Transcript
Page 1: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

ADS Fundamentals – 2009

LAB 7: Harmonic Balance Simulations

Overview‐Thisexercisecontinuestheamp_1900designandshowsthefundamentalsofusingtheHarmonicBalancesimulatortolookatthespectrum,analyzecompression,calculateTOI,andperformothernon‐linearmeasurements.

OBJECTIVES • Setupandperforma1toneHBsimulation.

• Setupandperforma2toneHBsimulation.

• Usevariablesforsimulationandsourcecontrol.

• TestGain,Compression,AvailablePower,NoiseFigure,IP3,andotherspecifications.

• UsethetstransformonHBdata.

• Workwithequations,plots,andtheMixtable.

©CopyrightAgilentTechnologies2009

Page 2: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐2©CopyrightAgilentTechnologies2009

TABLE OF CONTENTS

1. Set up the circuit with a P_1Tone source.............................................................3

2. Set up a one-tone Harmonic Balance simulation. ................................................4

3. Write a measurement equation for dBm of Vout and simulate.............................4

4. Plot the spectrum, equation, and ts of the node voltages. ...................................5

5. Operate on Vout and Mix using functions and indexing.......................................6

6. Calculate Delivered Power and Zin using Pin Current .........................................7

7. Test for Gain Compression using the XDB simulator...........................................9

8. Simulate compression with a power sweep. ......................................................10

9. Plot various gain, power, and line equations......................................................11

10. Two-tone HB simulation with variables. ..........................................................12

11. Use equations to access and control HB data. ...............................................13

12. Simulate IP3 or TOI (Third Order Intercept)....................................................13

13. OPTIONAL - Sweep RF power against the TOI measurement ......................16

Page 3: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐3©CopyrightAgilentTechnologies2009

PROCEDURE

1. SetupthecircuitwithaP_1Tonesource.

a. Closethesystem_prjifitisstillopened.Thenopentheamp_1900projectandschematic:s_final.

b. Savethes_finalschematicwithanewname:hb_basic.ThendeleteallthesimulationandmeasurementcomponentsandtheinputTerm.Beginbuildingthesetupshownhere.

c. InsertaP_1Tone(Sources‐FreqDomainpalette)fortheRFinput.

d. Insert4pinlabels(nodenames)Vin,Vout.VCandVBasshownsothatthevoltageswillbeavailableinthedataset.

e. SettheRFsourceasshown:Freq=1900MH.Also,removeremovethepolarfunctionsothatonlythedbm‐to‐wattswattsfunctionremains:P=dbmtow(­40).Also,renamerenamethesourceRF_source.TheportnumberisdefineddefinedbyNum=1.

VC

P_1TonesourceisusedwithHarmonicBalance.Notethedefaultpowersettingisinpolarform.

Page 4: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐4©CopyrightAgilentTechnologies2009

2. Setupaone­toneHarmonicBalancesimulation.

a. GototheSimulation_HBpaletteandinsertaHarmonicBalancesimulationcontrollerasshownhere.

b. EdittheFreqsettingonthescreen:changeittoFreq[1]=1900MHzsothatitmatchestheFreqsettingintheP_1Tonesource.

3. WriteameasurementequationfordBmofVoutandsimulate.

a. Fromthesimulationpalette,insertameasurementequation.

b. WriteanequationtocalculatetheoutputpoweratVoutindBm:dbm_outdbm_out=dBm(Vout[1]).Thenumberinbraces[1]referstotheindexvalueofthecalculatedfrequenciesintheanalysis.WithOrder=3,theindexvaluesare:index[0]istheDCcomponent,index[1]is1900MHz,index[2]isthesecondharmonicor3800MHz,andindex[3]isthethirdharmonic.Therefore,theequationshouldproducetheoutputpowerindBmfor1900MHzonly.

c. Simulate–youshouldhavenowarningsorerrormessages.

d. ChangetheHBcontrollerto:Freq[1]=1800MHz.Now,simulateagainandreadtheerrormessage‐thesourceis100MHzawayfromtheHBfrequencyof1800MHz.Thisisacommonerrorwhenthesourceandcontrollerdonotagree.

