Transcript

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 111

ISSN 1392-3196 Žemdirbystė=Agriculture,vol.99,No.2(2012),p.111‒124UDK634.1:581.17:576.3

Chilling injury in chilling-sensitive plants: a review

AlexanderS.LUKATKIN1,AušraBRAZAITYTĖ2,ČeslovasBOBINAS2,PavelasDUCHOVSKIS2

1MordovianStateUniversityBolshevistskaja68,Saransk,RussiaE-mail:[email protected],LithuanianResearchCentreforAgricultureandForestryKauno30,Babtai,Kaunasdistr.,LithuaniaE-mail:[email protected]

AbstractChilling temperatures (1–10ºC) lead to numerous physiological disturbances in the cells of chilling-sensitiveplantsandresultinchillinginjuryanddeathoftropicalandsubtropicalplants,e.g.,manyvegetablespecies.Theliteraturereviewshowsthattheexposureofchilling-sensitiveplantstolowtemperaturescausesdisturbancesinallphysiologicalprocesses–waterregime,mineralnutrition,photosynthesis,respirationandmetabolism.Inactivationofmetabolism,observedat chillingof chilling-sensitiveplants is a complex functionofboth temperature anddurationofexposure.Responseofplantstolowtemperatureexposureisassociatedwithachangeintherateofgenetranscriptionofanumberoflowmolecularweightproteins.Thereviewanalyzeshistoricalaspectsinthedevelopmentofideasaboutthenatureofchillingdamageofchilling-sensitiveplantsanddirectionofmodernresearch.Basedontheauthors’ownresearchandtheliteraturedata,theconceptofcolddamagewasproposed,whichhighlightedtheleadingroleofoxidativestressintheinductionofstressresponse.Accordingtothisconceptthereweredistinguishedpossiblewayshowtoimprovecoldtolerance.They were divided into several groups: the thermal effect (low-temperature hardening, thermal conditioning,intermediatewarmingandtheeffectofheatstress),chemicaltreatment(traceelements,syntheticgrowthregulators,antioxidants)andtheuseofgeneandcellengineering.

Keywords:antioxidants,cell,chilling-sensitiveplants,chillinginjury,physiologicalprocesses,oxidativestress.

IntroductionMore than half of the 350 000 plant species

onEartharegrowninthetropicsandsubtropics.Inthecourseofevolution,theycouldnotdeveloptheabilitytowithstandlowtemperatures(Лукаткин,2002).Mostofthesespeciesaredamagedduringstorageattemperaturesabovethefreezingpointoftissues,butlowerthan15°C(chilling temperatures). This damage is called chillinginjury as opposed to damage during freezing (freezinginjury)(Levitt,1980;Raison,Lyons,1986).Thus,chill-ing injury is damage to chilling-sensitive plant speciesduringstorageat temperaturesabovethefreezingpointoftissues,butlowerthan15°C.Chilling-sensitive plants aretheplantssensitivetochillinganddamagedatchill-ingtemperatures.

Theabilityofplantsinavegetativestatetosur-vivetheactionofchillingtemperatureswithoutharmtothefuturegrowthanddevelopmentiscalledcoldresist-ance(Генкель,Кушниренко,1966;Коровин,1969).Inturn, chilling-sensitive plants are sensitive to chillingandafterprolongedstorageinthesetemperaturesexter-nalsymptomsof injuryaredevelopedanddeathof the

organismoccurs (Table).Plants,whichhave thevisualinjuries at temperatures above 15°C, are called “verysensitive to chilling” (Raison,Lyons, 1986).Anumberoftropicalorsubtropicalplants,suchasrice,maize,to-mato,cucumber,cotton,soybeans,etc.,introducedinthehigherlatitudeshavenotacquiredsubstantialresistancetochilling,despitethelonghistoryofcultivationintem-perateregions(Wilson,1985).

Chilling temperatureseffectsonplants in tem-perateclimatesleadtoareductionorcompletecropfailureduetoeitherdirectdamageordelayedmaturation.Evenasmalldropintemperature,causingnovisibledamagetochilling-sensitiveplants,causedtoupto50%reductionintheirproductivity(Коровин,1969).Forexample,chillingdamage toyoungcottonplants inU.S. in1980resultedinthelossof60milliondollars.InSouthandSouth-EastAsia,high-yieldingvarietiesofricearenotgrowninareasofmorethan7millionhectares,wheretheymaybeex-posedtochillingtemperatures(Wilson,1985).Obviously,theproblemofplantresistancetochillingtemperatures,whichoftenoccurinspringandautumninmanycount-ries,isimportantforpracticalplantbreeding.

112 Chilling injury in chilling-sensitive plants: a review

Themostnoticeablevisualsymptomsofchill-ing injury in herbaceous plants are leaf and hypocotylwilting (Mitchell,Madore, 1992;Frenkel,Erez, 1996),whichoftenprecedestheappearanceofinfiltration(wa-tersaturatedareas)(McMahonetal.,1994;Sharometal.,1994), theappearanceofsurfacepitsandlargecavities(Dodds, Ludford, 1990; Cabrera et al., 1992; Frenkel,Erez,1996),discolorationofleavesandinternaltissues(Sharometal.,1994;Yoshidaetal.,1996;Tsudaetal.,2003), acceleratedagingand ruptureof chilled tissues,slow, incomplete or uneven ripening (Dodds, Ludford,1990), accompanied by a deterioration of the structureandflavor (Harker,Maindonald,1994;Ventura,Mend-linger,1999);increasedsusceptibilitytodecay(Cabreraet al., 1992),dryingof the edgesor tipsof leafblades(Жолкевич,1955;Hahn,Walbot,1989)andinthecaseof prolonged chilling – leaf necrosis and plant death(Mitchell,Madore,1992;Capell,Dörffling,1993;Fren-kel, Erez, 1996).According to Skog (1998), potentialsymptomsof chilling injury are surface lesions,water-soakingoftissues,waterloss,desiccationorshrivelling,internaldiscolouration,tissuebreakdown,failureoffruittoripen,orunevenorslowripening,acceleratedsenes-cenceandethyleneproduction,shortenedstorageorshelflife,compositionalchanges,lossofgrowthorsproutingcapability, wilting and increased decay due to leakageofplantmetabolites,whichencouragegrowthofmicro-organisms,especiallyfungi.

Seeds of chilling-sensitive plants do not ger-minate at temperatures below 10–15°C (Wolk,Herner,1982;Ismailetal.,1997),andbythisparametercanbedivided into twomaingroups (Markowski, 1988).Theseedsofthefirstgroup(representatives–Solanaceaeandpumpkin) are not damaged during imbibitions at chill-ing temperatures.With temperature increase theygrownormally,butinitiationofrootgrowthleadstounderde-velopedroottiptissue,tissuenecrosisaftertheroottip,damagetothecortexorstele(Bradow,1990;Jennings,Saltveit,1994).Thesecondgroupincludesplantswhoseseedsareparticularlysensitivetolowtemperaturesduringimbibitionsandmaynotgerminateatlowtemperatures:beans, soybeans, chickpeas, corn, and cotton (Gorecki

et al.,1990;Zemetra,Cuany,1991).There,plantdamageisincreasedbysoilpathogens,althoughitisasecondaryfactor(Wolk,Herner,1982).

Acharacteristiceffectofchilling temperatureson chilling-sensitive plants is growth slowing, morepronouncedinsusceptiblespeciesandvarietiesincom-parisonwiththetolerantspecies(Tingetal.,1991;Rab,Saltveit,1996a;Venemaetal.,1999).Inaddition,thereisadelayeddevelopmentandlengtheningofthegrow-ing season (Skrudlik, Koscielniak, 1996).At the sametimeapicalconedifferentiationisdelayed,reducingthenumber of newly formed plant organs and the rate oftheir occurrence, the structureof roots is changed, andflowering rate, fruit and seed filling are reduced (Buisetal.,1988,Barlow,Adam,1989;Rab,Saltveit,1996b,Skrudlik,Koscielniak,1996;Lejeune,Bernier,1996).

Cytophysiological changes caused by chilling in the chilling-sensitive plants Chilling temperatures cause multiple disor-

ganizationsofthecellsultrastructureinsensitiveplants(Kratsch,Wise,2000).Thedamagingeffectofchillingisoftenrevealedinthedestructionofthecellsmembranesystems, leading to lossofcell compartmentation (Gu-tierrezetal.,1992).Itwasshowntheswellingandrup-tureoftheplasmalemma(Taoetal.,1991),destructionoftheendoplasmicreticulumandvesiculationofitsmem-branes(Marangonietal.,1990),andchangesoftheGolgiapparatus(Yoshidaetal.,1989).Uponchilling,themostnoticeablechangeswereshowninthestructureofmito-chondria,namelytheirswellinganddegeneration(Guti-errezetal.,1992),matrixenlightenment,cristaeshorten-ingandadecreaseintheirnumber,whichshouldleadtoareducingofoxidativephosphorylation(Desantisetal.,1999;Yinetal.,2009).Chillingtemperaturesdisturbedthe formation of prolamellar plastids (Ikeda, Toyama,1987), caused swelling and structural changes in chlo-roplasts,namelydestructionofchloroplastsmembranes,disintegrationofgrains,reductionofribosomenumber,

Table.Thelistofthevegetables,sensitivetochillingtemperatures,thelowestsafestorage/handlingtemperatureandthesymptomsofchillinginjury(DeEll,2004)

Crop LowestsafetemperatureºC Chillinginjurysymptoms

Asparagus 0–2 dull,gray-green,limptipsBean(snap) 7 pittingandrussetingCucumber 7 pitting,water-soakedlesions,decayEggplant 7 surfacescald,Alternariarot,seedblackeningOkra 7 discoloration,water-soakedareas,pitting,decayPepper 7 pitting,Alternariarot,seedblackeningPotato 2 mahoganybrowning,sweeteningPumpkin 10 decay,especiallyAlternariarotSquash 10 decay,especiallyAlternariarot

Sweetpotato 10 decay,pitting,internaldiscolorationTomato(ripe) 7–10 water-soaking,softening,decay

Tomato(mature-green) 13 poorcolourwhenripe,Alternariarot

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 113

inducedtheformationofperipheralreticulum(smallve-siclesofenvelope)andtheaccumulationoflipidbodies,andthedisappearanceofstarchgrains(Gutierrezetal.,1992;Kratsch,Wise,2000).

The sharp decrease in the number of divid-ingcellsduringchillingdecreased themitotic index inapexesandinthebasalpartofyoungleaves(Зауралов,1993;Лукаткинидр.,2010).Therelationshipbetweenthecellcyclephaseswaschangedtoo(Francis,Barlow,1988;Rymenetal.,2007).Significantreductionofcellgrowth inrootelongationzoneat lowtemperaturewasshown (Ikeda et al., 1999). Chilling temperatures causeaccelerated cell differentiation. So, in chilled root apex-esofmaizetheprogressingdifferentiationofsomecelllineswasobserved(Zavala,Lin,1989).Inhibitionofcellgrowthleadstosignificantchangesingrowthoftheplantanditsorgans(Rab,Saltveit,1996a;Rymenetal.,2007;Straussetal.,2007).

Colloid-chemicalpropertiesofthecytoplasmareaffected by chilling too (Генкель, Кушниренко, 1966;Wang, 1982; Minorski, 1985). So, cytoplasm viscositydecreasesataslightchillingdue to the increaseofcol-loids dispersion anddecayof structural formations, butitgrowsatastrongandlong-termchillingduetocoagu-lationofstructuralproteins (Жолкевич,1955;Генкель,Кушниренко,1966;Zhangetal.,1995).Thecontentofsolubleproteinswasdecreasedinchilling-sensitiveplantsat low temperatures, and this led to a reduction in theisoelectriczoneofthecytoplasm(Дроздовидр.,1977).ChillingofsensitiveplantsleadstoashiftofintracellularpH(Yoshida,1994;Zauralovetal.,1997;Kasamoet al.,2000) and an increase in cell membranes permeability(Markowskietal.,1990;Lukatkinetal.,1993,Лукаткини др., 2007).A very sensitive indicator of the cell is acytoplasmic streaming, which was stopped for severalminutesafterchillingofsensitiveplants(tomato,tobacco,andpumpkin)to10°C(Lewis,1961).Otherstudiesfoundagradualdecelerationofthecytoplasmicstreaminginthetrichomesoftomato,watermelon,spiderwortanddigitaliswhenthetemperaturedroppedbelow5°C(Pattersonetal.,1979),andthestreamingratecorrelatedwithresistanceofplantstochillingtemperature.Thechangesincyclosisre-sponsetochillingwereassociatedwithchangesinthecy-toplasmviscosity,ATP(adenosine-5’-triphosphate)level,sensitivitytochillingofenzymesystemsresponsiblefortheuseofATPfor thestreaming,withdamagingof thecytoskeleton(Pattersonetal.,1979;Wang,1982;Woodsetal.,1984b;Minorsky,1985).

