Transcript
Page 1: Module 1: Polynomial, Rational, and Radical Relationships

Eureka Math, A Story of Functionsยฎ

Published by the non-profit Great Minds.

Copyright ยฉ 2015 Great Minds. No part of this work may be reproduced, distributed, modified, sold, or commercialized, in whole or in part, without consent of the copyright holder. Please see our User Agreement for more information. โ€œGreat Mindsโ€ and โ€œEureka Mathโ€ are registered trademarks of Great Minds.

Eureka Mathโ„ข Homework Helper

2015โ€“2016

Algebra IIModule 1

Lessons 1โ€“40

Page 2: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 1: Successive Differences in Polynomials

I calculate first differences by subtracting the outputs for successive inputs. The second differences are the differences of successive first differences, and the third differences are differences between successive second differences.

Lesson 1: Successive Differences in Polynomials

Investigate Successive Differences in Sequences

Create a table to find the third differences for the polynomial 45๐‘ฅ๐‘ฅ โˆ’ 10๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ3 for integer values of ๐‘ฅ๐‘ฅ from 0 to 4.

๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ First Differences Second Differences

Third Differences

0 ๐ŸŽ๐ŸŽ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐ŸŽ๐ŸŽ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

1 ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ๐Ÿ

๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ (โˆ’๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

2 ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• = ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

3 ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

4 ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

I notice the third differences are constant, which should be true for a polynomial of degree 3.

ยฉ 2015 Great Minds eureka-math.org

1

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 3: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 1: Successive Differences in Polynomials

I found the second differences to be 10, and I know that the second differences are equal to 2๐‘Ž๐‘Ž, so it must be that ๐‘Ž๐‘Ž = 5. I know the ๐‘ฆ๐‘ฆ-intercept is equal to ๐‘๐‘ and 5(0)2 + ๐‘๐‘(0) + ๐‘๐‘ = 6, so ๐‘๐‘ = 6.

I solved ๐‘ฆ๐‘ฆ = 5๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + 6 when ๐‘ฅ๐‘ฅ = 1 and ๐‘ฆ๐‘ฆ = 9 to find the value of ๐‘๐‘.

To model the ordered pairs with a quadratic equation, I need to find values of ๐‘Ž๐‘Ž, ๐‘๐‘, and ๐‘๐‘ in the equation ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘.

Write Explicit Polynomial Expressions for Sequences by Investigating Their Successive Differences

Show that the set of ordered pairs (๐‘ฅ๐‘ฅ,๐‘ฆ๐‘ฆ) in the table below satisfies a quadratic relationship. Find the equation of the form ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ that all of the ordered pairs satisfy.

๐‘ฅ๐‘ฅ 0 1 2 3 4 ๐‘ฆ๐‘ฆ 6 9 22 45 78

๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฆ First Differences Second Differences Third Differences 0 6

๐Ÿ‘๐Ÿ‘

1 9 ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

2 22 ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

3 45 ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

4 78

๐’š๐’š = ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’™๐’™ + ๐’„๐’„ ๐’‚๐’‚ = ๐Ÿ“๐Ÿ“ and ๐’„๐’„ = ๐Ÿ‘๐Ÿ‘

๐Ÿ—๐Ÿ— = ๐’‚๐’‚(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ(๐Ÿ๐Ÿ) + ๐’„๐’„ ๐Ÿ—๐Ÿ— = ๐Ÿ“๐Ÿ“(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ + ๐Ÿ‘๐Ÿ‘ ๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ ๐’ƒ๐’ƒ = โˆ’๐Ÿ๐Ÿ ๐’š๐’š = ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘

I know that if the second differences are constant, and the first differences are not, then the relationship is quadratic.

ยฉ 2015 Great Minds eureka-math.org

2

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 4: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 2: The Multiplication of Polynomials

Now that I have combined like terms, I write the product as the sum of the terms from highest to lowest degree.

The top row contains the terms of the first polynomial.

The right-hand column contains the terms of the second polynomial.

I multiply the terms in the corresponding row and column to fill in each cell in the table.

Lesson 2: The Multiplication of Polynomials

Use a Table to Multiply Two Polynomials

1. Use the tabular method to multiply (5๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 3)(2๐‘ฅ๐‘ฅ3 โˆ’ 5๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ + 1), and combine like terms.

๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ ๐’™๐’™ ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ’๐Ÿ’ ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘

โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ ๐Ÿ’๐Ÿ’๐’™๐’™

๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ ๐’™๐’™ ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ

๏ฟฝ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘

โˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“

๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ

For example, ๐‘ฅ๐‘ฅ โ‹… 2๐‘ฅ๐‘ฅ3 = 2๐‘ฅ๐‘ฅ4.

Also, 3 โ‹… (โˆ’5๐‘ฅ๐‘ฅ2) = โˆ’15๐‘ฅ๐‘ฅ2 .

I add the like terms found along the upper right to lower left diagonals in the table. For example, 6๐‘ฅ๐‘ฅ3 โˆ’5๐‘ฅ๐‘ฅ3 + 20๐‘ฅ๐‘ฅ3 = 21๐‘ฅ๐‘ฅ3.