Freq[1]mustbesettomatchthesourcefrequency.

Orderisthenumberofharmonics.

Page 5: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐5©CopyrightAgilentTechnologies2009

e. ResettheHBcontrollerFreq[1]=1900MHzandsimulateagain.

4. Plotthespectrum,equation,andtsofthenodevoltages.

a. Inthedatadisplay,plotdBmofVout.Also,insertalistofdbm_out.Wheneveryouwriteameasurementequation,itwillappearinthedataset.Thetwovaluesshouldbethesameasshownhere.

b. Putamarkeronthefundamentalandverifythatyouramplifierhasabout35dBofGainwithoutputpowerindBm=‐4.876at1900MHz.

NOTEonresults:WithOrdersetto3inthesimulationcontroller,youget3tones:fundamentalplustwoharmonics.TheDCcomponentalsoshowsupontheplotbecauseHarmonicBalancealwayscomputesDCforconvergence.

c. Insertastackedrectangularplotandinserttwodatatracesastimedomainsignals:VinandVout.Thets(timeseries)functionoperatesonHBandtransformsitintothetimedomain.Inthiscase,youcanseethattheamplifierdoesnotinvertthesignalasyoumightexpect.Thesewillbetwoseparateplotsinoneframe.Putmarkersonthesametimepointasshown.

d. EdittheY‐axislabelonthetracebychangingVouttoVCandchangingVintoVBasshownhere.Nowyoucanseetheinversion.Thismeansthatthematchingnetworkprobablyhasagreateffectonthephase.

Changethesearguments.

Page 6: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐6©CopyrightAgilentTechnologies2009

5. OperateonVoutandMixusingfunctionsandindexing.

a. InsertalistofMixandVoutasshownhere.WheneveraHBsimulationisperformed,aMixtable(indexvalues)iscreatedinthedataset.NoticethatVoutisalwayscomplex(magandangle),unlessyouoperateonitusingdB,dBm,etc.Inthenextsteps,youwilllearnhowtowriteequationstodisplayoroperateonspecifictonesintheMixtable.Thisisespeciallyusefulformultipletonesormixers.

b. EditthefirstlistandaddVin.ThenselectTraceOptionsandandeditVinbytypinginthedBmfunction:dBm(Vin)andclickandclickOK.NoticethatwheneveryoueditatraceorinsertaninsertanequationthebuttonsappearforVariableInfo(dependencies)orFunctionHelp(manuals).

c. Yourlistshouldnowcontaintheschematicequationdbm_outandtheexpressiondBm(Vin)forallfrequencies.frequencies.Now,editthedBm(Vin)databyinsertingtheinsertingtheindexvalue[1]intheVinargumentasshown–shown–nowyougetthevalueofVinattheindexvalueorvalueor1900MHz.

d. Insertthe[1]inthedbm_outequation‐itbecomesinvalidbecauseitwasindexedas{1}ontheschematic.

e. Remove[1]fromtheinvaliddbm_outequationtomakeitvalidagain.

Adding[1]totheVindatareturnsthe2ndindexvalue=1900MHz.

Adding[1]tothemeasurementequationmakesitinvalid.

Indexvalueof1900MHz=1.TheDCindex=0..HB.

Page 7: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐7©CopyrightAgilentTechnologies2009

InsertZin:50asthe2ndargumentseparatedbyacomma.

f. InsertthecursorinthedBm(Vin[1])expressionandaddacommaand50asshownhere.ThesecondargumentinthedBmfunctionisZin.Ifnoargumentisgiven,thedefaultis50ohms.Therefore,nochangeshouldoccur.Undothecommafifty(,50)sothatitreadsdBm(Vin[1]again.

NOTEondBmfunctionandZinofyourdesigns‐ThedBmfunctionconvertsavoltageintodBmassuminganexact50ohmimpedance.However,ifZinisnotexactly50ohms+/‐j0,thenthepoweratVinmaybeincorrect.Therefore,youmaywanttousethecorrectvalueofZinasyouwillseeinthenextstep.