Effect of chilling on the physio-logical processes in chilling-sensi-tive plants Incubation of chilling-sensitive plants at low

temperaturesinducesdisturbancesinphysiologicalpro-cesses: water regime, mineral nutrition, photosynthe-sis, respirationand totalmetabolism(Жолкевич,1955;Генкель,Кушниренко,1966;Levitt,1980;Wang,1982;Graham,Patterson,1982).

Water regime. Chilling of sensitive plants af-fectsallcomponentsofwaterregimeandcauseslossof

water, resulting instrongwilting (Vernierietal.,1991;Boeseetal.,1997;Bloometal.,2004).Itisbasedonthetwomainfactors:rapiddeclineintheabilityofrootstoabsorbwaterandtransportittotheshoots(Bolgeretal.,1992)andreducedabilitytoclosestomatainresponsetosubsequentwaterdeficit(Pardossietal.,1992;Wilkinsonetal.,2001;Bloometal.,2004).Insufficientwatersup-plyprovokesrapiddropinwaterpotentialofleavesdur-ingthefirsthoursofcooling(Wolfe,1991;Capell,Dörf-fling,1993;Boeseet al.,1997).Thedegreeofchillingdamageofplantscanbereducedbymeansofpreventingthedisturbanceofthewaterregime(Vernierietal.,1991;Wolfe,1991;Pardossietal.,1992;Janowiak,Dörffling,1996;Boeseetal.,1997).

Mineral nutrition. Low temperatures have aneffectonmineralnutritionofplants.Absorptionofionsbyrootsisdifficult,aswellastheirmovementintheabove-ground parts of plants.The distribution of nutrients be-tweentheplantorgansisdisrupted,withgeneraldecreasein the nutrient content in the plant (Лукаткин, 2002).Chillingofplantsleadstoadecreaseintheactivityofnit-ratereductase,reductioninthenitrogenincorporationintheaminoacidsandproteins,andadropintheproportionoforganicphosphorusandanincreaseininorganicPcon-tent(Holobradaetal.,1981;Ziaetal.,1994),whichisaconsequenceofabreachofphosphorylationandenhanceddecompositionoforganicPcompounds.Mechanisms toreducetheabsorptionofnutrientsbychillingtemperaturesinclude depression of respiration and/or oxidative phos-phorylation, impair enzymatic transport systems associ-atedwithconformationalproteinschangesinmembranes,changes in membrane potential, reducing the supply ofATP toH+-transportingATPase, aswell as lowering thepermeabilitycoefficientsforions(Clarksonetal.,1988).

Respiratory rate. The consequence of keepingplants at chilling temperatures is a change in respira-tory rate.There is evidence of its decline, occurring asaresultofdestructionofthemitochondriastructure,thegeneralloweringofkineticenergy,andtheinhibitionofsomeenzymes(Lyonsetal.,1979;Yoshidaetal.,1989;Prasadetal.,1994a;Lawrence,Holaday,2000;Munroet al.,2004).Otherauthorshaveobservedthatanincreaseinrespiratoryactivityduringchillingandprolongedele-vation of the respiration rate after cold exposure mayindicateirreversiblemetabolicdysfunctionandaccumu-lation of incompletely oxidized intermediates (Wilson,1978; Steward et al., 1990;Yadegari et al., 2008).Themechanismofstimulationisunknown,butitispossibletoassumethatitwastheresultofuncouplingofoxidativephosphorylation(Wang,1982).Itisalsopossiblethattheincreasedrespirationreflectsareactiontothetransferofplantsfromchillingtemperaturestothehighertempera-tures(Zauralov,Lukatkin,1997).Asaresultofdecreasedrespiration and increased consumption of energy-richphosphatesatchillingtemperaturesisareductionofATPlevels (Takeda et al., 1995; Lawrence,Holaday, 2000).Cold-tolerant crop species have greater temperaturehomeostasisofleafrespirationthancold-sensitivespecies(Yamori et al., 2009). Chilling reduces the cytochromepathoftheelectrontransportinseedlings(Prasadetal.,

114 Chilling injury in chilling-sensitive plants: a review

1994a;Reyes,Jennings,1997)andenhancesalternativerespiratory pathways (Ordentlich et al., 1991; Purvis,Shewfeld,1993;Gonzalez-Meieretal.,1999;Ribascarboetal.,2000).Perhapsthesealternativepathwaysplayanimportant role in plant adaptation to chilling (Stewardet al.,1990).Theyaretriggeredatthechillingperiodandincreasewith decreasing temperature (Ordentlich et al.,1991). These alternative pathways induced by chillingcausedadecreaseinsuperoxidegeneratedinmitochon-dria(Purvis,Shewfelt,1993;Huetal.,2008).

Rate of photosynthesis.Duringandafterchill-ing,therateofphotosynthesisintheleavesofchilling-sensitive plants decreased and this is more related todecreasing temperature and lengthening of chilling pe-riodandpersistedforalongtimeaftertransferofchilledplantsintheheat(Jandaetal.,1994;Boeseetal.,1997;Sonoike,1998;Gesch,Heilman,1999;Allen,Ort,2001;VanHeerdenetal.,2003;Lietal.,2004;Straussetal.,2007).Thephysiologicalreasonsforthesuppressionofphotosynthesisaretheinhibitionofphloemtransportofcarbohydrates from the leaves, stomatal limitation, de-structionofthephotosyntheticapparatus,damagetowa-ter-splitting complex of photosystem I, inhibiting elec-tron transport, and uncoupling of electron transfer andenergystorage,changesintheactivityandinhibitionofsynthesisofkeyenzymesoftheCalvincycleandC4-way(Yordanov,1992;Nieetal.,1992;McMahonetal.,1994;Gesch,Heilman,1996;Yoshidaetal.,1996;Terashimaetal.,1998;Kingston-Smithetal.,1999;Venemaetal.,1999;VanHeerden et al., 2003;Garstka et al., 2007).Cold-sensitive crop species have smaller temperaturehomeostasis of leaf photosynthesis than cold-tolerantspecies(Yamorietal.,2009).

Chilling of sensitive plants in light hadmuchstrongereffectsonthephotosyntheticapparatusthanchill-inginthedark(Szalaietal.,1997;Alam,Jacob,2002).Itisconsideredthatadisturbanceofphotosynthesisduetothelightchillingislargelyaresultofphotoinhibitionand photooxidation occurring in the chilling-sensitiveplants (butnot cold-resistant), asa resultof theexcessenergy of excitation obtained by photosynthetic appa-ratus.Photoinhibitionofphotosynthesis is theloweringof photosynthetic activity under excessive illuminationduring chilling (Nie et al., 1992;Wang et al., 2008 a).It increaseswithdecreasingtemperatureandincreasinglightintensity(Jandaetal.,1994;Greer,1995).Primarysite photoinhibition is the photosystem II. However, itwasdiscoveredthatphotoinhibitionoccursatrelativelylowlightandlowtemperature,andthemainsiteofdam-ageisphotosystemI(Sonoike,1996;1999).Decreaseofphotosynthesisatchillingtemperaturesmaybeaconse-quenceofphotooxidativedamagetothephotosystemsinthemembranesofchloroplasts,which ismanifestedbyincreasedlipidperoxidation,degradationofchlorophyll,carotene,andxanthophylls(Fryeretal.,1998;Kingston-Smith,Foyer,2000).Itwascausedbyactivatedoxygenspeciesandwasassociatedwithreducedantioxidantac-tivityof tissues (Leipner et al., 1997;Terashimaet al.,1998;Leipneretal.,2000;Alam,Jacob,2002).

The inactivation of metabolism is a complexfunction of both temperature value and duration of its

effects(Breidenbachetal.,1990).Itisdifficulttodistin-guishbetweenmetabolic changes in chilledplants, oc-curringasaresultofchillingdamageorprecedingit. So,protein content in tissues of chilling-sensitive plants isusuallyreducedwithchilling,mainlyduetoasharpde-creaseinsynthesis(Levitt,1980;Mercadoetal.,1997).Asaresultofinhibitionofproteinsynthesisistheincreaseintheleveloffreeaminoacids(Kanda,1998),especiallyproline(Duncan,Widholm,1991;Jouveetal.,1993),ac-cumulationofwhichisconsideredastheelementofthemechanismofcoldhardening.Lowtemperaturesreducetheactivityofmanyenzymes(Guy,1990).Thereasonsforthismaybethedissociationofmultimericenzymes,protein-lipidandhydrophobicinteractionsdisorders,re-versible changes in kinetic properties of enzymes andallosteric regulation (Graham,Patterson, 1982;Matsuoet al.,1994).Keepingthechilling-sensitiveplantsatlowtemperaturetheconcentrationofsolublesugarsincreasedand starch contentdecreased significantly in all organs(Jouve et al., 1993). Changes in the level of carbohy-dratescausedbythechillingareassociatedwithimpairedrespiration,photosynthesis,andtheactivityofenzymesofcarbohydratemetabolism(Ebrahimetal.,1998).

Variousphysiologicalfunctionsarenotequallysensitivetocooling(Wilson,1978;Yoshidaetal.,1989).Physiologicaldysfunctioninducedbylowtemperatures,can be converted (or function restored) if the tissue isreturned to normal temperature before the appearanceofdamage.Thus,temperaturesbelowcriticaltriggerthedisturbancesofphysiologicalfunctions,butthesedistur-bancesdonotleadtovisiblemanifestationsofinjuryortochangesintherateofgrowthanddevelopment,sincedisturbancesofthephysiologicalprocessesarereversibleuntiltheybecomestable(Lyonsetal.,1979).Irreversibledamagearisingfromprolongedchillingmaybecausedbytheaccumulationoftoxicmetabolites(Lyons,1973;Graham,Patterson,1982).

Molecular-genetic changes During growth, plants are exposed to various

abiotic stresses such as low temperature, salt, drought,flooding,heat,heavymetaltoxicity,etc.Plantsmustbeable to respond appropriately to the stress. In nature,manystressesaffectplantstogether.Duetothecomplexnatureof stress,multiple sensors aremore likely toberesponsibleforperceptionofthestress.Aftertheinitialrecognition of the stress, a signal transduction cascadeisinvoked.Secondarymessengersrelaythesignal,ulti-matelyactivatingstress-responsivegenesgeneratingtheinitialstressresponse(Mahajan,Tuteja,2005;Grennan,2006;Duchovskisetal.,2006;Oktemetal.,2008).NowitisknownthatdroughtandsaltstresseswerefoundtoinducemanyofthesamegenesasdiddroughtstressandABA application or response to both cold and salinitystresses is regulatedbygenesofcalcium-signalingandnucleicacidpathways(Mahajan,Tuteja,2005;Grennan,2006).Apparently,thatchillingsensitivityisgenericallydetermined, and the species and varietal differences ofchillingresistanceareconnectedtodefinitegenes(Pra-sadetal.,1994a;Sabehatetal.,1998;Grennan,2006;Suetal.,2010).Therewereidentified634chilling-respon-

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 115

sivegenesinthechilling-lethalmutantsofArabidopsis.Thisgenelistincludesgenesrelatedtolipidmetabolism,chloroplastfunction,carbohydratemetabolism,freeradi-caldetoxification(Provartetal.,2003).Insweetpotatothere were examined transcriptional regulation of ex-pansingenesinresponsetovariouschillingtemperatures(Nohetal.,2009).90%ofthe108cDNAclonesoflowtemperature-grownsunflowerplantsexpressedatvarioustemperaturesweretobedown-regulatedandinvolvedinthemetabolismof carbohydrate, protein synthesis, sig-nal transduction and transport function (Hewezi et al.,2006).Responseofplantstolowtemperatureisassoci-atedwith a change in the rate of gene transcription oflow molecular weight proteins. Even very brief plantexposures to chilling temperature are sufficient for theappearanceof stressproteins.Cooling several chilling-sensitive plants (corn, rice,waving, tomato, cucumber,peanuts,cotton,sunflower,etc.)inducedthesynthesisofmorethan20polypeptideswithmolecularmassesof14to94kDa,whichweresimilartoHSP,inducedbyhea-ting,ordifferentfromthem(Hahn,Walbot,1989;Pareeketal.,1997;Lietal.,1999).Coldacclimationofchilling-sensitive plants is also accompaniedby the changes insynthesisofseveralproteins(Hahn,Walbot,1989;Guy,1990;Cabaneetal.,1993;Andersonetal.,1994).Chill-ingleadstodifferentialexpression(down-regulatedandup-regulated)ofgenesencodingdifferentproteins(VanHeerdenetal.,2003;Yamagitchi-Shinozaki,Shinozaki,2006;Rymenet al.,2007;Wangetal.,2008a).

