Transcript
  • 2005

    1.

    [1]-[2].

    , 97[%]

    5%

    ,

    , 10 ,

    ,

    .

    ,

    (MPPT:

    Maximum Power Point Tracking) [3].

    ,

    MPPT ,

    .

    (

    ) MPPT

    (5 6 / ) ,

    .

    .

    ,

    . ,

    .

    IEEE-standard

    [4].

    UPQC(Unified Power Quality Conditioner)

    . ,

    .

    ( 0.9 , THD: 5% ) , MPPT

    , (100%)

    .

    ,

    Grid-interactive PV Generation system with High Power Quality

    *** *** ** * *(Seong-Ryong LeeChil-Hwan JeonSung-Hun KoAh-Ran ChoDae-Up Kang)

    Abstract - In this paper, a grid-interactive photovoltaic (PV) system with high power quality is presented, which

    gives first priority to maximum power point tracking (MPPT). The proposed system requires only one current

    controlled voltage source inverter (CCVSI), which can control the current flow (MPPT operation) at low total

    harmonic distortion (THD) and unity power factor, as well as simultaneously provide reactive power support. The

    proposed system operation has been divided into two modes (sunny and night). In night mode, the system

    operates to compensate the reactive power demanded by nonlinear or variation in loads. in sunny mode, the

    system performs power quality control (PQC) to reduce harmonic current and improve power factor as well as

    MPPT to supply active power from the PV arrays simultaneously. It is shown that the proposed system improves

    the system utilization factor to 100%, which is generally low for PV system (20%). To verify the proposed

    system, a comprehensive evaluation with theoretical analysis, simulation and experimental results are presented.

    Key Words : , MPPT, Power quality control, CCVSI

    * : ** : *** :

  • 2005

    .

    (PV array) ( )

    (CCVSI: Current

    Controlled Voltage Source Inverter) ,

    .

    (PQC: Power Quality Control)

    ,

    MPPT PQC .

    CCVSI

    .

    (24/ )

    .

    ,

    .

    2.

    MPPT

    dc/dc

    dc/ac two-stage

    [5]-[6]. DC

    ,

    [7].

    1 dc/ac

    single-stage .

    1 Single-stage

    Fig. 1 Schematic diagram of a single-stage grid-

    interactive PV generation system

    Load

    loadi

    CiQ1

    Q4

    Q2

    Q3

    PVV

    PV array

    PVIgi

    gV

    C1Lc

    1 single-stage

    .

    ( )

    .

    ( )

    CCVSI

    . CCVSI

    [8]. CCVSI

    .

    .

    2.1

    2 3

    .

    MPPT PQC

    ,

    PQC .

    2

    Fig. 2 The equivalent circuit diagram of the proposed

    system

    LoadGrid CCVSI

    0= gGrid VV 0= cCCVSI VV

    Ig Ic

    Iload

    1 CCVSI

    2

    . CCVSI

    .

    .gI PVI

    cqI

    cI

    loadpI gV

    loadI

    gI

    cIloadI

    gV

    (a) (b)

    3 Single-stage

    Fig. 3 Schematic diagram of a single-stage grid-

    interactive PV generation system

    2 (Vg ),

    (Vc ) (Vload )

    , (Iload ) (Ic )

    .

    (1)

    3 (b) (Pload )

  • 2005

    . (I*g )

    .

    (2)

    3 (a)

    MPPT

    .

    (I*g ) .

    (3)

    , Ppv (Vmpp)

    .

    (MPP)

    .

    ,

    dP/dV=0 . MPPT

    P&O (Perturbation and Observation)

    IncCond (Incremental Conductance)

    [9]-[10]. P&O

    . IncCond

    P&O

    MPP

    .

    (dP/dV)

    MPPT

    [7].

    one-diode (4)

    .

    (4)

    , Ipv Vpv , Iph

    , Isat , Rs Rsh

    , q , A p-n , K

    (Boltzmann`s constant), T

    .

    (5) (6)

    .

    (5)

    ( )

    .

    (5)

    , dP/dV ( I) ( V)

    I+( I+ V)V . dP/dV0

    dP/dV 0 .

    IncCond

    .

    MPPT

    (I*g ) (I*c )

    .

    (6)

    (2) (8)

    PQC

    , (7)

    (Ipvmax ) (3) (8) MPPT

    PQC .

    2.2

    4

    Fig. 4 Control block diagram of proposed system

    +

    loadi

    A CD C

    P LLS inw t*

    gV

    V pv

    Ipv

    Icq*

    Icp*

    P Q C

    M P P T

    P R TIc-re f*

    V g

    Iload

    ci pvi

    P W M

    p vV

    G rid

    L oad

    PVV SIX c

    +

    Ic

    4

    MPPT ,

    PQC ,

    PRT(Polarized RampTime)

    .

    . ,

    ,

    (2)

    (8) sinwt*

  • 2005

    (I*cq ) . PRT

    (Ic)

    PWM . ,

    ,

    MPPT

    (Vref) .

    dP/dV=I +( I+ V)V dP/dV0

    dP/dV 0 .

    dc sinwt*

    (I*cp )

    . PQC

    (I*cq )

    (I*c-ref ) .