6. CalculateDeliveredPowerandZinusingPinCurrent

a. EdittheHarmonicBalancecontrollerandselecttheselecttheOutputtabandchecktheboxforPinPinCurrents(shownhere)andclickOK.ThiswillThiswilladdallthevaluesofcurrenttothedatasetdataset–youwillbeusingtheinputpincurrentinsteadofacurrentprobe.

b. Simulateagain.Whenfinished,gotothesameDataDisplayandwriteanequationfortheinputcurrentwhichusesthetotalcurrentthroughtheinputinductor.Todothis,usetheeditor:writeI_in=andtheninserttheinductorcurrentasshownhere:

Thenaddthebracketed[1]sothatit’sthecurrentat1900MHz.Theresultequationshouldbeasshownhere–youwillusethistocalculateimpedanceandpower.

Page 8: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐8©CopyrightAgilentTechnologies2009

c. WriteanotherequationtocalculateZinusingVinVinandI_inat1900MHzasshownhere.TheninsertinsertalistoftheZ_inequation.Noticethecomplexcompleximpedanceisnot50ohms!

d. WriteanequationtocalculateaveragedeliveredpowerusingthenodevoltageVinandtheinputcurrentequationI_in:

Notethat0.5givestheaverageofthepeakvalue,theconjfunctionconvertsthecomplexcurrenttoitsconjugatebecauseV&Imustbeinphasetodissipatepowerand+30convertsthevaluetodBm(sameasdividingby0.001).

e. EdityourearlierlistofdBm(Vin[1])anddeletedbm_outandaddtheequationP_del_dBm.Also,addanotherVintraceandeditthetraceexpressiontoread:dBm(Vin[1],Z_in).Nowyouhavethreewaysofcomputinginputpowertocompare.Noticethattwoofthevaluesarethesame:

NOTEonpincurrentsvscurrentprobes:Youcouldhaveusedacurrentprobeattheinputinsteadofthepincurrentthroughtheinductor.EitherwayisOK.However,thepincurrentscanmakethedatasetslargeifthecircuitisalsolarge.

dBmusingdefaultsdBmusingVandIdBmusingZ_ineqn

Page 9: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐9©CopyrightAgilentTechnologies2009

7. TestforGainCompressionusingtheXDBsimulator.

TheXDBsimulationcontrollerisaspecialuseHarmonicBalancesimulationforgaincompression.

a. Saveallyoucurrentwork:schematicanddatadisplay.Thensavetheschematicwithanewname:hb_compression.Afterward,closethehb_basicdatadisplay.

b. Inthenewschematic,deactivatetheHB1controller.

c. GototheSimulation­XDBpaletteandinserttheXDBcontroller.EditthecontrolleronscreensothatFreq[1]andGCinputandoutputfrequenciesareall1.9GHzasshown.TheparameterGC_XdB=1meansthatthetestwillbefor1dBcompression.Later,ifyouwanted3or6dBcompression,simplychangethevalue.

d. IntheSimulationSetup,changetheDatasetnametohb_xdbandthenSimulate.

e. Whenthedatadisplayopens,insertalistofofinpwrandoutpwr.Theneditdirectlyontheonthelistbyinsertingabracketedone[1]after[1]aftereachdataitemasshownhere.IfIfdesired,titletheplotasshown.Youjustjustperformeda1dBgaincompressiontestintestinonlyafewseconds!Becausethisamplifierisbiasedquitehigh,the1dBcompressionpointoccurswhentheinputinputpowerisabout–30dBmasshownhere.here.Inthenextsteps,youwillmodifythetheschematicandsetupapowersweepwithwithharmonicbalance–anotherwaytotesttestcompression!