Cell membrane changes Low temperaturesalter thephysicalproperties

ofcellmembranes.Chillingofsensitiveplantsleadstomultiplechangesintheirmembranes,namelyreducethemembrane elasticity, decreasing their compliance andpreventing lipid inclusion in their composition, lowerlipid fluidity, thereby reducing the activity of severalmembrane-bound enzymes, including H+-ATPase, in-creasethelateraldiffusionofphospholipids,sterolsandproteinsintheplasmamembrane(Quinn,1988;Kasamoet al., 1992;Koster et al., 1994;Kasamoet al., 2000).Thephasetransitionofcellmembranesoccursatchillingtemperaturesinchilling-sensitiveplants(butnotcold-re-sistant),andmembranesfromflexibleliquid-crystalturnintosolid-gelstructure,leadingtochangesintheproper-tiesofmembranesandmembrane-boundenzymeactivity(Raisonetal.,1971;Lyons,1973).Itisbelievedthatthephase transitions of even small fractions ofmembranelipidsresultintheformationofsoliddomainsthatcausecellmembraneandcelldamage(Thompson,1989).Thephaseseparationofthemembranecomponentsislinkedwithphasetransition.Thisphaseseparationischaracter-izedbytheappearanceofgel-likesitesintheplaneofthebilayerlipid.Thesesitesarepartiallyorcompletelyfreeofproteins.Whenthecellswerenotdamaged,theforma-tionof thesemicrodomainswasofa temporarynature.The disturbances became irreversible with long-termchilling, and coincided with the appearance of visualsymptoms of damage (Platt-Aloia, Thomson, 1987).Anumberofspeciesoftropicaloriginhavethelateralphase

separationtemperaturesomehigher(15°C)thaninplantsfromtemperatezones(6–8°C)suggestingthatplantsre-ducethefreezingpointofmembraneswiththedistancefromzoneoftropicalorigin(Terzaghietal.,1989).

Thelipidcomponentsofmembranesareconside-redthemostimportantforthemembranesfunctioningatlowtemperatures(Lyons,1973;Lyonsetal.,1979;Nish-ida,Murata, 1996; Routaboul et al., 2000). Chilling ofsensitiveplantscausesdegradationofgalacto-andphos-pholipids,resultinginincreasedfreefattyacids.Chillingofplantsandfruitschangedthemolarratioofsterolsandincreased the ratio of sterols/phospholipids,whichmaybeonereasonforloweringthemembranefluiditywhencooled (Wang et al., 1992; Whitaker, 1993). Chilling-sensitiveplantsgrowingatlowerhardeningtemperatureshowanincreaseinunsaturatedfattyacids,phospholipidsaccumulation in the tissues, lower levels of sterols andtheiresters,whichreducedtheratioofsterol/PL(Kasamoetal.,1992;Kojimaetal.,1998;Kaniugaetal.,1999).

Exposureofchilling-sensitiveplantstolowtem-peraturechangesproteincomponentsintheirmembranes.Thesechangesinclude:disordersofproteinstructure,thereleaseofnon-proteincomponentsofenzymes,changesinallostericcontrolofactivityandkineticparameters.Atthesametimetheprotein-lipidinteractionsinthemem-branehaveasignificantroleinthelow-temperatureinac-tivationofenzymes(Graham,Patterson,1982).

Changesinthestateofmembranesmayleadtosecondary or irreversible reactions, depending on tem-perature,exposuredurationandsensitivityofthespecies.Afteraprolongedchilling,thesechangeswillcauselossofmembraneintegrityandcompartmentation,theleakageofsolutes,decreaseofoxidativeactivityofmitochondria,increase of the activation energy of membrane-boundenzymes, reduce the rate of photosynthesis, cause dis-ruptionandimbalanceofmetabolism,theaccumulationoftoxicsubstancesandthesymptomsofchillinginjury(Lyons,1973;Levitt,1980;Quinn,1988).

The theory of chilling injury In the initial period of studying, the influence

of low temperatures on chilling-sensitive plants waswidespread theorySachs about thedeathofplantsduetodisordersofwaterregime.However,subsequentstud-ies have shown one-sided interpretation of these data.Changesinwaterregimewerelikelyduetodisturbancesof other processes. In themiddle of the 20th century itwasfoundthatthewiltingoftheaerialorgansisnotduetoexcessivetranspirationoverslowsupplyofwaterbyroots,butistheresultofloweringwater-holdingcapaci-tyduetodisorganizationofthecytoplasmstructureandmetabolicdecompensation(Жолкевич,1955).

Basedonobservationsofchangesinprotoplas-micviscosityatlowtemperatures,ithasbeensuggestedthat this cell property plays a key role in the damage(Belehradek,1935).Thelesstolerantplantstocold,thehighertemperatureatwhichcytoplasmgelingoccursandthe faster increases the viscosity of the cytoplasm.Atconsiderableincreaseinviscositytherateofbiochemicalreactionsinthecytoplasmisdecreased,themetabolism

116 Chilling injury in chilling-sensitive plants: a review

isdisturbed,whichleadstodysfunctionofphysiologicalprocesses.However,itwasshownthatcucumberplantsdecreasedviscositywithincreasingchillingduration,andtheworstafter2.5–4days,andthenincreasedgradually,reachingviscositylevelofnon-chilledplant,butshortlybefore the complete withering away could exceed thislevel.Anincreaseinviscosityofhighlydamagedplantsalso continued after the transfer into heat. “Dying” in-crease protoplasmic viscosity and is the final stage ofdeath,whichhasnorelationtothefirststageofdamage,butonlydeepensit(Жолкевич,1955).

According to data of some research from the1950–60s, the main result of chilling-sensitive plantsdamageduring long-termcooling is ametabolic disor-der. In this case, the death of plants occurs due to thepredominanceofthedestructionoverthesynthesis.Oneof theprobable causesof theprotoplasmstructuredis-organizationandirreversiblechangesinthemetabolismis the uncouplingbetween the energyobtainingduringrespiration and its effective consumption (Жолкевич,1955).However,metabolicchangesoccuronlyaftersuf-ficientlylongchillingofplantsandmostofthemaswellaschangesinwaterregimearenottheprimarycauseofchillinginjury.So,shorterdurationofchillingdoesnotcauseasharpinhibitionofmetabolism.Accumulationoftoxicproductsofmetabolismasaresultoftheimbalancethatoccursduringchillingofsensitiveplantsandisoneofthemainreasonsofchillinginjury(Жолкевич,1955,Генкель,Кушниренко,1966),whichoftenoccursafterthe return of chilled plants to heat, i.e. is the result ofsecondarydysfunctionassociatedwithheating.

Amongthehypothesesabouttheprimaryeventsthattriggertheoccurrenceofreactiontolowertempera-tures,hypothesisofphasechangeprevailedinthe1970s,according towhich thechilling-inducedchanges in themolecularorderingofmembranelipidsmaybethecauseof chilling injury (Raison et al., 1971).These changesincrease thedamagebyloweringtheATPlevels,meta-bolicimbalancesandincreasingmembranepermeability(Lyons,1973).However,allthesechangesdonotoccurimmediatelyafterthestartofchillingandarelikelytobesecondary disorders (Minorsky, 1985).The increase inmembranepermeabilityduetothelow-temperatureexpo-sure(“membranesleakage”)shouldbequick,registeredinthefirstfewminutesafterplacingthetissueatchillingtemperatures,inaccordancewiththehypothesisofphasetransitions.Inreality,thisdoesnothappen,andoftenpas-sivepermeabilityisnotincreased(Pattersonet al.,1979).Moreover,theincreaseinelectrolyteleakageislikelyduetochilling-inducedwaterstress,whichhasbeenrevealedto be considerably weaker in an atmosphere saturatedwithwater(Guinn,1971).Atthesametimeitisnotewor-thythatthelowunsaturationofmembranousphospholi-pides,whichisgenericallydetermined,givessensitivityto cold temperatures to chilling-sensitive plants (Zhuet al.,2008).Thedataabouttheintroductionofgenesoffatty acid desaturases in a genome of chilling-senitiveplantsconfirmsthatthisgivessensitiveplantsmorepro-nouncedchillingresistance(Kodamaet al.,1994;Ishiza-

ki-Nishizawaetal.,1996;Hamadaetal.,1998;Murata,Tasaka,1997;Domínguezetal.,2010).

Inrecentyears,specialattentionofresearchershasbeendrawntotwohypothesestoexplaintheinduc-tionofchillingdamagetoarapidincreaseintheconcen-trationoffreecytosolicCa2+([Ca2+]cyt)(Minorsky,1985)and theoccurrenceofoxidative stressuponchillingofchilling-sensitiveplants(Hariyadi,Parkin,1993;Prasadetal.,1994b).

Minorsky(1985)proposedahypothesis toex-plain most of the secondary effects of chilling shock,whichsuddenlyincreases(by1–2orders)intheconcen-trationof[Ca2+]cyt.Itisassumedthattherapidincreasein[Ca2+]cytduetochilling,mayserveastheprimaryphysio-logicalsignalofcoldexposure.Itwasshownthatchang-es in intracellular calcium compartmentation in chilledplants,leadingtoanincreasein[Ca2+]cyt,stopcytoplasmicstreaming andaffect thesubcellularstructures (Woodsetal.,1984b).Thereisevidencethatinputof45Ca2+ inmaizerootcellsincreasedby20–25%atatemperatureof2°C(Zocchi,Hanson,1982).Changesin[Ca2+]cyttriggercascade reactions in the cell,which leads to numerousdisturbancesatalllevelsofanorganization.Ourinves-tigationshowsthatchillinginducesabruptreductionofCa2+-ATPaseactivity,whichpumpsoutCa2+inapoplastand/or in intracellular depots (Лукаткин, Еремкина,2002).So,thisenhancesthe[Ca2+]cytlevelincytoplasm.DuringthegrowthofmaizeseedlingsonnutrientmediawithdifferentcalciumstatusmoreintensechillinginjurywasobservedatreducedorenhancedCa2+dosesincom-parisonwithoptimaldose(Lukatkin,Isaikina,1997).

In recent years, the calcium hypothesis hasbeen furtherdeveloped inviewofoxidative stress thatoccurswhencoolingthechilling-sensitiveplants.Oxida-tivestressthatoccursduringcoolingofchilling-sensitiveplantsplaysaleadingroleinthetransductionofchillinginjury(Lukatkin,2002a;b;Huetal.,2008).Thereasonwhyproductionoffreeradicalsandreactiveoxygenspe-cies(ROS)increasedissingletoxygen,superoxideanion,hydroxyl radical, hydrogen peroxide (Suzuki, Mittler,2006).TheseROScauseconsiderabledamage tomem-brane lipids and other cellular components (Lukatkinet al.,1995;Lukatkin,2003;Поповидр.,2010).Itwasshownthat[Ca2+]cytchangesareintimatelyconnectedtoan oxidative stress.Oxidative stress causes an immedi-ateincreaseincytosoliccalcium(Priceetal.,1994),act-ingthesameaschillingshock(Knightetal.,1996).Thisreactionistransient,andfinisheswithin1–2minutes.Inturn,[Ca2+]cytinfluencesaleveloffreeradicals,inhibitingactivity of SOD (Price et al., 1994). So, increasing theconcentrationofionizedcalciumcausesincreasedoxida-tivestress(Priceetal.,1994;Lock,Price,1994),i.e.isthesignalamplificationcascadethatcauseschillingdamage.

Summarizedschemeoftheinitiationanddevel-opment of chilling injury in the cells of chilling-sensi-tiveplantsisshowninFigure.Thisschemeincludesallphysiologicalandbiochemicaleventswhichareknownaschillingdamageofsusceptibleplants.

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 117

Ways to improve chilling toler-ance of chilling-sensitive plants Atthepresenttime,toimprovethechillingtol-

erance of sensitive plants various techniques are used,whichcanbedividedintoseveralgroups:thethermalef-fect,chemicaltreatment,theuseofcellularandgeneticengineering.

Thermal effectsincludeslow-temperaturehard-ening,thermalconditioning,intermediatewarming,andtheeffectofheatstress.Thebasisofseedandseedlinghardeningofchilling-sensitiveplantstocold,whichhaslongbeenusedinpracticalplantbreeding,istheadapta-tionoftheorganismintheearlystagesofdevelopment,accompaniedbytheemergenceofspecificstructuralandfunctionalrearrangements(Генкель,Кушниренко,1966,Дроздовидр.,1977).Low-temperaturehardeningproc-ess is associated with the protein-synthesizing system(Титов,Шерудило,1990)andisaccompaniedbyarear-rangementofthehormonalsystemofplants(Талановаидр.,1991;Волковаидр.,1991).