    PRT

    PWM .

    3.

    1

    [KVA] ,

    1 . LS

    GMG 01800 14 . GMG 01800

    80[W], 17.6 [V], 21.6[V],

    4.55[A], 5[A] .

    1

    Table 1 Conditions and parameters of the experiment

    Parameters Values Parameters Values

    Vac 220Vrms Vdc 230[70V]

    60Hz 5kHz

    5mH DC 1000uF

    1: 2 1KVA

    5

    . 5

    (a) PQC , (b) PQC

    (CH1),

    (CH2), (CH3), (CH4) . 5

    PQC

    .

    1:7

    . 6 5 FFT

    TDS3054B MATH FFT

    , THD Voltech PM3000

    .

    (a)

    (b) PQC

    5

    Fig. 5 Experimental results of proposed system at

    night

    mode

    (a)

    (b) PQC

    6 FFT

    Fig. 6 FFT waveforms of the grid current at nonlinear

    load

  • 2005

    6 (a) 5 (a) FFT

    THD 25.4[%], 0.94 .

    6 (b) 5 (b) FFT THD

    3.8[%], 0.99 .

    0.99

    THD 5[%] . 7

    9

    (CH1), (CH2),

    (CH3), (CH4) . 7

    (a) MPPT (

    ) (b) MPPT PQC (

    ) .

    (a)

    (b)

    7

    Fig. 7 Experimental results at inductive load condition

    7 (a) MPPT

    (0.86 0.51 )

    . 9 (b)

    MPPT PQC MPPT

    (0.99) . 8 5

    ( ) (a)

    470(W/m2 ), (b) 930(W/m2 )

    .

    8 (a) 470(W/m2 )

    . 8 (b) 890(W/m2 )

    .

    10

    .

    MPPT

    0.99 , THD 5[%] IEEE

    .

    (a) : 470(W/m2 )

    (b) : 890(W/m2 )

    8

    Fig. 8 Experimental results of proposed system at

    sunny

    mode

    9

    ,

    . 8 (a) 470

    (W/m2 )

    .

    9 MPPT

    Fig. 9 Experimental result of proposed system at

    decreasing insolation

  • 2005

    9

    .

    4.

    MPPT

    ,

    . ,

    MPPT

    PQC

    .

    .

    1.

    0.99 , THD

    3.8[%]

    IEEE std-1159 .

    2. MPPT

    .

    3. MPPT

    PQC

    , ,

    .

    ,

    . ,

    .

    97[%]

    .

    2006

    ,

    .

    [1] W. Wongsaichua, Wei-Jen Lee; S. Oraintara, C.

    Kwan, F. Zhang, "Integrated high-speed intelligent

    utility tie unit for disbursed/renewable generation

    facilities," IEEE Transactions on Industry

    Applications, vol. 41, pp. 507 - 513, 2005

    [2] A.M. Sharaf and A.R.N.M.R.U. Haque, Low cost

    utility interconnected photovoltaic scheme for

    residential/ village/ cottage electricity,

    Proceedings of the System Theory SSST, vol. 1,

    pp. 435-438, March 2005.

    [3] J.H.R Enslin, M.S. Wolf, D.B. Snyman and W.

    Sweigers,"Integrated photovoltaic maximum power

    point tracking converter," IEEE Trans. Ind.

    Electron., vol. 44, pp. 769-773, Dec, 1997.

    [4] IEEE Std 1159-1995, "IEEE Recommended

    Practice for Monitoring Electric Power Quality",

    IEEE standards board, June, 1995.

    [5] S.J. Chiang, K.T. Chang, and C.Y. Yen,"Residental

    energy storage system," IEEE Trans. Ind.

    Electron., vol. 45, pp. 385-394, June 1998.

    [6] .S. Nonka and y. Neda,"Single phase composite

    PWM voltage source in Conf. Rec. IEEE-IAS

    Annul. meeting, pp. 761-767, 1994.

    [7] Y.C. Kuo, T.J. Liang, and J.F. Chen,"Novel

    Maximum-Power-Point-Tracking Controller for

    Photovoltaic Energy Conversion System," IEEE

    Tran. Ind. Electronics, vol. 48, no. 3, pp.

    594-601, June 2001.

    [8] S.H. Ko, S.R. Lee, H. Dehbonei and C.V

    nayar,"Application of Voltage and Current

    Controlled Voltage Source Inverters For

    Distributed Generation Systems", IEEE Trans.

    Energy Conversion, vol.21, no.13 pp. 782-792,

    september, 2006.

    [9] B.K. Vose, P.M. Szczeny, and R.L.

    Steigerwald,"Microcomputer control of a

    residential photovoltaic power conditioning

    system," IEEE Trans. Ind. Application, vol. IA-21,

    pp. 1182-1191, Sept/Oct. 1985

    [10] K.H. Hussein, I. Muta, T. Hoshino, and M.

    Osakada,"Maximum photovoltaic power tracking:An

    algorithm for rapidly changing atmospheric

    conditions," Proc. IEE-Generation, Transmission,

    Distribution, vol. 142, no. 1, pp. 59-64, Jan. 1995.


Recommended