 0.9 1 2 5 104 0.88 1.00 0.36 0.36 0.36 0.36 0.366 0.875 2.00 0.47 0.53 0.63 0.64 0.648 0.87 4.00 0.58 0.63 0.82 0.94 0.94

10 0.865 6.00 0.61 0.67 0.88 1.08 1.1412 0.863 8.00 0.62 0.68 0.9 1.13 1.2214 0.86 10.00 0.63 0.7 0.92 1.18 1.316 0.856 20.00 0.64 0.71 0.93 1.26 1.4718 0.854 30.00 0.66 0.73 0.95 1.29 1.5420 0.85

Rumus Penurunan :Penurunan Primer : Penurunan Seketika :Sc = mv * Δσ * Ξ”h Si = ΞΌ1 x ΞΌ2 (q.B/Es)Ξ”h = 3.40 m Si = 0.008235 m

Sc (m)

2.4 40.00 0.0025 1.14 0.0068542.6 90.00 0.0011 1.12 0.0002482.8 100.00 0.0010 1.09 0.0002183 260.00 0.0004 1.07 8.212E-05

3.2 340.00 0.0003 1.04 6.142E-053.4 430.00 0.0002 1.02 4.752E-05

Total 0.007512

Penurunan Total (S) : 0.015747 m1.575 cm

C. Resume1. Parameter Tanah dan Pondasi 3. Data Peralatan Mesin

Daya Dukung Tanah 451.73 t/m2 Weight of Table 250 kgModulus Geser (G) 228.57 t/m2 Weight of Tools 3 kgInternal Damping Ratio 0.035 Weight of Machines 3200 kgPoisson's Ratio (Ξ½) 0.35 Total Weight 3453 kgBerat Jenis Tanah 1.68 t/m3

Berat Jenis Beton 2.4 t/m3

2. Data Pondasi 4. Data Mesin

"Badan Pondasi" Kecepatan Spindle 8000 rpmPanjang (P) 2.62 m Kecepatan Tapping 3000 rpmLebar (l) 1.65 mTinggi (t) 1.8 m

"Kaki Pondasi"Panjang (P) 15 mLebar (l) 15 mTinggi (t) 0.6 m

Kedalaman (m) E (kg/cm2)

mv (m2/ton)

Δσ (ton/m2)

Page 57: Analisis Pondasi Mesin (Kedalaman 1.8 m)

1. Centrifugal Force 2. Rocking Dynamic Moment

a. For Spindle a. For SpindleF0 = 0.001 x W x (rpm/1000)1.5 Mr = Fo x (h + hC.G Machine)F0 = 0.781 kN Mr = 0.297 tmF0 = 0.078 ton b. For Tapping

b. For Tapping Mr = Fo x (h + hC.G Machine)F0 = 0.001 x W x (rpm/1000)1.5 Mr = 0.068 tmF0 = 0.179 kNF0 = 0.018 ton

3. Geometri Pondasi 4. Geometri Mesin

"Badan Pondasi" B = 1.55 mBp = 1.65 m L = 2.52 mLp = 2.62 m H = 2.8 mHp = 1.8 m

"Kaki Pondasi"Bk = 15 m 7. Koefisien Ξ²v, Ξ²h, Ξ²rLk = 15 mHk = 0.6 m L/B Koefisienh = 2.4 m Ξ²v = 1.0 2.19

Ξ²h = 1.0 1Ξ²r = 1.0 0.5

5. Spek Mesin

Kecepatan Spindle : 8000 rpmKecepatan Tapping : 3000 rpm

Berat Total Mesin 3.453 ton

6. Parameter Tanah

Daya Dukung Tanah 451.73 t/m2Modulus Geser (G) 228.57 t/m2Damping Ratio 0.04Poisson's Ratio (Ξ½) 0.35Berat Jenis Tanah 1.68 t/m3

Berat Jenis Beton 2.40 t/m3

Page 58: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 59: Analisis Pondasi Mesin (Kedalaman 1.8 m)

8. Vertical Excitation Analysis8.1 Spring Constant 8.2 Damping Ratio 8.3 Frequency Checka. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnv = 180.749 rpmΞ±v = 1.290

rov = 8.463 m b. Resonance Frequency (rpm)b. Mass Ratio

b. Embedment Factor for Spring Constant Bv = (1-Ξ½)/4 x W/(Ο’ x rov3)