Similartothehardeningisthethermalconditio-ning(“preconditioning”),associatedwithchangesinplantresponsetochillingconnectedwithgrowthtemperatureintheprecedingperiod.Growingplantsat lower tempera-tures leads to acclimation, which increases their resis-tance tochilling (Nieetal.,1992;Leipneret al.,1997;Kingstom-Smithetal.,1999;Leipneretal.,2000;Kato-Noguchi,2007;Поповидр.,2010),aswellasexposureofchilling-sensitiveplantsortheirtissueforsomeperiodoftime(from2to14days)toarelativelyreducedtem-peratures(10...18°C)(Wolk,Herner,1982;Wang,1982;

Ahnetal.,1999).Suchconditioninggives theplantsagreaterdegreeofchillingtoleranceforsometime(Bolgeretal.,1992;Cabaneetal.,1993;Capell,Dörffling,1993;Andersonetal.,1994;Wangetal.,1992;Wang,1993;1995). Conditioning causes changes in physiologicalandbiochemicalprocesses inplants,changesoperationof protein-synthesizing system, leads to the synthesisofnewproteins,possiblyinvolvedinprotectionagainstchilling shock (Marangoni et al., 1990; Cabane et al.,1993;Andersonetal.,1994;Prasadetal.,1994a).Thethermal conditioning is dependent on temperature andlightinthisperiod(Grishenkovaetal.,2006;Лукаткинидр.,2006).

Intermediate warming is another way of ther-malregulationofchillinginjury.Transferofthechilledplants in thewarmafternoonprevented theappearanceofvisible symptomsofdamage, impaired inhibitionofphotosynthesis and transpiration, reduced leaf osmoticpotential(Koscielniaketal.,1996;Koscielniak,Biesaga-Koscielniak, 2000; Skrudlik et al., 2000). Intermediatewarming is often used for storage of chilling-sensitiveplants’fruits(Wang,1982;1993).Itisassumedthatthetemporaryplacementinheatallowsthechilledtissuestometabolize toxicsubstances thataccumulateduring thechillingprocess,orhelpstorestorethecompoundsintis-suesthataredepletedduringchilling(Lyons,1973).

High-temperatureconditioning(heatingforseve-ralminutes)ofseedsandseedlingsinducedincreasedchill-ing-resistanceinplants(Rab,Saltveit,1996b;Mandrich,

Figure.Schemeoftheinitiationanddevelopmentofchillinginjuryinthecellsofchilling-sensitiveplants

118 Chilling injury in chilling-sensitive plants: a review

Saltveit, 2000).This process involves protein synthesis.So,intissuesexposedtoheatstressthereisobservedtheappearance of newmRNAs and proteins that aremain-tainedandevenincreasedafterchilling,butquicklydis-appearat theoptimum temperature (Adnanet al., 1998;Kadyrzhanovaetal.,1998;Sabehatetal.,1998).

Chemical treatmentsofchilling-sensitiveplantsleadtoincreasedchillingtolerance.Theeffectsoftraceele-ments,syntheticgrowthregulators,andantioxidantsweremoststudied.Onegroupofcompounds,themostpromis-ingintermsofincreasingthechillingresistanceofchilling-sensitiveplantsissyntheticanaloguesofphytohormonesandotherplantgrowthregulators.Theefficacy,whichin-ducedanincreasedresistancetochillingwasshownforallgroupsofphytohormones(Генкель,Кушниренко,1966;Володько,1983;Зауралов,Лукаткин,1996).

CytokininsandABAweremosteffectiveofallplantgrowthregulators(Duncan,Widholm,1991;Mitch-ell,Madore,1992;Andersonetal.,1994;Pareeketal.,1997;Заураловидр.,2000;Lukatkinetal.,2003;Lu-katkin,Zauralov,2009;Лукаткин,Овчинникова,2009).Non-hormonalgrowthregulatorsareusedalso inorderto improve the chilling tolerance of cultivated plants.These includepaklobutrazol, chlorocholinchloride,me-fluidid,unikonazolandothertriazoles(Lurieetal.,1994;Feng et al., 2003).The treatment by antioxidants andfree radicals quenching (ethoxyquin, sodium benzoate,glutathione, tyrone, formate, ascorbate, diphenylamine,α-tocopherol,propylgallate)canslowdownthedegrada-tionofunsaturatedfattyacidsandreducechillingdam-ageinchilling-sensitiveplants,leavesandfruits(Lukat-kin,Levina,1997;Michaelietal.,1999;Xuetal.,2000;Kocsyetal.,2001).Increasingthechillingresistanceofchilling-sensitiveplantsisalsoshownforcompoundsofdifferent nature: choline, proline, polyamines, glycinebetaine, alcohols, anesthetics, etc. (Lyons et al., 1979;Wang, 1982; Duncan, Widholm, 1991; Wang, 1993;Frenkel,Erez,1996;Jandaetal.,1999;Shenetal.,2000;Dingetal.,2007;Wangetal.,2008b).Themechanismsoftheiractionaredifferent.Theyincreasethefluidityofmembranes,protectingthemfromfreeradicalperoxida-tion,altertheratiooflipidaswellasproteinconforma-tion,therebyalteractivityofmembraneenzymes,influ-encehormonessynthesis,waterregime,etc.

Cellular and genetic engineeringisanewtrend,whichallowsfundamentalchangesinthechillingresist-anceofchilling-sensitiveplants.Theyarebasedonalargegeneticvariabilityincomponents,controllingsensitivity,ontheonehand,andonthedevelopmentofgenetransfertechnology,transformationandselectionmarkers,ontheotherhand(Greaves,1996;Лукаткин,Дерябин,2009).So,screeningthesurvivingcellsduringchillingofcallusandsuspensionculturesandsubsequentplantregenera-tionyieldedplantswith increasedepigenetic resistancetochillingtemperatures(Dix,1979;Lukatkin,1999;Lu-katkin,Geras’kina,2003;Lukatkin,2010).Somatichy-bridizationmaybeaconvenientwayfortheintroductionofgermplasm,associatedwith resistance tochilling, innewlinesoftomato(Bruggemannetal.,1995;Venemaetal.,2000).The increasedchilling toleranceobserved

intransgenictobaccoplantswithintroducedchloroplastω-3 fatty acid desaturase from Arabidopsis thaliana or Δ9-desaturase from the cyanobacterium Anacystis nidulanswithincreasedlevelsofpolyunsaturatedfattyacidsinmembranelipids(Kodamaetal.,1994;Ishizaki-Nishizawaetal.,1996;Hamadaet al.,1998;Murata,Ta-saka,1997).

Conclusion The literature review shows that the exposure

ofchilling-sensitiveplantstolowtemperaturesleadstodisturbances in all physiological processes –water re-gime,mineralnutrition,photosynthesis, respirationandmetabolism. Inactivation of metabolism, observed atchillingofchilling-sensitiveplantsisacomplexfunctionofbothtemperatureanddurationofexposure.Responseofplantstolowtemperatureexposureisassociatedwithachangeintherateofgenetranscriptionofanumberoflowmolecularweightproteins.

Basedontheauthors’ownresearchandthelite-raturedata, the conceptof colddamagewasproposed,which highlighted the leading role of oxidative stressin the induction of stress response. According to thisconcept, thereweredistinguishedpossibleways to im-provecoldtolerance,whichwerecombinedintoseveralgroups: the thermal effect (low-temperature hardening,thermalconditioning,intermediatewarmingandtheef-fectofheatstress),chemical treatment(traceelements,syntheticgrowthregulators,antioxidants)andtheuseofgeneandcellengineering.

Acknowledgements This research was supported by the RussianMinistryofEducationandScienceundertheAnalyticalDepartmentalTargetProgram“DevelopmentofScientistPotentialofHigherSchool”,ProjectNo.2.1.1/624. Thisworkwascarriedoutwithintheframeworkofthelongtermresearchprogram“Horticulture:agro-bio-logicalbasicsandtechnologiesimplementedbyLithua-nianResearchCentreforAgricultureandForestry”.

Received25112011Accepted06022012

ReferencesAdnanS.,LurieS.,WeN.D.Isolationandcharacterizationofaheat-

inducedgene,Hcit2,encodinganovel16.5Kdaprotein.Ex-pressioncoincideswithheat-inducedtolerancetochillingstress//PlantMolecularBiology.–1998,vol.36,No.6,p.935–939

AhnS.J., ImY.J.,ChungG.C.,ChoB.H. Inducibleexpressionofplasma-membraneH+-ATPase in therootsoffigleafgourdplantsunderchillingroottemperature//PhysiologiaPlantarum.–1999,vol.106,No.1,p.35–40

AlamВ.,JacobJ.Overproductionofphotosyntheticelectronsisas-sociatedwithchillinginjuryingreenleaves//Photosynthetica.–2002,vol.40,No.1,p.91–95

AllenD.J.,OrtD.R.Impactsofchillingtemperaturesonphotosyn-thesisinwarm-climateplants//TrendsinPlantScience.–2001,vol.6,No.1,p.36–42

AndersonM.D.,PrasadT.K.,MartinB.A.,StewartC.R.Differen-tialgeneexpressioninchilling-acclimatedmaizeseedlingsand

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 119

evidencefortheinvolvementofabscisicacidinchillingtole-rance//PlantPhysiology.–1994,vol.105,No.1,p.331–339

BarlowP.W.,AdamJ.S.AnatomicaldisturbancesinprimaryrootsofZea mays followingperiodsofcooltemperature//Environmen-talandExperimentalBotany.–1989,vol.29,No.3,p.323–336

BelehradekH.TemperatureandLivingMatter//ProtoplasmaMono-graph.–1935,vol.8,p.137–162

BloomA.J.,ZwienieckiM.A.,PassiouraJ.В.,RandallL.В.,Hol-brookN.M.,ClairD.A.St.Waterrelationsunderrootchillinginasensitiveandtoleranttomatospecies//Plant,CellandEn-vironment.–2004,vol.27,No.8,p.971–979

BoeseS.R.,WolfeD.W.,MelkonianJ.J.ElevatedCO2mitigateschilling-inducedwaterstressandphotosyntheticreductiondur-ing chilling // Plant,Cell andEnvironment. – 1997, vol. 20,No. 5,p.625–632

BolgerT.P.,UpchurchD.R.,McmichaelB.L.Temperatureeffectsoncottonroothydraulicconductance//EnvironmentalandEx-perimentalBotany.–1992,vol.32,No.1,p.49–54

Bradow J.M. Chilling sensitivity of photosynthetic oil-seedlings.2. Cucurbitaceae // Journal of Experimental Botany. – 1990,vol. 41,No.233,p.1595–1600

BreidenbachR.W.,RankD.R.,FontanaA.J.,HansenLD.,CriddleR.S. Calorimetricdeterminationoftissueresponsestothermalextremesasafunctionoftimeandtemperature//Thermochimi-caActa.–1990,vol.172,p.179–186

BruggemannW.,WennerA.,SakataY.Long-termchillingofyoungtomatoplantsunderlowlight.7.IncreasingchillingtoleranceofphotosynthesisinLycopersicon esculentumbysomatichybridi-zationwithLycopersicon peruvianum//PlantScience.–1995,vol.108,No.1,p.23–30

BuisR.,BarthouH.,RouxB. Effectof temporary chillingon fo-liarandcaulinarygrowthandproductivityinsoybean(Glycine max)//AnnalsofBotany.–1988,vol.61,No.6,p.705–715

CabaneM.,CalvetP.,VincensP.,BoudetA.M. Characterizationofchillingacclimation-relatedproteinsinsoybeanandidentifica-tionofone as amemberof theheat-shockprotein (HSP-70)family//Planta.–1993,vol.190,No.3,p.346–353

CabreraR.M.,SaltveitM.E.,OwensK.Cucumbercultivarsdif-fer in theirresponse tochilling temperatures //Journalof theAmericanSocietyforHorticulturalScience.–1992,vol.117,No.5,p.802–807

CapellВ.,DörfflingK.Genotype-specificdifferencesinchillingtole-ranceofmaizeinrelationtochilling-inducedchangesinwaterstatusandabscisicacidaccumulation//PhysiologiaPlantarum.–1993,vol.88,No.4,p.638–646

ClarksonD.Т.,EarnshawM.J.,WhiteP.A.,CooperH.D. Tempera-turedependentfactorsinfluencingnutrientuptake:ananalysisofresponsesatdifferentlevelsoforganization//PlantandTem-perature:SymposiumofSociety forExperimentalBiology.–Cambridge,UK,1988,p.281–309

DeEll J. Symptoms of chilling injury in vegetables // OntarioMinistry of Agriculture, Food and Rural Affairs. – 2004.<http://www.omafra.gov.on.ca/english/crops/hort/news/hortmatt/2004/18hrt04a5.htm>[accessed11052011]