1.9 GHz

Page 10: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐10©CopyrightAgilentTechnologies2009

8. Simulatecompressionwithapowersweep.

a. DeactivatetheXDBandactivatetheHBcontroller.

b. InsertavariableequationVARforRF_pwr=­40.

c. SettheRFsourcepowertothevariable:P=dbmtow(RF_pwr).

d. EdittheHBcontroller.Inthesweeptab,settheRF_pwrsweepasshownfrom–50to–20,step1.

e. GototheDisplaytabandsettheSweepVaranditsvaluestobedisplayedontheHBcontrollercomponentasshownhere.

f. Changethedatasetnameto:hb_compandsimulate.Whenthedatadisplaywindowopens,answerNotochangingthedataset‐thiswillkeeptheXDBdatavalidasthedefaultdataset.Now,youwillhavetoexplicitlyplotthehb_compdata–thisiscommonpractice.

g. Insertaplotandselectthehb_compdataset.Thenplottheschematicmeasurementequationdbm_out.InsertamarkeronthetracewherethevalueofRF_pwrisneartheXDBinpwrvalue:‐31.Asyoucansee,thetwovaluesareclosebuttheydifferbecausethesweepresolutionsresolutionsaredifferent–theXDBsimulation(differentDDSDDSanddataset)usedmanycloselyspacedsweepvalues.

1dBcompressionpointfromXDB

Page 11: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐11

©CopyrightAgilentTechnologies2009

values.

9. Plotvariousgain,power,andlineequations.

a. Writeanequation,dB_gainthatusesthedbm_outmeasurementequation.BysubtractingthelinearinputRF_pwrfromdbm_out,theresultisthegainatallvaluesofRFinputpower:

b. Edittheplotofdbm_outandaddthedB_gainequation‐theYaxisscalewillautomaticallyadjust.YoucanaddmarkerstoseebothvaluesatoneRFpowerlevelasshown.

c. ToplotdB_gainagainstoutputpower,insertanewplot,addthedB_gainequationandthenclickAddVs.Next,selectthehb_compdatasetandtheindependentvariablefortheXaxis:dbm_out.ClickOKandthesharpfallofgainwillbeplottedasshown.Usemarkerstoreadthevalues.

d. Writeonemoreequation,line,tocreatealinearline(extrapolateddata)

thatrepresentstheidealoutputpowerwithnocompression.Byaddingtheuncompressedgainatthefirstdatapoint[0]totheRFpowerateverypoint,yougettheidealgainorline.

e. Insertanewplotofdbm_out(usinghb_compdata)andaddlinealso.Thisvisuallyshowstheamplifier’sdeviationfromlinearoutputpower.

f. Saveallyourwork.

Page 12: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐12©CopyrightAgilentTechnologies2009

10. Two­toneHBsimulationwithvariables.

Thenextfewstepsshowmoreuseofvariablesinsimulationcontrol.Thisisimportantformorecomplexcircuitrefinement,calculationsintheremaininglabs,andworkingwithADSexampleswhichusethismethodofsimulationcontrol.

a. Savethelastschematicdesignwithanewname:hb_2Tone.

b. EdittheVARandaddvariablesforRF_freqandspacingasshownhere.Vbiasisnotrequired‐youmayormaynothaveVbiasifyoudidanoptionalstepearlier.

NOTEonunitsinVARs–Ifyousetunitsheredonotsetthemanywhereelseortheymaymultiplyinthesimulation.

c. ChangethesourcetoaP_nTone.Editthesourcesothatithastwotones:Freq[1]and[2]withRF_pwrforeachasshownhere.

d. EdittheHarmonicBalancecontrollerasshownherebyaddinganotherfrequency,Freq[2],andthevaluesasshown,usingthespacingvariable/2.Also,setOrder=4forbothandsetMaxOrder=8.Inthiscase,thetwoRFtonesarespaced5MHzapart(channelspacing).

e. RemovetheRF_pwrsweepfromthecontrollerbyerasingiton‐screenorinthedialoganddisplay.Also,removeanyothercontrollersorunwantedcomponentsandsavethedesignagain.

MaxOrder=numberofmixingproducts.

Freq[1]isavariableoranumber.Order[1]=4meansFreq[1]willbecalculatedwith4harmonics.