Ξ·v = 1 + 0.6 x (1-Ξ½) x (h/rov) Bv = 0.055 Frv = #NUM! # 2 x Dvt = 4.731708 RESONANCE NOT POSSIBLE !!!Ξ·v = 1.097

c. Geometrical Damping Ratio c. Frequency Ratioc. Spring Constant Coefficient

Ξ²v = 2.19Dv = 2.331 rv (spindle) = 44.260 rv (tapping) = 16.598

d. Equivalent Spring Constant for Rectangular Foundationd. Internal Damping d. Magnification Factor

Dvi = 0.04

Kv = 12644.594 t/m d. Total Damping Ratio Mv(spindle) = 5.08E-04 OK

Dvt = Dv + DiDvt = 2.366

Mv(tapping) = 3.50E-03 OK

e. Transmissibility Factor

Tv(spindle) = 0.106

Tv(tapping) = 0.275

f. Vibration Amplitude

V(spindle) = Mv(spindle) + Fo(spindle) / Kv Vrocking(spindle) = R(spindle) x (l/2)V(spindle) = 6.22E-06 m Vrocking(spindle) = 0.00E+00 m

V(tapping) = Mv(tapping) + Fo(tapping) / Kv Vrocking(tapping) = R(tapping) x (l/2)V(tapping) = 1.70E-06 m Vrocking(tapping) = 0.00E+00 m

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal = 7.92E-06 m

π‘Ÿ_π‘œπ‘£= √((𝐡_π‘˜ π‘₯ 𝐿_π‘˜)/πœ‹)

𝐾_𝑣=𝐺/((1βˆ’π‘£)) . 𝛽_(𝑣 ). √(𝐡 π‘₯ 𝐿) . 𝑛_𝑣

𝛼_𝑣= [1+1.9.(1βˆ’π‘£). β„Ž/π‘Ÿ_π‘œπ‘£ ]/√(𝑛_𝑣 )

𝐷_𝑣=0.425/√(𝐡_𝑣 ).𝛼_𝑣

𝐹_𝑛𝑣=60/(2π‘₯πœ‹)π‘₯√((𝐾_𝑣/π‘š))

𝐹_π‘Ÿπ‘£= 𝐹_𝑛𝑣 π‘₯√([1βˆ’[2π‘₯𝐷_𝑣𝑑^2 ]] )

𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€–(2𝐷_𝑣𝑑 π‘₯π‘Ÿ_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€—Μ‚ 2 )𝑀_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€–(2𝐷_𝑣𝑑 π‘₯π‘Ÿ_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€—Μ‚ 2 )

𝑇_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€–(2𝐷_𝑣𝑑 π‘₯π‘Ÿ_(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€—Μ‚ 2 )𝑇_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+γ€–(2𝐷_𝑣𝑑 π‘₯π‘Ÿ_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€—Μ‚ 2 )

γ€– γ€—π‘Ÿπ‘£ _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_𝑣/𝐹_𝑛𝑣 γ€– γ€—π‘Ÿπ‘£ _π‘‘π‘Žπ‘π‘π‘–π‘›π‘”= 𝑓_𝑣/𝐹_𝑛𝑣

Page 60: Analisis Pondasi Mesin (Kedalaman 1.8 m)

9. Horizontal Excitation Analysis9.1 Spring Constant 9.2 Damping Ratio 9.3 Frequency Checka. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnh = 173.342 rpmΞ±h = 1.685

roh = 8.463 m b. Resonance Frequency (rpm)b. Mass Ratio

b. Embedment Factor for Spring Constant Bh = (7-8Ξ½)/(32x(1-Ξ½))x W/(Ο’ x roh3)

Ξ·h = 1 + 0.55 x (2-Ξ½) x (h/roh) Bh = 0.069 Frh = #NUM! # 2 x Dvt = 3.775443 RESONANCE NOT POSSIBLE !!!Ξ·h = 1.258

c. Geometrical Damping Ratio c. Frequency Ratioc. Spring Constant Coefficient

Ξ²h = 1Dh = 1.853 rh (spindle) = 46.151 rh (tapping) = 17.307

d. Equivalent Spring Constant for Rectangular Foundationd. Internal Damping d. Magnification Factor