DesantisA.,LandiP.,GenchiG.Changesofmitochondrialproper-ties inmaizeseedlingsassociatedwithselectionforgermina-tionatlowtemperature.Fattyacidcomposition,cytochromeсoxidase, andadenine-nucleotide translocase activities //PlantPhysiology.–1999,vol.119,No.2,p.743–754

DingZ.-S.,TianS.-P.,ZhengX.-L.ZhouZ.-W.,XuY.Responsesof reactiveoxygenmetabolismandquality inmango fruit toexogenousoxalicacidorsalicylicacidunderchillingtempera-turestress //PhysiologiaPlantarum.–2007,vol.130,No.1,p. 112–121

DixP. J.Cellculturemanipulationsasapotentialbreeding tool //Lowtemperaturestressincropplants.–NewYork,USA,1979,p.463–472

DoddsG.Т.,LudfordP.M.Surfacetopologyofchillinginjuryofto-matofruit//HortScience.–1990,vol.25,No.11,p.1416–1419

DomínguezT.,HernándezM.L.,PennycookeJ.C.,JiménezP.,Mar-tínez-RivasJ.M.,SanzC.,StockingerE.J.,Sánchez-Serrano

J.J.,SanmartínM.Increasingomega-3desaturaseexpressionintomatoresultsinalteredaromaprofileandenhancedresist-ancetocoldstress//PlantPhysiology.–2010,vol.153,No. 2,p.655–665

Duchovskis P., Brazaitytė A., Juknys R., Januškaitienė I.,SliesaravičiusA.,RamaškevičienėA.,BurbulisN.,ŠikšnianienėJ.B.,BaranauskisK.,DuchovskienėL.,StanysV.,BobinasČ.ChangesofphysiologicalandgeneticindicesofLycopersicon esculentum Mill. by cadmium under different acidicity andnutrition // Polish Journal ofEnvironmentalStudies. – 2006,vol. 15,No.2,p.235–242

DuncanD.R.,WidholmJ.M.Prolineisnotmeprimarydetermina-tionofchillingtoleranceinducedbymannitolorabscisicacidinregenerablemaizecalluscultures//PlantPhysiology.–1991,vol.95,No.4,p.1284–1287

EbrahimM.K.H.,VoggG.,OsmanM.N.E.H.,KomorE. Pho-tosynthetic performance and adaptation of sugarcane at sub-optimal temperatures // Journal of Plant Physiology. – 1998,vol. 153,No.5–6,p.587–592

FengZ.,GuoA.,FengZ..Ameliorationofchillingstressbytriadime-fonincucumberseedlings//PlantGrowthRegulationJournal.–2003,vol.39,No.3,p.277–283

FrancisD.,BarlowP.W.Temperatureandthecellcycle//PlantsandTemperature:SymposiumofSocietyforExperimentalBiology.–Cambridge,UK,1988,p.181–201

FrenkelC.,ErezA.Inductionofchillingtoleranceincucumber(Cu-cumis sativus)seedlingsbyendogenousandappliedethanol//PhysiologiaPlantarum.–1996,vol.96,No.4,p.593–600

FryerM.J.,AndrewsJ.R.,OxboroughK.,BlowersD.A.,BakerN.R. RelationshipbetweenCO2assimilation,photosyntheticelectrontransport,andactiveO2metabolisminleavesofmaizeinthefieldduringperiodsoflowtemperature//PlantPhysiology.–1998,vol.116,No.2,p.571–580

GarstkaM.,Venema J.H..Runiak I.,GieczewskaК.,RosiakM.,Koziol-LipinskaJ.,KierdaszukB.,VredenbergW.J.,Mostows-kaA.Contrastingeffectofdark-chillingonchloroplaststruc-tureandarrangementofchlorophyll-proteincomplexesinpeaandtomato:plantswithadifferentsusceptibilitytonon-freezingtemperature//Planta.–2007,vol.226,No.5,p.1165–1181

GeschR.W.,Heilman J. L.Chilling-induced photoinhibition andrecovery in rice // PlantPhysiology. – 1996, vol. 111,No. 2(suppl.),p.70

GeschR.W.,HeilmanJ.L.Responsesofphotosynthesisandphos-phorylationofthelight-harvestingcomplexofphotosystemIIto chilling temperature in ecologically divergent cultivars ofrice//EnvironmentalandExperimentalBotany.–1999,vol. 41,No.3,p.257–266

Gonzalez-MelerM.A.,RibascarboM.,GilesL.,SiedowJ.N. Theeffectofgrowthandmeasurementtemperatureontheactivityof the alternative respiratory pathway // Plant Physiology. –1999,vol.120,No.3,p.765–772

GoreckiRJ.,FordonskiG.,BieniaszewskiТ.,JacunskiK. Compara-tivestudiesonchillingsensitivityinsomelegumeseeds//ActaPhysiologiaePlantarum.–1990,vol.12,No.2,p.149–158

GrahamD.,PattersonB.D.Responsesofplantstolow,non-freezingtemperatures:proteins,metabolism,andacclimation//AnnualReviewofPlantPhysiology.–1982,vol.33,p.347–372

GreavesJ.A.Improvingsuboptimaltemperaturetoleranceinmaize:the search for variation // Journal ofExperimentalBotany. –1996,vol.47,No.296,p.307–323

GreerD.H.Effectofdailyphotonreceipton thesusceptibilityofdwarfbean(Phaseolus vulgarisL.)leavestophotoinhibitionofphotosynthesis//Planta.–1995,vol.197,No.1,p.31–38

GrennanA.K.Abioticstress in rice.An“omic”approach //PlantPhysiology.–2006,vol.140,No.4,p.1139–1141

GrishenkovaN.N.,LukatkinA.S.,StanysV.A.,DuchovskisP.V.Lighteffectsonchillingadaptationofmaizeseedlings//Rus-sianAgriculturalSciences.–2006,No.10,p.1–3

GuinnG.Chillinginjuryincottonseedlings:changesinpermeabilityofcotyledons//CropScience.–1971,vol.11,p.101–102

120 Chilling injury in chilling-sensitive plants: a review

GutierrezM.,SolaM.D.,PascualL.,Rodriguez-GarciaM.I.,Var-gasA.M. Ultrastructuralchangesincherimoyafruitinjuredbychilling//FoodStructure.–1992,vol.11,No.4,p.323–332

GuyC.L.Cold acclimation and freezing stress tolerance: role ofproteinmetabolism//AnnualReviewofPlantPhysiologyandPlantMolecularBiology.–1990,vol.41,p.187–223

HahnM.,WalbotV.Effectofcold-treatmentonproteinsynthesisandmRNAlevelsinriceleaves//PlantPhysiology.–1989,vol.91,No.3,p.930–938

HamadaТ.,KodamaH.,TakeshitaK.,UtsumiH.,IbaK.Characteri-zationoftransgenictobaccowithanincreasedα-linolenicacidlevel//PlantPhysiology.–1998,vol.118,No.2,p.591–598

Hariyadi P., ParkinK. L. Chilling-induced oxidative stress in cu-cumber(Cucumis sativusL.cv.Calypso)seedlings//JournalofPlantPhysiology.–1993,vol.141,p.733–738

HarkerF.R.,MaindonaldJ.H.Ripeningofnectarinefruit.Changesinthecellwall,vacuole,andmembranesdetectedusingelec-trical impedance measurements // Plant Physiology. – 1994,vol. 106,No.l,p.165–171

HeweziT., LegerM.,ElKayalW.,GentzbittelL.Transcriptionalprofilingofsunflowerplantsgrowingunderlowtemperaturesreveals an extensive down-regulation of gene expression as-sociated with chilling sensitivity // Journal of ExperimentalBotany.–2006,vol.57,p.3109–3122

HolobradaM.,MistrikJ.,KolekJ.TheeffectoftemperatureontheuptakeandlossofanionsbyseedlingrootsofZea maysL.//BiologiaPlantarum.–1981,vol.23,No.4,p.241–248

Hu W.H.,Song X.S.,Shi K.,Xia X.J.,Zhou Y.H.,Yu J.Q.Changesinelectrontransport,superoxidedismutaseandascorbateper-oxidaseisoenzymesinchloroplastsandmitochondriaofcucum-berleavesasinfluencedbychilling//Photosynthetica.–2008,vol.46, No.4,p.581–588

IkedaТ.,NonamiH.,FukuyamaТ.,HashimotoY. Hydraulic con-tribution in cell elongationof tissue-culturedplants.Growth-retardation induced by osmotic and temperature stresses andaddition of 2,4-dichlorophenoxyacetic acid and benzylami-nopurine//Plant,CellandEnvironment.–1999,vol.22,No. 8,p. 899–912

IkedaТ.,ТоуаmаS.Studiesonultrastructureandfunctionofphoto-syntheticapparatusinricecells.II.Effectoflowtemperatureonearlydevelopmentofriceplastids//JapaneseJournalofCropScience.–1987,vol.56,No.4,p.632–640

Ishizaki-NishizawaO., FujiiТ.,AzumaM., SekiguchiK.,MurataN.,OhtaniТ.,ToguriT. Lowtemperatureresistanceofhigherplants is significantly enhancedbyanonspecificcyanobacte-rialdesaturase//NatureBiotechnology.–1996,vol.14,No.8,p. 1003–1006

IsmailA.M.,HallA.E.,CloseT.J.Chillingtoleranceduringemer-genceofcowpeaassociatedwithadehydrinandslowelectrolyteleakage//CropScience.–1997,vol.37,No.4,p.1270–1277

JandaТ.,SzalaiG.,KissimonJ.,PaldiE.,MartonC,SzigetiZ. Roleofirradianceinthechillinginjuryofyoungmaizeplantsstudiedbychlorophyllfluorescenceinductionmeasurements//Photo-synthetica.–1994,vol.30,No.2,p.293–299

JandaТ.,SzalaiG.,TariI.,PaldiE.Hydroponictreatmentwithsali-cylicaciddecreasedtheeffectofchillinginjuryinmaize(Zea maysL.)plants//Planta.–1999,vol.208,No.2,p.175–180

JanowiakF.,DörfflingK. Chillingofmaize seedlings: changes inwaterstatusandabscisicacidcontent in10genotypesdiffer-inginchillingtolerance//JournalofPlantPhysiology.–1996,vol. 147,No.5,p.582–588

JenningsP.,SaltveitM.E.Temperatureeffectsonimbibitionandger-minationofcucumber(Cucumis sativus) seeds//JournaloftheAmericanSocietyforHorticulturalScience.–1994,vol. 119,No.3,p.464

JouveL.,EngelmannF.,NoirotM.,CharrierA.Evaluationofbio-chemicalmarkers(sugar,proline,malonedialdehydeandethy-lene)forcoldsensitivityinmicrocuttingsoftwocoffeespecies//PlantScience.–1993,vol.91,No.1,p.109–116

KadyrzhanovaD.K.,VlachonasiosK.E.,VerveridisP.,DilleyD.R. Molecular-cloning of a novel heat-induced chilling tolerance

related cDNA in tomato fruit byuseofmessengerRNAdif-ferential display //PlantMolecularBiology.–1998,vol. 36,No. 6,p.885–895

KandaH.O.Studiesonnucleicacidandproteinmetabolisminrootrelatingtolowtemperature-tolerantelongationabilityoffigleafgourdforrootstock//BulletinoftheAkitaPrefecturalCollegeofAgriculture.–1998,No.24,vol.29–62

KaniugaZ,SaczynskaV.,MiskiewiczE.,GarstkaM.Thefattyacidcomposition of phosphatidylglycerol and sulfoquinovosyldia-cylglycerolofZea maysgenotypesdifferinginchillingsuscep-tibility//JournalofPlantPhysiology.–1999,vol.154,No.2,p.256–263

KasamoK.,KagitaF.,YamanishiH.,SakakiT. Lowtemperature-inducedchangesinthethermotropicpropertiesandfattyacidcompositionoftheplasmamembraneandtonoplastofculturedrice(Oryza sativaL.)cells//PlantandCellPhysiology.–1992,vol.33,No.5,p.609–616

KasamoK.,YamaguchiM.,NakamuraY.Mechanismofthechill-ing-induceddecreaseinprotonpumpingacrossthetonoplastofricecells//PlantandCellPhysiology.–2000,vol.41,No. 7,p.840–849

Kato-NoguchiH.Lowtemperatureacclimationtochillingtoleranceinriceroots//PlantGrowthRegulation.–2007,vol.51,No.2,p.171–175

Kingston-SmithA.H.,FoyerС.Н.Bundle-sheathproteinsaremoresensitive tooxidativedamage than thoseof themesophyll inmaizeleavesexposedtoparaquatorlowtemperatures//JournalofExperimentalBotany.–2000,vol.51,No.342,p.123–130