Page 13: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐13

©CopyrightAgilentTechnologies2009

f. SimulateandplotthespectrumofVoutindBm.Putamarkeronatonenear1900MHz.Noticethatyoucannotclearlyseetheadjacenttones.Toseetheinter‐modulationtones,youcaneitherzoominontheplotortrychangingtheXaxisscaling.Trybothofthesemethodsquicklybecausethenextstepshowsatechniqueusingequations.

11. UseequationstoaccessandcontrolHBdata.

a. Createamatrixwithvectors(indexvalues)tothedesiredtones.Todothis,writethetonesequationshownhere.Thisequationcreatesamatrixusingthesquarebrackets.Withinthebracketsarecurlybraceswithindexvaluesforthemixtable.Inthiscase,thenumber1representstheRFtonewithspacing.Zeromeansthatnoothertoneisdesired(sameasDC),and2representstwotimestheRFsimulationtone.

b. InsertarectangularplotofVout–spectrumindBm.ThenuseTrace

OptionstoedittheTraceExpressionasshownhere,usingparenthesis–typein:dBm(mix(Vout,tones)).Also,settheTraceTraceTypetoSpectral.

c. Theplotshouldnowshowonlythefourtonestonesyouspecified(10MHzapart).Toverifyverifythis,insertalistofMix(Mixtable).TheTheindexvaluesfromtheMixtablearethetonesthetonesthatyouspecifiedwiththetonesequation.ThisishowHarmonicBalancedatacanbeaccessedandcontrolledusingequations.

12. SimulateIP3orTOI(ThirdOrderIntercept)

Usecurlybraceswithinbrackets.

Page 14: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐14©CopyrightAgilentTechnologies2009

a. Onthehb_2Toneschematic,inserttwoHarmonicBalanceIP3outmeasurementequations:onefortheupperandoneforthelowerspacedtone.Manymeasurementsrequiretwo‐tonessonametheinstancesupperandlowerasshownhere.

b. Notethedefaultnodelabel(vout),vectors{1,0},andimpedance50.Tomatchthesevaluestoyourcircuit,changevouttoVout(uppercaseV).ThensettheindexvaluestocorrespondtoyourMixtableshownherefromthelastsimulation(onlylower_toineedstochange).

c. ChecktheequationstobesuretheyarecorrectandthenSimulate.

d. IntheDataDisplay,listthetwomeasurementequationvaluesasshownhere.RemovetheindependentvariableusingPlotOptions.HeretheamplifierTOIvaluesappearreasonableandalmostsymmetrical.

e. AsanexerciseincontrollingdatawithADSfunctions,writeanequationintheDataDisplayforthesamemeasurementasshownhere.Thenlistit(my_toi)asshownhere.Yougetthesameresultsbecauseyouusethesamefunction:ip3_out.Theonlydifferenceisthatthisisafterthesimulation.Also,thisequationisusedintheoptionalstepattheendofthislab.

2‐toneMixHBdata

Page 15: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐15

©CopyrightAgilentTechnologies2009

f. PlotthespectrumofVoutindBmandthenzoominontheplottoseethetwotonesyoujustsimulated.Putmarkersontheupperfundamentalandthe3rdordertone–theseshouldmatchthefrequencyvaluesintheMixtable.

NOTE–Youcouldeasilygobacktotheschematic,changethespacingVARvalueandsimulateagain.Alltheequations,plotsandtableswouldsimplyfillupwiththenewdata.Thisisthevalueofusingvariablesforsimulationanddatadisplays.

g. Savetheschematicanddatadisplay.

NOTEforMixermeasurements–Ifyoudesignmixers,theLOshouldbeFreq[1]inthesimulationcontrollerbecauseithasthemostpower.Also,inmeasurementequations,youwillhavetotreat2‐tonedataasifitwere3‐tone:LO,RF1andRF2forupperandlowertones.Forexample,theupperIP3equationsforadown‐converterwouldhavethefollowingindexvalues:{‐1,1,0},{‐1,2,1}where–1inthefirstrepresentstheLOtone.