Dhi = 0.04Kv = 11629.452 t/m

d. Total Damping Ratio Mh(spindle) = 4.68E-04 OK

Dht = Dv + DiDht = 1.888

Mh(tapping) = 3.27E-03 OK

e. Transmissibility Factor

Th(spindle) = 0.082

Th(tapping) = 0.214

f. Vibration Amplitude

V(spindle) = Mh(spindle) + Fo(spindle) / Kh Vrocking(spindle) = R(spindle) x (h+C.G)V(spindle) = 6.76E-06 m Vrocking(spindle) = 0.000 m

V(tapping) = Mh(tapping) + Fo(tapping) / Kh Vrocking(tapping) = R(tapping) x (l/2)V(tapping) = 1.82E-06 m Vrocking(tapping) = 0.000 m

g. Vtotal

Vtotal = (V(spindle) + Vrocking(spindle))+ (V(tapping) + Vrocking(tapping))Vtotal = 8.58E-06 m

𝐾_β„Ž=2π‘₯(1+𝑣).𝐺 . 𝛽_(β„Ž ). √(𝐡 π‘₯ 𝐿) . 𝑛_β„Ž

𝛼_β„Ž= [1+1.9.(2βˆ’π‘£). β„Ž/π‘Ÿ_π‘œβ„Ž ]/√(𝑛_β„Ž )

𝐷_β„Ž=0.288/√(𝐡_β„Ž ).𝛼_β„Ž

𝐹_π‘›β„Ž=60/(2π‘₯πœ‹)π‘₯√((𝐾_β„Ž/π‘š))

𝐹_π‘Ÿβ„Ž= 𝐹_π‘›β„Ž π‘₯√([1βˆ’[2π‘₯𝐷_β„Žπ‘‘^2 ]] )

β„Žγ€–π‘Ÿ γ€— _𝑠𝑝𝑖𝑛𝑑𝑙𝑒= 𝑓_β„Ž/𝐹_π‘›β„Ž β„Žγ€–π‘Ÿ γ€— _π‘‘π‘Žπ‘π‘π‘–π‘›π‘”= 𝑓_β„Ž/𝐹_π‘›β„Ž

𝑀_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€– (2𝐷_β„Žπ‘‘ π‘₯π‘Ÿ_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑀_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€– (2𝐷_β„Žπ‘‘ π‘₯π‘Ÿ_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

𝑇_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€– (2𝐷_β„Žπ‘‘ π‘₯π‘Ÿ_(β„Ž(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€— ^2 )𝑇_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+ γ€– (2𝐷_β„Žπ‘‘ π‘₯π‘Ÿ_(β„Ž(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€— ^2 )

π‘Ÿ_π‘œβ„Ž= √((𝐡_π‘˜ π‘₯ 𝐿_π‘˜)/πœ‹)

Page 61: Analisis Pondasi Mesin (Kedalaman 1.8 m)
Page 62: Analisis Pondasi Mesin (Kedalaman 1.8 m)

10. Rocking Excitation Analysis10.1 Spring Constant 10.2 Damping Ratio 10.3 Frequency Checka. Radius Equivalent (rov) for Rectangular Foundation a. Effect of Depth of Embedment on Damping Ratio a. Natural Frequency

Fnr = 375.843 rpmror = 1342.870 m Ξ±r = 1.000

b. Resonance Frequency (rpm)b. Embedment Factor for Spring Constant b. Mass Ratio

Ξ·r = 1 + 1.2 x (1-Ξ½) x (h/ror) + 0.2 x (2-Ξ½) x (h/ror)3 Imachine = W x (h + C.G)2Ξ·r = 1.001 Imachine = 49.86132 t/m2 Frr= #NUM! #NUM!

c. Spring Constant Coefficient Ifoundatio Ξ£(Wf /12.(a2+b2) + Wf.k2) c. Frequency RatioIfoundatio 6151.17236 t/m2

Ξ²r = 0.54Io= Imachine + Ifoundation

d. Equivalent Spring Constant for Rectangular Foundation Io= 6201.03368 t/m2 rr(spindle) = 21.285 rr (tapping) = 7.982