Kingston-SmithA. H., Harbinson J., Foyer С. Н.Acclimation ofphotosynthesis,H2O2 content and antioxidants inmaize (Zea mays)grownatsuboptimaltemperatures//Plant,CellandEn-vironment.–1999,vol.22,No.9,p.1071–1083

KnightH.,TrewavasA.J.,KnightM.R.ColdcalciumsignalinginArabidopsisinvolvestwocellularpoolsandachangeincalci-umsignatureafteracclimation//ThePlantCell.–1996,vol. 8,p.489–503

KocsyG.,TothВ.,BerzyТ.,SzalaiG., JednakovitsA.,GalibaG. Glutathione-reductase activity and chilling tolerance are in-duced by a hydroxylamine derivative Brx-156 inmaize andsoybean//PlantScience.–2001,vol.160,No.5,p.943–950

KodamaH.,HamadaТ.,HoriguchiG.,NishimuraM.,IbaK. Geneticenhancementofcoldtolerancebyexpressionofageneforchlo-roplastω-3-fatty-aciddesaturaseintransgenictobacco//PlantPhysiology.–1994,vol.105,No.2,p.601–605

KojimaM.,SuzukiH.,OhnishiM.,ItoS.Effectsofgrowthtempera-tureonlipidsofadzukibeancells //Phytochemistry.–1998,vol.47,No.8,p.1483–1487

Koscielniak J., Biesaga-Koscielniak J. The effect of short warmbreaksduringchillingonwaterstatus,intensityofphotosynthe-sisofmaizeseedlingsandfinalgrainyield//JournalofAgrono-myandCropScience.–2000,vol.184,No.1,p.1–12

KoscielniakJ.,MarkowskiA.,SkrudlikG.,FilekM. Effectsofsomeperiods of variable daily exposure to temperatures of 5 and20°Conphotosynthesisandwaterrelationsinmaizeseedlings//Photosynthetica.–1996,vol.32,No.1,p.53–61

KosterK.L.,TengbeM.A.,FurtulaV.,NothnagelE.A. Effectsoflowtemperatureonlateraldiffusioninplasmamembranesonmaize(Zea maysL.)rootcortexprotoplasts.Relevancetochill-ingsensitivity//Plant,CellandEnvironment.–1994,vol.17,No.12,p.1285–1294

KratschH.A.,WiseR.R.Theultrastructureofchillingstress//Plant,CellandEnvironment.–2000,vol.23,No.4,p.337–350

LawrenceC.,HoladayA. S. Effects ofmild night chilling on re-spirationofexpandingcottonleaves//PlantScience.–2000,vol. 157,No.2,p.233–244

LeipnerJ.,BasilidesA.,StampP.,FracheboudY. Hardlyincreasedoxidativestressafterexposuretolowtemperatureinchilling-acclimatedandnon-acclimatedmaizeleaves//PlantBiology.–2000,vol.2,No.2,p.243–251

Leipner J., Fracheboud Y., Stamp P. Acclimation by suboptimalgrowth temperature diminishes photooxidative damage in

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 121

maizeleaves//Plant,CellandEnvironment.–1997,vol.20,No.3,p.366–372

LejeuneP.,BernierG.Effectofenvironmentontheearlystepsofearinitiationinmaize(Zea maysL.)//Plant,CellandEnviron-ment.–1996,vol.19,No.2,p.217–224

LevittJ.Responsesofplantstoenvironmentalstresses.Vol.1.Chill-ing,freezingandhightemperaturesstresses.–NewYork,1980,426p.

LewisD.A.Protoplasmicstreaminginplantssensitiveandinsensi-tivetochillingtemperatures//Science.–1961,vol.124,No. 1,p.75–76

LiQ.В.,HaskellD.W.,GuyC.L.Coordinateandnon-coordinateexpressionofthestress70familyandothermolecularchaper-onesathighandlowtemperatureinspinachandtomato//PlantMolecularBiology.–1999,vol.39,No.1,p.21–34

LiX.-G.,WangX.-M.,MengQ.-W.,ZouQ.Factorslimitingpho-tosynthetic recovery in sweet pepper leaves after short-termchillingstressunderlowirradiance//Photosynthetica.–2004,vol. 42,No.2,p.257–262

LockJ.,PriceA.H.Evidencethatdisruptionofcytosoliccalciumiscritically important inoxidativeplantstress //ProceedingsoftheRoyalSocietyofEdinburgh.SectionB:Biology.–1994,vol.102,p.261–264

LukatkinA.S.Contributionofoxidativestresstothedevelopmentofcold-induceddamageto leavesofchilling-sensitiveplants:1.Reactiveoxygen species formationduringplant chilling //RussianJournalofPlantPhysiology.–2002(a),vol.49,No. 5,p.622–627

LukatkinA.S.Contributionofoxidativestresstothedevelopmentofcold-induceddamageto leavesofchilling-sensitiveplants:2.Theactivityofantioxidantenzymesduringplantchilling//RussianJournalofPlantPhysiology.–2002(b),vol.49,No. 6,p.782–788

LukatkinA.S.Contributionofoxidativestresstothedevelopmentofcold-induceddamageto leavesofchilling-sensitiveplants.3.Injuryofcellmembranesbychillingtemperatures//RussianJournalofPlantPhysiology.–2003,vol.50,No.2,p.243–246

LukatkinA.S.Theuseofcucumbercallusculturestostudycolddam-age//BiologyBulletin/IzvestiyaRossiiskoiAkademiiNauk,SeriyaBiologicheskaya.–1999,vol.26,No.3,p.242–246

LukatkinA. S. Use of maize callus cultures for assessing chill-ingstressresistance//RussianAgriculturalSciences.–2010,vol. 36,No.5,p.331–333

LukatkinA.S.,BashmakovD.I.,KipaikinaN.V.Protectiveroleofthidiazurontreatmentoncucumberseedlingsexposedtoheavymetals and chilling //Russian Journal ofPlantPhysiology.–2003,vol.50,No.3,p.305–307

LukatkinA.S.,Geras’kinaA.V.Screeningfortheimprovedcoldre-sistanceofthecucumbercellcultures//BiotechnologyinRus-sia.–2003,No.3,p.64–72

LukatkinA.S.,IsaikinaE.E.Calciumstatusandchillinginjuryinmaizeseedlings//RussianJournalofPlantPhysiology.–1997,vol.44,No.3,p.339–342

LukatkinA.S.,LevinaT.E.Effectofexogenousmodifiersoflipidperoxidationonchilling injury incucumber leaves //RussianJournalofPlantPhysiology.–1997,vol.44,No.3,p.343–348

LukatkinA.S.,SharkaevaE.Sh.,ZauralovO.A.Exosmosisofelect-rolytes from maize leaves under chilling stresses // RussianJournalofPlantPhysiology.–1993,vol.40,No.5,p.770–775

LukatkinA.S.,SharkaevaE.Sh.,ZauralovO.A.Lipidperoxidationintheleavesofheat-lovingplantsasdependentonthedurationofcoldstress //RussianJournalofPlantPhysiology.–1995,vol.42,No.4,p.538–542

LukatkinA.S.,ZauralovO.A.Exogenousgrowth regulatorsasameans of increasing the cold resistance of chilling-sensitiveplants//RussianAgriculturalSciences.–2009,vol.35,No.6,p.384–386

LurieS.,RonenR.,LipskerZ.,AloniB. Effectsofpaclobutrazolandchillingtemperaturesonlipids,antioxidantsandATPaseactiv-ityofplasma-membraneisolatedfromgreenbellpepperfruits//PhysiologiaPlantarum.–1994,vol.91,No.4,p.593–598

LyonsJ.M.Chillinginjuryinplants//AnnualReviewofPlantBio-logy.–1973,vol.24,p.445–466

LyonsJ.M.,RaisonJ.K.,SteponkusP.L.Theplantmembraneinresponsetolowtemperature:anoverview//Lowtemperaturestress incropplants: the roleof themembrane.–NewYork,USA,1979,p.1–24

MahajanS,TutejaN.Cold,salinityanddroughtstresses:anover-view // Archives of Biochemistry and Biophysics. – 2005,vol. 444,p.139–158

MandrichM.E.,SaltveitM.E.Effectofchilling,heatshock,andvigoronthegrowthofcucumber(Cucumis sativus)radicles//PhysiologiaPlantarum.–2000,vol.109,No.2,p.137–142

MarangoniA.G.,ButunerZ.,SmithJ.L.,StanleyD.W. Physicalandbiochemicalchangesinthemicrosomalmembranesoftomatofruitassociatedwithacclimationtochilling//JournalofPlantPhysiology.–1990,vol.135,No.6,p.653–661

MarkowskiA.Sensitivityofdifferentspeciesoffieldcropstochill-ingtemperature.II.Germination,growthandinjuriesofseed-lings //ActaPhysiologiaePlantarum.–1988,vol.10,No.3,p. 275–283

MarkowskiA.,AugustyniakG.,JanowiakF.Sensitivityofdifferentspeciesoffieldcropstochillingtemperature.III.ATPcontentandelectrolyteleakagefromseedlingsleaves//ActaPhysiolo-giaePlantarum.–1990,vol.12,No.2,p.167–173

MatsuoТ.,GrahamD.,PattersonB.D.,HockleyD.B. Anelectro-phoreticmethodtodetectcold-induceddissociationofproteinsincrudeextractsofhigherplants//AnalyticalBiochemistry.–1994,vol.223,No.2,p.181–184

McMahonM. J., PermitA. J.,Arnold J.E.Effects of chilling onEpisciaandDieffenbachia//JournaloftheAmericanSocietyforHorticulturalScience.–1994,vol.119,No.1,p.80–83

MercadoJ.A.,ReidM.S.,ValpuestaV.,QuesadaM.A. MetabolicchangesandsusceptibilitytochillingstressinCapsicum annu-um plantsgrownatsuboptimaltemperature//AustralianJour-nalofPlantPhysiology.–1997,vol.24,No.6,p.759–767

MichaeliR.,RiovJ.,PhilosophhadasS.,MeirS.Chilling-inducedleafabscissionofIxora coccinea plants.II.Alterationofauxineconomybyoxidativestress//PhysiologiaPlantarum.–1999,vol.107,No.2,p.174–180

MinorskyP.V.Aheuristichypothesisofchillinginjuryinplants:aroleforcalciumastheprimaryphysiologicaltransducerofin-jury//Plant,CellandEnvironment.–1985,vol.8,p.75–94

Mitchell D. E., Madore M.A. Patterns of assimilate productionand translocation inmuskmelon (Cucumis meloL.). 2.Low-temperatureeffects//PlantPhysiology.–1992,vol.99,No.3,p. 966–971

MunroK.D.,HodgesD.M.,DeLongJ.M.,ForneyC.F.,KristieD.N.Low temperature effects onubiquinone content, respi-rationratesandlipidperoxidationlevelsofetiolatedseedlingsof two differentially chilling-sensitive species // PhysiologiaPlantarum.–2004,vol.121,No.3,p.488–497

MurataN.,TasakaY.Glycerol-3-phosphateacyltransferaseinplants//BiochimicaetBiophysicaActa.–1997,vol.1348,No.1–2,p.10–16

NieG.Y.,LongS.P.,BakerN.R.Theeffectsofdevelopmentatsub-optimal growth temperatures on photosynthetic capacity andsusceptibilitytochilling-dependentphotoinhibitioninZea mays //PhysiologiaPlantarum.–1992,vol.85,No.3,p.554–560

NishidaI.,MurataN.Chillingsensitivityinplantsandcyanobacte-ria.Thecrucialcontributionofmembranelipids//AnnualRe-viewofPlantPhysiologyandPlantMolecularBiology.–1996,vol.47,p.541–568

NohS.A.,ParkS.H.,HuhG.H.,PaekK.H.,Shin J.S.,Bae J.M.Growthretardationanddifferentialregulationofexpansingenes in chilling-stressed sweetpotato // PlantBiotechnologyReport.–2009,vol.3,p.75–85

OktemH.A.,EyidoganF.,SelcukF.,OzM.T.,daSilvaJ.A.T.,YucelM. Revealing response of plants to biotic and abioticstresses with microarray technology // Genes, Genomes andGenomics.–2008,p.15–48

122 Chilling injury in chilling-sensitive plants: a review

OrdentlichA., Linzer R.A., Raskin I.Alternative respiration andheat evolution in plants // PlantPhysiology. – 1991, vol. 97,No. 4,p.1545–1550

PardossiA.,VernieriP.,TognoniF.InvolvementofabscisicacidinregulatingwaterstatusinPhaseolus vulgarisL.duringchilling//PlantPhysiology.–1992,vol.100,No.3,p.1243–1250

