Transcript
Page 1: Brian Covello: Diabetes Research Introduction

1,25-­‐Dihydroxyvitamin  D3  and  Re7noic  Acid  in  vitro  Modula7on  of  PPARγ  and  Insulin  Resistance  in  

Diabetes  Mellitus  II    

Brian  Covello  

Page 2: Brian Covello: Diabetes Research Introduction

Mo7va7on  •  25.8  million  people  affected  by  DM  •  By  2050,  1  in  3  US  adults  will  be  affected  •  Normal  human  physiology  gone  wrong  – Glucose  à  Insulin    

•  Beta  cells,  islet  of  Langerhans  – Type  I  and  Type  II  

•  Linked  to  Obesity    •  TZDs  as  an7-­‐diabe7c  drugs  

Page 3: Brian Covello: Diabetes Research Introduction

PPARγ  

•  RXR  green  •  PPARγ  purple  

•  57.6kDa    •  Adipogenesis,  Insulin  

sensi7vty  

Page 4: Brian Covello: Diabetes Research Introduction

1,25-­‐Dihydroxyvitamin  D3  and  Re7noic  Acid  in  vitro  Modula7on  of  PPARγ  and  Insulin  Resistance  in  

Diabetes  Mellitus  II    

Brian  Covello  

Page 5: Brian Covello: Diabetes Research Introduction

•  Limited  supply  of  RXR  •  VDR  and  RAR  heterodimerize  with  RXR  

•  Fierce  compe77on!  •  Ligands  – VDR  =  D3  – RAR  =  RA  

The  Connec7on  

Page 6: Brian Covello: Diabetes Research Introduction

What  Do  We  Know?  

•  Vitamin  D  down  regulates  expression  of  PPARγ  (Yoshifumi,  1998)  – Vitamin  D  correlated  to  Obesity    

•  Re7noic  Acid  also  inhibits  PPARγ  (Yoshifumi,  1998)  

•  RA  and  D3  effects  tested  separately  •  Muta7ons  in  PPARγ  cause  insulin  resistance  (Barroso,  1999)  

Page 7: Brian Covello: Diabetes Research Introduction

The  Research  •  Diabetes  Mellitus  Type  II    •  In  vitro  analysis,  in  vivo  predic7ons  •  A  bridge  to  transla7onal  research  •  Mimic  human  physiology    •  D3  and  RA  tested  together  –  first  7me!  •  Nanomolar  human  serum  concentra7on  

•  Hypothesis:  Synergy  of  down  regula7on  of  PPARγ  when  D3  and  RA  are  combined    

•  Implica7ons:  Diet  &  Drug  interac7on  

Page 8: Brian Covello: Diabetes Research Introduction

Bidirec7onal  Approach  

•  Immunofluorescence  Microscopy    – Delocaliza7on  of  PPARγ  –  IF  never  conducted  in  this  manner    – Unable  to  indicate  up/down  regula7on  

•  SDS-­‐PAGE  – Separa7on  of  proteins  based  on  size  – Protein  changes?    – Up/down  regula7on  à  Western  Blot  

Page 9: Brian Covello: Diabetes Research Introduction

Immunofluorescence  Microscopy  

•  Fixed  à  Permeabilized  à  Blocked  •  Primary  AB  =  rabbit  an7-­‐PPAR  

–  BD  transduc7on  labs  –  1:25  concentra7on  

•  Secondary  AB  =  goat  an7-­‐rabbit  SFX  kit  –  Alexa  Fluora,  1:25  

•  +  control  1%  EtOH  à  delocaliza7on  (Powers,  2005)  

•  -­‐  Control  Incomplete  

Tx  1:   Incomplete  Tx  2:   1%  EtOH  Tx  3:   1  μM  D3  Tx  4:    1  μM  RA  Tx  5:    1  nm  D3  Tx  6:   1  nm  RA  Tx  7:   1  μM  D3/RA  Tx  8:   1  nM  D3/RA  