Br = 3 x (1-Ξ½)/8 x Io /(Ο’ x ror5) d. Magnification FactorBr = 0.000

Kr = 9605802.627 t/mc. Effective Damping Coefficient

Mr(spindle) = 1.44E-07 OKΞ·r = 1.010

Mr(tapping) = 3.83E-07 OK

e. Transmissibility Factor

Tr(spindle) = 1.00E+00

d. Geometrical Damping Ratio

Tr(tapping) = 1.00E+00

Dr = 163458.025 f. Vibration Amplitude

e. Internal Damping R(spindle) = Mr(spindle) + Fr(spindle) / Kr Moment Arm = (h + C.G)R(spindle) = 5.47E-07 rad Moment Arm = 3.800 m

Dri = 0.04R(tapping) = Mr(tapping) + Fr(tapping) / Kr

d. Total Damping Ratio R(tapping) = 9.66E-07 rad

Drt = Dr + DiDrt = 163458.060

π‘Ÿ_π‘œπ‘Ÿ= [(𝐿_π‘˜ π‘₯ 𝐡_π‘˜^3 )/(3 π‘₯ πœ‹)]^(1/4)

𝐾_π‘Ÿ=𝐺/((1βˆ’π‘£) ) π‘₯ γ€– 〗𝛽 _π‘Ÿ π‘₯ 𝐿 π‘₯ 𝐡^3 π‘₯ 𝑛_π‘Ÿ

𝛼_π‘Ÿ= (1+0.7 π‘₯ (1βˆ’π‘£)π‘₯ (β„Ž/π‘Ÿ_π‘œπ‘Ÿ )+0.6 π‘₯ (2βˆ’π‘£)π‘₯ (β„Ž/π‘Ÿ_π‘œπ‘Ÿ )^3)/√(𝑛_π‘Ÿ )

𝐷_π‘Ÿ=0.15 π‘₯ 𝛼_π‘Ÿ/[(1+ 𝑛_π‘Ÿ+ 𝛽_π‘Ÿ )π‘₯ √((𝑛_π‘Ÿ π‘₯ 𝛽_π‘Ÿ))]

𝐹_π‘›π‘Ÿ=60/((2π‘₯πœ‹) ) π‘₯ √(𝐾_π‘Ÿ/𝐼_0 )

𝐹_π‘Ÿπ‘Ÿ= 𝐹_π‘›π‘Ÿ π‘₯√([1βˆ’[2π‘₯𝐷_π‘Ÿπ‘‘^2 ]] )

π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))= 𝑓_π‘Ÿ/𝐹_π‘›π‘Ÿ π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))= 𝑓_π‘Ÿ/𝐹_π‘›π‘Ÿ

𝑀_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=1/√((1βˆ’π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))^2 )^2+γ€–(2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€—Μ‚ 2 )𝑀_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=1/√((1βˆ’π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))^2 )^2+γ€–(2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€—Μ‚ 2 )

𝑇_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))=𝑀_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) π‘₯√(1+γ€–(2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(𝑠𝑝𝑖𝑛𝑑𝑙𝑒))) γ€—Μ‚ 2 )

𝑇_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))=𝑀_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) π‘₯√(1+γ€–(2𝐷_π‘Ÿπ‘‘ π‘₯π‘Ÿ_(π‘Ÿ(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”))) γ€—Μ‚ 2 )

Page 63: Analisis Pondasi Mesin (Kedalaman 1.8 m)

11. Amplitudo Check11.1 Total Amplitudoa. Vertical Amplitudo

Vtotal = Vertical Vibration Amplitude + Rocking Vibration Amplitude x (B/2)Vtotal = 7.92E-06 mVtotal = 0.001 cm

b. Horizontal Amplitude

Htotal = Horizontal Vibration Amplitude + Rocking Vibration Amplitude x (h + C.G)Htotal = 8.58E-06 mHtotal = 0.001 cmHtotal = 0.00034 in

c. Maximum Velocity

Velocity = 0.01 in/secVelocity = 0.00025 m/sec

At(spindle) = At(motor) =

At(spindle) 2.98E-07 At(motor) 3.183E-05

c. Vibration Velocity

Vertical Velocity

Vv(spindle)(V(spindle) + Vrocking(spindle)) x (2 x Ο€ x f/60)Vv(spindle) 5.21E-03 cek