PareekA., Singla S. L.,GroverA. Proteins alterations associatedwith salinity, desiccation, high and low-temperature stressesandabscisicacidapplicationinseedlingsofPusa169,ahigh-yielding rice (Oryza sativa L.) cultivar // Current Science. –1997,vol. 75,No.10,p.1023–1035

PattersonB.D.,PaullR.,GrahamD.Adaptationtochilling:survi-val,germination,respirationandprotoplasmicdynamics//Lowtemperaturestressincropplants:theroleofthemembrane.–NewYork,USA,1979,p.25–35

Platt-AloiaK.A.,ThomsonW.W.Freeze-fractureevidenceforlate-ralphaseseparationintheplasmalemmaofchilling-injuredav-ocadofruit//Protoplasma.–1987,vol.136,No.2–3,p.71–80

PrasadT.K.,AndersonM.D.,MartinB.A.,StewartC.R.Evidenceforchilling-inducedoxidativestress inmaizeseedlingsandaregulatoreroleforhydrogenperoxide//PlantCell.–1994(a),vol.6,p.65–74

PrasadT.K.,AndersonM.D.,StewartС.R.Acclimation,hydrogen-peroxide, andabscisicacidprotectmitochondriaagainst irre-versiblechillinginjuryinmaizeseedlings//PlantPhysiology.–1994(b),vol.105,No.2,p.619–627

PriceA.H.,TaylorA., Ripley S. J.,GriffithsA.,TrewavasA. J.,KnightM.R.Oxidativesignals in tobacco increasecytosoliccalcium//PlantCell.–1994,vol.6,p.1301–1310

ProvartN.J.,GilP.,ChenW.,HanB.,ChangH.S.,WangX.,ZhuT. Gene expression phenotypes of Arabidopsis associated withsensitivity to low temperatures // Plant Physiology. – 2003,vol. 132,p.893–906

PurvisA. C., Shewfelt R. L. Does the alternative pathway ame-lioratechillinginjuryinsensitiveplanttissues?//PhysiologiaPlantarum.–1993,vol.88,No.4,p.712–718

QuinnP.J.Effectof temperatureoncellmembranes //PlantsandTemperature:SymposiumofSocietyforExperimentalBiology.–Cambridge,UK,1988,p.237–258

RabA.,SaltveitM.E.Differentialchillingsensitivityincucumber(Cucumis sativus)seedlings//PhysiologiaPlantarum.–1996(a),vol.96,No.3,p.375–382

RabA.,SaltveitM.E.Sensitivityofseedlingradiclestochillingandheatshock-inducedchillingtolerance//JournaloftheAmericanSocietyforHorticulturalScience.–1996(b),vol.121,No.4,p.711–715

RaisonJ.K.,LyonsJ.M.Chillinginjury:apleaforuniformtermino-logy//Plant,CellandEnvironment.–1986,vol.9,p.685–686

RaisonJ.K.,LyonsJ.M.,ThompsonW.W.Theinfluenceofmem-braneson the temperature-inducedchanges in thekineticsofsomerespiratoryenzymesofmitochondria//ArchivesofBio-chemistryandBiophysics.–1971,vol.142,p.83–90

ReyesL.,JenningsP.H.Effectsofchillingonrespirationandinduc-tionofcyanide-resistantrespirationinseedlingrootsofcucum-ber//JournaloftheAmericanSocietyforHorticulturalScience.–1997,vol.122,No.2,p.190–194

RibascarboM.,ArocaR.,Gonzalez-MelerM.A.,IrigoyenJ.J.,San-chezdiazM.Theelectronpartitioningbetweenthecytochromeand alternative respiratory pathways during chilling recoveryin2cultivarsofmaizedifferinginchillingsensitivity//PlantPhysiology.–2000,vol.122,No.1,p.199–204

RoutaboulJ.M.,FisherS.F.,BrowseJ.Trienoicfattyacidsarere-quiredtomaintainchloroplastfunctionatlowtemperatures//PlantPhysiology.–2000,vol.124,No.4,p.1697–1705

RymenB.,FioraniF.,KartalF.,VandepoeleK.,InzeD.,Beems-terG.T.S.Coldnightsimpairleafgrowthandcellcycleprogres-sioninmaizethroughtranscriptionalchangesofcellcyclegenes//PlantPhysiology.–2007,vol.143,No.3,p.1429–1438

SabehatA.,LurieS.,WeN.D.Expressionofsmallheat-shockpro-teinsatlow-temperatures.Apossibleroleinprotectingagainst

chilling injuries //PlantPhysiology.–1998,vol.117,No.2,p. 651–658

SharomM.,WillemotC.,ThompsonJ.E.Chillinginjuryinducesli-pidphasechangesinmembranesoftomatofruit//PlantPhysio-logy.–1994,vol.105,No.1,p.305–308

ShenW.,NadaK.,TachibanaS.Involvementofpolyaminesinthechillingtoleranceofcucumbercultivars//PlantPhysiology.–2000,vol.124,No.1,p.431–439

Skog L. J. Chilling injury of horticultural crops. Ontario Minis-tryofAgriculture,FoodandRuralAffairsFactsheet.–1998.<http://www.omafra.gov.on.ca/english/crops/facts/98–021.htm>[accessed11052011]

SkrudlikG.,KoscielniakJ.Effectsoflow-temperaturetreatmentatseedlingstageonsoybeangrowth,developmentandfinalyield// Journal ofAgronomyandCropScience. –1996,vol. 176,No. 2,p.111–117

SkrudlikG.,Baczek-KwintaR.,KoscielniakJ.Theeffectofshortwarmbreaksduringchillingonphotosynthesisandofantioxi-dantenzymesinplantssensitivetochilling//JournalofAgro-nomyandCropScience.–2000,vol.184,No.4,p.233–240

SonoikeK.PhotoinhibitionofphotosystemI–itsphysiologicalsig-nificance in thechillingsensitivityofplants //PlantandCellPhysiology.–1996,vol.37,No.3,p.239–247

SonoikeK.Thedifferentrolesofchillingtemperaturesinthepho-toinhibitionofphotosystemIandphotosystemII//JournalofPhotochemistryandPhotobiologyB:Biology.–1999,vol.48,No.2–3,p.136–141

SonoikeK.Various aspects of inhibition of photosynthesis underlight/chilling stress. Photoinhibition at chilling temperaturesversuschillingdamageinthelight//JournalofPlantResearch.–1998,vol.111,No.1101,p.121–129

StewardС.R.,MartinB.A.,RedingL.,CerwickS. Respirationandalternativeoxidaseincornseedlingtissuesduringgerminationat different temperatures // Plant Physiology. – 1990, p. 92,No. 3,p.755–760

StraussA.J.,KrugerG.H.J.,StrasserR.J.,vanHeerdenP.D.R.TheroleoflowsoiltemperatureintheinhibitionofgrowthandPSIIfunctionduringdarkchillinginsoybeangenotypesofcontrast-ingtolerance//PhysiologiaPlantarum.–2007,vol.131,No. 1,p.89–105

SuCh.-F.,WangY.-Ch.,HsiehT.-H.,LuCh.-A.,TsengT.-H.,YuS.-M. AnovelMYBS3-dependentpathwayconferscoldtoleranceinrice//PlantPhysiology.–2010,vol.153,No.4,p.145–158

Suzuki N., Mittler R. Reactive oxygen species and temperaturestresses:adelicatebalancebetweensignalinganddestruction//PhysiologiaPlantarum.–2006,vol.126,No.1,p.45–51

SzalaiG.,JandaТ.,BartokТ.,PaldiE. Roleoflightinchangesinfreeamino-acidandpolyaminecontentsatchillingtemperatureinmaize(Zeamays)//PhysiologiaPlantarum.–1997,vol.101,No.2,p.434–438

TakedaY.,OgawaТ.,NakamuraY.,KasamoK.,SakataM.,OhtaE.31P-NMR study of the physiological conditions in intact rootcellsofmungbean seedlingsunder low temperature stress //PlantandCellPhysiology.–1995,vol.36,No.5,p.865–871

TaoZ.,ZouQ.,ChengB.Effectof low temperatureduring imbi-bitiononultrastructureinhypocotyls//ActaBotanicaSinica.–1991,vol.33,No.7,p.511–515

TerashimaI.,NoguchiK.,ItohnemotoТ.,ParkY.M.,KuboA.,Tana-kaK. ThecauseofPSIphotoinhibitionatlowtemperaturesinleavesofCucumis sativus,achilling-sensitiveplant//Physiolo-giaPlantarum.–1998,vol.103,No.3,p.295–303

TerzaghiW.В.,ForkD.C.,BerryJ.A.,FieldС.В.LowandhightemperaturelimitstoPSII.Asurveyusingtransparinaricacid,delayedlightemissionandF0chlorophyllfluorescence//PlantPhysiology.–1989,vol.91,No.4,p.1494–1500

ThompsonG.A.Molecularchangesinmembranelipidsduringcoldstress//EnvironmentalStressinPlants:BiochemicalandPhy-siologicalMechanisms/NATOASIseries.SeriesG,Ecologicalsciences.–Berlin,Germany,1989,vol.19,p.249–257

TingC.S.,OwensT.G.,WolfeD.W.Seedlinggrowthandchillingstresseffectonphotosynthesisinchilling-sensitiveandchilling-

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 123

tolerantcultivarsofZeamays//JournalofPlantPhysiology.–1991,vol.137,No.5,p.559–564

TsudaH.,NiimuraY.,KatohT.ChillinjuryinSaintpaulialeafwithspecialreferencetoleafspotformation//JournalofAgriculturalScience.–TokyoNogyoDaigaku.–2003,vol.47,No.4,p.283–289

VanHeerdenP.D.R.,KrugerG.H.J.,LovelandJ.E.,ParryM.A.J.,Foyer C. H. Dark chilling imposes metabolic restrictions onphotosynthesis in soybean // Plant, Cell and Environment. –2003,vol.26,No.2,p.323–337

VenemaJ.H.,EekhofM.,vanHasseltP.R.Analysisoflow-tempera-ture tolerance of a tomato (Lycopersicon esculentum) cybridwithchloroplastsfromamorechilling-tolerantL. hirsutum ac-cession//AnnalsofBotany.–2000,vol.85,No.6,p.799–807

VenemaJ.H.,PosthumusF., deVriesM.,vanHasseltP.R. Dif-ferential responseofdomestic andwildLycopersicon speciestochillingunderlowlight:growth,carbohydratecontent,pho-tosynthesisandthexanthophyllcycle//PhysiologiaPlantarum.–1999,vol.105,No.1,p.81–88

VenturaY.,Mendlinger S. Effects of suboptimal low temperatureonyield,fruitappearanceandqualityinmuskmelon(Cucumis meloL.)cultivars //TheJournalofHorticulturalScienceandBiotechnology.–1999,vol.74,No.5,p.602–607

VernieriP.,PardossiA.,TognoniF.Influenceofchillinganddroughton water relations and abscisic acid accumulation in bean //AustralianJournalofPlantPhysiology.–1991,vol.18,No.1,p.25–35

WangC.Y.Approachestoreducechillinginjuryoffruitandvegeta-bles//HorticultureReview.–1993,vol.15,p.63–95

WangC.Y.Physiologicalandbiochemicalresponsesofplantstochill-ingstress//HortScience.–1982,vol.17,No.2,p.173–186

WangC.Y.Temperaturepreconditioningaffectsglutathionecon-tent and glutathione reductase activity in chilled zucchinisquash//JournalofPlantPhysiology.–1995,vol.145,No.1–2,p.148–152

WangC.Y.,KramerG.F.,WhitakerB.D.,LusbyW.R.Temperaturepreconditioningincreasestolerancetochillinginjuryandalterslipidcompositioninzucchinisquash//JournalofPlantPhysio-logy.–1992,vol.140,No.2,p.229–235

Wang C.,Ma X. L., Hui Z.,WangW. Glycine betaine improvesthylakoid membrane function of tobacco leaves under low-temperaturestress//Photosynthetica.–2008(b),vol.46,No. 3,p. 400–409

WangN.,FangW.,HanH.,SuiN.,LiB.,MengQ.W.Overexpres-sionofzeaxanthinepoxidasegeneenhances thesensitivityoftomatoPSIIphotoinhibitiontohighfightandchillingstress//PhysiologiaPlantarum.–2008(a),vol.132,No.3,p.384–396

Whitaker B. D. Lipid changes in microsomes and crude plastidfractionsduringstorageoftomatofruitsatchillingandnon-chillingtemperatures//Phytochemistry.–1993,vol.32,No. 2,p.265–271

WilkinsonS.,ClephanA.L.,DaviesW.J.Rapidlowtemperature-induced stomatal closure occurs in cold-tolerant Commelina communis leavesbutnot incold-sensitive tobacco-leaves,viaamechanismthatinvolvesapoplasticcalciumbutnotabscisicacid//PlantPhysiology.–2001,vol.126,No.4,p.1566–1578