Mixingproducts:MaxOrder

Page 16: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐16©CopyrightAgilentTechnologies2009

13. OPTIONAL­SweepRFpoweragainsttheTOImeasurement

ThisstepshowstheeffectsonTOIwhentheinputpowerbeginstodrivethedevicetowardcompression.Ingeneral,manymeasurementscanberefinedtogetabettermeasureofcircuitperformance,beyondtherequiredspecifications.Todothis,youmusthaveapowerfulnon‐linearsimulatoranddatadisplaytoolsuchasADS.

a. Usingthesamehb_2Tonedesign,setuptheHBsimulationcontrollertosweeptheRFpowerasshownherefrom–45to–30dBm.Youalreadytested1dBcompression(about–31dBmRFinputpower)andyoujustfinishedmeasuringTOIwhich(about15dBm).

b. Simulateandwatchthechangesinthedatadisplay.

c. Editthemy_toilisttoincludetheindependentdata(RF_pwr).Thenincreasethelistsizesothatallthevaluesappear.Asyoucansee,TOIbeginstochangegreatlyasRF_pwrmoveshigher.However,thechangeisnotlinear.Thenextstepwillshowthiswithmorerefinement.

d. Changethelistofmy_toitoarectangularplot(PlotOptions‐clicktheplottypeicon).Then,onthesameplot,insertVoutindBmandeditthetraceexpressiontoreturntheupperRFtoneasshownhere.NowyoucanseehowtheTOImeasurementtrackswiththattone:

dBm(mix(Vout,{1,0}))

NOTEonVoutdata–YoumustusethemixfunctionbecauseVoutcontains41totalfrequencytones:2spacedfundamentalswith4harmonics(thismeans8tones),with8max_order(thismeans32moreintermodtones),plusthedccomponent.These41tonesarepresentateachofthe16valuesofRFpower.

2traces:my_toianddBmofupperRFtone.

Page 17: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐17

©CopyrightAgilentTechnologies2009

e. AddonemoreVouttracetotheplot.Again,editthetrace(TraceExpression)sothatisbecomestheupper3rdorderproduct:

dBm(mix(Vout,{2,­1}))

f. Yourplotshouldnowlookliketheoneshownhere.ItshouldcontaintheupperRF_freq,theupper3rdorderproduct,andtheequationmy_toi(uppertoi).Now,editthemy_toitraceandselectPlotAxesasshownhere.ThenselectRightYaxisforthistraceandwatchthechange.

g. YourplotshouldnowhavetheTOIvaluefromyourequationontheRightYaxisandthetwotonesusedtocalculateTOIontheleft.Now,usePlotOptions,selectYAxis,andremovetheAutoScale(uncheckthebox).ThenincreasetheMaxto10andclickOK.Finally,placeamarkeronthepointwheretheslopeofthetwotonesisnolonger3:1.Asyoucansee,IP3wascalculatedinthecorrectregion.However,afterthemarker,the3rdorderproductbeginstoriseatasharperrate.ThisisagoodexampleofusingADStolearnmoreabouttheperformanceofyourdesign,beyondthespecification.

Clickhere:

MakeyourplotlooksimilarusingtheDataDisplaytextanddrawingfeatures.

Page 18: LAB 7: Harmonic Balance Simulations - University of Texas ...rmh072000/Site/Software_and... · VB as shown here. Now you can see the inversion ... Lab 7: Harmonic Balance

Lab 7: Harmonic Balance

7‐18©CopyrightAgilentTechnologies2009

EXTRA EXERCISES:

1. SweptRFfrequency‐CopytheschematicandthenchangethesweptvariablefromRFpowertoonetoneRFfreq.Todothis,setuptheVARforRF_freqinboththecontrollerandthesource.SweepRF_freqfrom100MHzto3GHzin100MHzsteps.Besuretochangethedatasetname,thensimulateandplottheoutputpowerequationagainstthesweptfrequencyasshown.Also,notethatthedatasetwillcontainalistoftheharmonicindexasshown.

2. Trywritinganequationtopassallthe5thorderproductstoaspectralplot.

3. Usethepspecfunctiontocalculatepowergaintotheload.Todothis,firstlookattheHelpforpspec.TheninsertacurrentprobeattheVoutnode.


Recommended