Vv(tapping(V(tapping) + Vrocking(tapping)) x (2 x Ο€ x f/60)Vv(tapping 5.33E-04 cek

Vv(total) =Vv(total) = 5.24E-03 cek

Horizontal Velocity

Vh(spindle)(H(spindle) + Hrocking(spindle)) x (2 x Ο€ x f/60)Vh(spindle) 5.66E-03 cek

Vh(tapping(H(tapping) + Hrocking(tapping)) x (2 x Ο€ x f/60)Vh(tapping 5.73E-04 cek

Vh(total) =Vh(total) = 5.69E-03 cek

π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦/(2.πœ‹.π‘šπ‘Žπ‘β„Žπ‘–π‘›π‘’(π‘Ÿπ‘π‘š)) π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦/(2.πœ‹.π‘šπ‘Žπ‘β„Žπ‘–π‘›π‘’(π‘Ÿπ‘π‘š))

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) γ€—Μ‚ 2+ 〖𝑉_(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) γ€—Μ‚ 2 )

√( 〖𝑉 _(𝑣(𝑠𝑝𝑖𝑛𝑑𝑙𝑒)) γ€—Μ‚ 2+ 〖𝑉 _(𝑣(π‘‘π‘Žπ‘π‘π‘–π‘›π‘”)) γ€—Μ‚ 2 )

Page 64: Analisis Pondasi Mesin (Kedalaman 1.8 m)

12. Soil Bearing Check12.1 Transmissibility Force 12.3 Soil Bearing Preassure (Static + Dynamic,Static)a. Transmissibility Vertical Force a. Fatigue Factor (ΞΎ)

Pv (spindle(Tv(spindle) x F0(spindle)) (ΞΎ) = 1.5Pv (spindle 0.00831 ton

b. QallPv (tapping(Tv(tapping) x F0(tapping))Pv (tapping 0.49479 ton Qall = 0.75 x qu

Qall = 338.7994 t/m2Pv (total) =Pv (spindle) + Pv (tapping)Pv (total) = 0.503099 ton c. Psta+dyn

b. Transmissibility Horizontal Force

Ph (spindle(Th(spindle) x F0(spindle))Ph (spindle 0.006373 ton Psta+dyn (+ 1.54 t/m2

Psta+dyn (- 1.53 t/m2Ph (tapping(Th(tapping) x F0(tapping))Ph(tapping)0.384602 ton

Ph (total) =Ph(spindle) + Ph (tapping)Ph (total) = 0.390976 ton Psta+dyn (+ 1.54 t/m2

Psta+dyn (- 1.53 t/m2c. Transmissibility Moment

Pr = (Tr(spindle) x Mr(spindle)) + (Tr(tapping) x Mr(tapping)) Qall = 338.7994 t/m2Pr = 5.27E-07 Psta+dyn = 1.54 t/m2

12.2 Total Transmissibility Moment Qall > Psta+dyn Ok !!

Ptr = Pr + (Pv(total) x (PL/2 + Edx) + (Ph(total) x (C.G + h))Ptr = 5.67401 ton m

𝑃_(π‘ π‘‘π‘Ž+𝑑𝑦𝑛)= π‘Š_𝑑/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(𝑣(π‘‘π‘œπ‘‘π‘Žπ‘™)))/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(β„Ž(π‘‘π‘œπ‘‘π‘Žπ‘™)) π‘₯ (𝐢.𝐺_π‘ β„Žπ‘Žπ‘“π‘‘+β„Ž)π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 ) Β± ("ΞΎ" π‘₯ 𝑃_π‘Ÿ π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 )

𝑃_(π‘ π‘‘π‘Ž+𝑑𝑦𝑛)= π‘Š_𝑑/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_(𝑣(π‘‘π‘œπ‘‘π‘Žπ‘™)))/π΄π‘Ÿπ‘’π‘Ž Β± ("ΞΎ" π‘₯ 𝑃_π‘‘π‘Ÿ π‘₯ 6)/(𝐡 π‘₯ 𝐿^2 )


Recommended