WilsonJ.M.LeafrespirationandATPlevelsatchillingtemperatures//NewPhytologist.–1978,vol.80,No.2,p.325–334

WilsonJ.M.Theeconomicimportanceofchillinginjury//OutlookonAgriculture.–1985,vol.14,p.197–204

WolfeD.W.Low-temperature effects on early vegetative growth,leaf gas-exchange and water potential of chilling-sensitiveandchilling-tolerantcropspecies//AnnalsofBotany.–1991,vol. 67,No.3,p.205–212

WolkW.D.,HernerR.C.Chillinginjuryofgerminatingseedsandseedlings//HortScience.–1982,vol.17,No.2,p.169–173

WoodsC.M.,PolitoV.S.,ReidM.S.Responsetochillingstressinplantcells. II.Redistributionof intracellularcalcium//Proto-plasma.–1984(a),vol.121,No.1,p.17–24

WoodsC.M.,ReidM.S.,PattersonB.D.Responsetochillingstressinplantcells.I.Changesincyclosisandcytoplasmicstructure//Protoplasma.–1984(b),vol.121,No.1,p.8–16

XuC.C.,LinR.C,LiL.В.,KuangT.Y.Increaseinresistancetolow temperature photoinhibition following ascorbate feedingisattributabletoanenhancedxanthophyllcycleactivityinrice(Oryza saliva L.) leaves // Photosynthetica. – 2000, vol. 38,No. 2,p.221–226

YadegariL.Z.,HeidariR.,CarapetianJ.Chillingpretreatmentcausessomechangesinrespiration,membranepermeabilityandsomeotherfactorsinsoybeanseedlings//ResearchJournalofBio-logicalSciences.–2008,vol.3,No.9,p.1054–1059

Yamagitchi-Shinozaki K., Shinozaki K. Transcriptional regulatorynetworksincellularresponseandtolerancetodehydrationandcoldstresses//AnnualReviewofPlantBiology.–2006,vol. 57,p.781–803

YamoriW.,NoguchiК.,HikosakaK.,TerashimaI.Cold-tolerantcropspecieshavegreatertemperaturehomeostasisofleafrespirationandphotosynthesisthancold-sensitivespecies//PlantandCellPhysiology.–2009,vol.50,No.2,p.203–215

YinG.,SunH.,XinX.,QinG.,LiangZ.,JingX.Mitochondrialdam-ageinthesoybeanseedaxisduringimbibitionatchillingtem-peratures //PlantandCellPhysiology.–2009,vol.50, iss. 7,p. 1305–1318

Yordanov I. Response of photosynthetic apparatus to temperaturestressandmolecularmechanismsofitsadaptations//Photosyn-thetica.–1992,vol.26,No.4,p.517–531

YoshidaR.,KannoA.,SatoТ.,Катеуа Т.Cooltemperature-inducedchlorosisinriceplants.1.Relationshipbetweentheinductionandadisturbanceofetioplastdevelopment//PlantPhysiology.–1996,vol.110,No.3,p.997–1005

Yoshida S. Low temperature-induced cytoplasmic acidosis in cul-turedmungbean(Vigna radiata L.Wilczek)cells//PlantPhy-siology.–1994,vol.104,No.4,p.1131–1138

YoshidaS.,MatsuuraC.,EtaniS.ImpairmentoftonoplastH+-ATPaseasaninitialphysiologicalresponseofcellstochillinginmungbean(Vigna radiataL.Wilcheck)//PlantPhysiology.–1989,vol.89,No.2,p.634–642

ZauralovO.A.,LukatkinA.S.Aftereffectof lowtemperaturesontherespirationofheat-lovingplants//RussianJournalofPlantPhysiology.–1997,vol.44,No.5,p.640–644

ZauralovO.A.,LukatkinA.S.,SharkaevaE.Sh.IntracellularpHofmaizeleaftissuesupondifferentdegreesofchilling//BiologyBulletin.–1997,vol.24,No.1,p.82–84

ZavalaE.M.,LinC.L.Anatomicalandpolypeptidealterations incornroottipsinresponsetocoldstress//AmericanJournalofBotany.–1989,vol.76,No.1(suppl.),p.71–72

ZemetraR. S.,CuanyR.L.Variation among inbreds for seed re-sponsetolowtemperaturesinmaize(Zea maysL.)//Maydica.–1991,vol.36,No.1,p.17–23

ZhangJ.X.,CuiS.P.,LiJ.M.,WeiJ.K.,KirkhamM.B.Proto-plasmic factors, antioxidant responses, andchilling resistanceinmaize//PlantPhysiologyandBiochemistry.–1995,vol.33,No.5,p.567–575

ZhuS.-Q.,ZhaoH.,LiangJ.-S.,JiB.-H.,JiaoD.-M.Relationshipsbetween phosphatidylglycerol molecular species of thylakoidmembranelipidsandsensitivitiestochilling-inducedphotoinhi-bitioninrice//JournalofIntegrativePlantBiology.–2008,vol.50,No.2,p.194–202

ZiaM.S.,SalimM.,AslamM.,GillM.A.,Rahmatullah.Effectoflowtemperatureofirrigationwateronricegrowthandnutrientuptake//TheJournalofAgriculturalScience.–1994,vol.173,No.1,p.22–31

ZocchiG.,HansonJ.B.Calciuminfluxintocornrootsasaresultsofcoldshock//PlantPhysiology.–1982,vol.70,p.318–319

ВолковаР.И.,ТитовА.Ф.,ТалановаВ.В.,ДроздовС.Н.Измене-ниявсистемеауксиноввначальныйпериодтепловогоихо-лодовогозакаливаниявегетирующихрастений//Физиологиярастений.–1991,т.38,№3,с.538–544(in Russian)

Володько Н. К. Микроэлементы и устойчивость растений кнеблагоприятнымфакторамсреды.–Минск,1983,192с.(in Russian)

ГенкельП. А., Кушниренко С. В. Холодостойкость растенийи термические способы ее повышения. –Москва, 1966,223 с.(in Russian)

124

ДроздовС. Н.,СычеваВ. Ф.,БудыкинаН. П.,КурецВ. К.Эколого-физиологическиеаспектыустойчивостирастенийкзамороз-кам.–Ленинград,1977,228с.(in Russian)

Жолкевич В. Н. К вопросу о причинах гибели растений принизкихположительныхтемпература //Тр.ин-тафизиоло-гиирастенийим.К.А.ТимирязeваАНСССР.–1955,т.9,с. 3–28(in Russian)

ЗаураловО.А.Влияниеохлажденияпроростковогурцанапосле-дующийростиинтенсивностьфотосинтеза//Физиологияибиохимиякультурныхрастений.–1993,т.25,№4,с.380–387(in Russian)

ЗаураловО.А.,КуроваЕ.А.,ЛукаткинА.С.Влияниецитокинино-выхпрепаратовиохлаждениянаростовыереакциирастенийкукурузы//Агрохимия.–2000,№3,с.55–59(in Russian)

ЗаураловО.А.,ЛукаткинА.С.Влияниеэкзогенныханалоговфи-тогормоновнахолодоустойчивостьтеплолюбивыхрастений//Агрохимия.–1996,№1,с.109–119(in Russian)

КоровинА.И.Оботношениирастенийкнизкимположительнымтемпературамизаморозкамипутиповышенияеехолодо-изаморозкоустойчивости // Устойчивость растений к низкимположительнымтемпературамизаморозкамипутиееповы-шения.–Москва,1969,с.5–15(in Russian)

ЛукаткинА.С.Окислительныйстрессихолодовоеповреждениерастений.–Саранск,2002,208с.(in Russian)

ЛукаткинА.С.,ГришенковаН.Н.,МартыноваЛ.П.Квопросуобакклимациипроростковкукурузыкпониженнойположи-тельнойтемпературевыращивания //Сельскохозяйственнаябиология.–2006,№1,с.86–91(in Russian)

ЛукаткинА.С.,ДерябинА.Н.Повышениестрессоустойчивостирастенийсиспользованиемклеточныхтехнологийin vitro//Аграрнаянаука.–2009,№2,с.15–17(in Russian)

ЛукаткинА.С.,ЕремкинаТ.Н.АктивностьСа2+-АТФазывлис-тьяхрастенийкукурузыподвлияниемохлажденияивпосле-действии//Сельскохозяйственнаябиология.–2002,№3,с.73–76(in Russian)

ЛукаткинА. С.,КобылинаИ. В.,ДуховскисП.,СакалаускайтеЮ.,БаранаускисК.Влияниепониженныхтемпературнавыходпротоновизклетоклистьевкукурузы //Физиологияибио-химиякультурныхрастений.–2007,т.39,№6,с.476–487(in Russian)

ЛукаткинА.С.,ОвчинниковаО.В.Влияниепрепаратацитодефнаростихолодоустойчивостьтеплолюбивыхрастений//Агро-химия.–2009,№12,с.32–38(in Russian)

ЛукаткинА.С.,ШаркаеваЭ.Ш.,АпаринС.В.Ростовыереакцииклетокконусанарастаниятеплолюбивыхрастенийпридей-ствии и последействии пониженных температур // Физио-логияибиохимиякультурныхрастений.– 2010,т.42,№3,с. 256–269(in Russian)

ПоповВ.Н.,АнтипинаО.В.,ТруноваТ.И.Перекисноеокислениелипидовпринизкотемпературнойадаптациилистьевикор-нейтеплолюбивыхрастенийтабака//Физиологиярастений.–2010,т.57,№1,с.153–156(in Russian)

ТалановаВ.В.,ТитовА.Ф.,БоеваН.П.Изменениеуровняэн-догеннойабсцизовойкислотывлистьяхрастенийподвлия-ниемхолодовойитепловойзакалки//Физиологиярастений.–1991,т.38,№5,с.991–997(in Russian)

ТитовА.Ф.,ШерудилоЕ.Г.Степеньподавленияпроцессовтепло-войихолодовойадаптациирастенийингибиторамисинтезаРНКибелкаприразныхзакаливающихтемпературах//Фи-зиологияибиохимиякультурныхрастений.–1990,т.22,№4,с.384–388(in Russian)

ISSN 1392-3196 Žemdirbystė=Agriculture,vol.99,No.2(2012),p.111‒124UDK634.1:581.17:576.3

Žemų temperatūrų poveikis jautriems augalams: apžvalgaA.S.Lukatkin1,A.Brazaitytė2,Č.Bobinas2,P.Duchovskis2

1Mordovijosvalstybinisuniversitetas,Rusija2LietuvosagrariniųirmiškųmokslųcentroSodininkystėsirdaržininkystėsinstitutas

SantraukaŽemosteigiamos(1–10°C)temperatūrossąlygojadaugybęfiziologiniųsutrikimųtokiomstemperatūromsjautriųaugalųląstelėse,otailemiatropiniųirsubtropiniųaugalų,pavyzdžiui,daugeliodaržovių,žūtį.Literatūrosapžvalgaparodė,kadšilumamėgiųaugalųlaikymasžemųteigiamųtemperatūrųsąlygomisnulemiavisųfiziologiniųprocesų(vandensrežimo,mineralinėsmitybos,fotosintezės,kvėpavimo,medžiagųapykaitos)pažeidimus.Šilumamėgiųaugalųmedžiagųapykaitos inaktyvacija,nustatytažemųtemperatūrųsąlygomis,priklausoirnuotemperatūros,irnuojostrukmės.Augalųatsakasįžemųteigiamųtemperatūrųpoveikįyrasusijęssukeletomažosmolekulinėsmasėsbaltymųgenųtranskripcijosgreičiu.Apžvalgojeanalizuojamižemųtemperatūrųpažeidimųsampratoskaitosistoriniaiaspektaiiršiuolaikiniųtyrimųkryptys. Remiantis autorių tyrimais ir literatūros duomenis, pasiūlyta žemų teigiamų temperatūrų pažeidimųkoncepcija,pagalkuriądidžiausiareikšmėtenkaoksidaciniamstresuikaipstresinėsreakcijossukėlėjui.Pagalšiąkoncepcijąpasiūlytikelibūdai,kaippadidintižemųtemperatūrųtoleranciją.Jiesuskirstytiįkeliasgrupes:terminispoveikis (grūdinimas žemomis temperatūromis, temperatūrinis kondicionavimas, tarpinis atšildymas, šilumosstreso poveikis), cheminis apdorojimas (mikroelementais, sintetiniais augimo reguliatoriais, antioksidantais) irgenųbeiląsteliųinžinerijospanaudojimas.

Reikšminiai žodžiai: antioksidantai, fiziologiniai procesai, ląstelės, oksidacinis stresas, žemoms teigiamomstemperatūromsjautrūsaugalai.

Chilling injury in chilling-sensitive plants: a review


Recommended