Page 10: Brian Covello: Diabetes Research Introduction

I  Swear…  I  didn’t  kill  them  

•  Proof:    •  Elongated  •  Nuclei  present  and  dis7nct  •  Amount  of  cells  per  frame  the  same  

•  40X  •  Canon  •  B.  Covello  

Page 11: Brian Covello: Diabetes Research Introduction
Page 12: Brian Covello: Diabetes Research Introduction

SDS-­‐PAGE  

•  Gives  false  nega7ve  charge  to  proteins  •  Separated  based  on  size    •  Proteins  migrate  toward  +  end    •  50mA  •  Make  sure  to  put  same  protein  amount  in  each  well…  

Page 13: Brian Covello: Diabetes Research Introduction

Standard  Curve  

•  50  micrograms    

Page 14: Brian Covello: Diabetes Research Introduction

•  Disappearance  of  protein  in  combined  •  Novel  protein  changes  in  nanomolar  

treatment  that  aren’t  present  in  micromolar  •  Human  serum  levels  

Page 15: Brian Covello: Diabetes Research Introduction

Where  Do  We  Go  From  Here?  

•  Western  Blot  – What  are  those  proteins?    –  PPARγ  changes?  

•  3T3-­‐L1    –  Pre-­‐adipocytes  –  Closer  to  human  physiology  –  Berer  rela7on  to  DMII  – Differen7a7on  process  

•  Insulin,  Dexamethosone,  3-­‐isobutyl-­‐1-­‐methylxanthine  (IBMX)  

Page 16: Brian Covello: Diabetes Research Introduction

Acknowledgements  

•  FSC  for  funding  •  Dr.  Bradshaw    •  Classmates  

Page 17: Brian Covello: Diabetes Research Introduction

Sources  Barroso,  I.  B.  (1999).  Dominant  nega7ve  muta7ons  in  human  ppar  gamma  associated  with  sever  insulin  resistance,  diabetes  

   mellitus  and  hypertension.  Le+ers  to  Nature,  402(23),  880-­‐889.    Liang,  G.  L.  (2006).  Peroxisome  proliferator  ac7vated  receptor  gamma  as  a  drug  target  in  the  pathogenesis  of  insulin  resistance.  

   Pharmacology  &  Therapeu=cs,  111(4),  145-­‐173.    Ishida,  Y.  (1988).  Possible  involvement  of  1,25-­‐dihydroxyvitamine  d3  in  prolifera7on  and  differen7a7on  of  3t3-­‐l1  cells.  

   Biochemical  and  Biophysical  Research  Communica=ons,  151(3),  1122-­‐1127.    Yoshifumi.  (1998).  Counterac7on  of  re7noic  acid  and  1,25-­‐dihydroxyvitamin  d3  on  up-­‐regula7on  of  adipocyte  differen7a7on  with  

   ppar  ligand,  an  an7diabe7c  thiazolidinedione,  in  3t3-­‐l1  cells.  Pharmacology  Le+ers,  62(14),  205-­‐211.      Powers,  A.  C.  (2005).  Chapter  323.  Diabetes  mellitus.  In  D.  L.  Kasper,  A.  S.  Fauci,  D.  L.  Longo,  E.  Braunwald,  S.  L.  Hauser,  &  J.  L.  

   Jameson,  Harrison’s  principles  of  internal  medicine  (16th  ed.).  The  McGraw-­‐Hill  Companies,  Inc.      Wajchenberg,  B.  L.  (2000).  Subcutaneous  and  visceral  adipose  7ssue:  their  rela7on  to  the  metabolic  syndrome.  Endocr  Rev  21,  

   697–738.    Bogazzi,  F.  (2007).  Abnormal  expression  of  ppar  gamma  isoforms  in  the  subcutaneous  adipose  7ssue  of  pa7ents  with  cushing's  

   disease.  Clinical  Endocrinology,  1365(66),  7-­‐12.      


Recommended