ยฉ 2015 Great Minds eureka-math.org

3

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 5: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 2: The Multiplication of Polynomials

I recognize this pattern: (๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 + ๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’2 + โ‹ฏ+ ๐‘ฅ๐‘ฅ + 1) = ๐‘ฅ๐‘ฅ๐‘›๐‘›+1 โˆ’ 1

Use the Distributive Property to Multiply Two Polynomials

2. Use the distributive property to multiply (6๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 2)(7๐‘ฅ๐‘ฅ + 5), and then combine like terms.

๏ฟฝ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ(๐Ÿ•๐Ÿ•๐’™๐’™ + ๐Ÿ“๐Ÿ“) = ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐’™๐’™ + ๐Ÿ“๐Ÿ“) + ๐’™๐’™(๐Ÿ•๐Ÿ•๐’™๐’™ + ๐Ÿ“๐Ÿ“) โˆ’ ๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐’™๐’™ + ๐Ÿ“๐Ÿ“) = ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐’™๐’™) + ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“) + ๐’™๐’™(๐Ÿ•๐Ÿ•๐’™๐’™) + ๐’™๐’™(๐Ÿ“๐Ÿ“) โˆ’ ๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐’™๐’™) โˆ’ ๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“) = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ๐Ÿ+ ๐Ÿ“๐Ÿ“๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Apply Identities to Multiply Polynomials

Multiply the polynomials in each row of the table.

3. (๐‘ฅ๐‘ฅ + 2๐‘ฆ๐‘ฆ2)(๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ2) (๐’™๐’™)๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ’๐Ÿ’

4. (3๐‘ฅ๐‘ฅ โˆ’ 7๐‘ฆ๐‘ฆ)2 (๐Ÿ‘๐Ÿ‘๐’™๐’™)๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐’™๐’™)(โˆ’๐Ÿ•๐Ÿ•๐’š๐’š) + (โˆ’๐Ÿ•๐Ÿ•๐’š๐’š)๐Ÿ๐Ÿ

= ๐Ÿ—๐Ÿ—๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’™๐’™๐’š๐’š + ๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—๐’š๐’š๐Ÿ๐Ÿ

5. (๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ6 + ๐‘ฅ๐‘ฅ5 + ๐‘ฅ๐‘ฅ4 + ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 1) ๐’™๐’™๐Ÿ”๐Ÿ”+๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ๐Ÿ

I distribute each term in the first polynomial to the second polynomial. Then I multiply each term of the first polynomial by each term in the second polynomial.

If I recognize an identity, I can use the formula associated with it to multiply polynomials. If I do not recognize an identity, I can multiply polynomials using the tabular method or distributive property.

I recognize this product as a difference of squares: (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘) = ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2. In this case, ๐‘Ž๐‘Ž is ๐‘ฅ๐‘ฅ and ๐‘๐‘ is 2๐‘ฆ๐‘ฆ2.

I know that (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2. In this case, ๐‘Ž๐‘Ž is 3๐‘ฅ๐‘ฅ and ๐‘๐‘ is โˆ’7๐‘ฆ๐‘ฆ.

ยฉ 2015 Great Minds eureka-math.org

4

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 6: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 II

Lesson 3: The Division of Polynomials

I know the leading term in the dividend is equal to the diagonal sum and, therefore, belongs in this cell.

I need to find an expression that is equal to 2๐‘ฅ๐‘ฅ5 when it is multiplied by ๐‘ฅ๐‘ฅ3. I can then multiply this expression by the terms in the divisor to complete the first column of the table.

These are the terms of the divisor.

I need to write the terms of the dividend along the outside of the table aligned with the upper-right to lower-left diagonals, including placeholders. These terms represent the diagonal sums.

Lesson 3: The Division of Polynomials

Use a Table to Divide Two Polynomials

Use the reverse tabular method to find the quotient: (2๐‘ฅ๐‘ฅ5 + 7๐‘ฅ๐‘ฅ4 + 22๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ + 12) รท (๐‘ฅ๐‘ฅ3 + 4๐‘ฅ๐‘ฅ2 + 3).

Step 1

๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ๐’™๐’™

๐Ÿ‘๐Ÿ‘

Step 2

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“

I need to use a placeholder here because the divisor does not contain a linear term.

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ

ยฉ 2015 Great Minds eureka-math.org

5

Homework Helper A Story of FunctionsALGEBRA II

ALG II-M1-HWH-1.3.0-08.2015

๐Ÿ’๐Ÿ’๐’™๐’™

๐ŸŽ๐ŸŽ๐’™๐’™

๐Ÿ‘๐Ÿ‘

Page 7: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 II

Lesson 3: The Division of Polynomials

Step 4

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’๐’™๐’™ +๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“ โˆ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ’๐Ÿ’ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ–๐Ÿ–๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ ๐ŸŽ๐ŸŽ๐’™๐’™

๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™

๏ฟฝ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“ + ๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ รท ๏ฟฝ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๏ฟฝ = ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ + ๐Ÿ’๐Ÿ’

Step 3

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’๐’™๐’™

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“ โˆ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ’๐Ÿ’ ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ–๐Ÿ–๐’™๐’™๐Ÿ’๐Ÿ’ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐ŸŽ๐ŸŽ๐’™๐’™

๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ

I know this value, added to 8๐‘ฅ๐‘ฅ4, must equal the diagonal sum, 7๐‘ฅ๐‘ฅ4.

1๐‘ฅ๐‘ฅ 4

I need to find an expression that equals when multiplied by ๐‘ฅ๐‘ฅ3. I can multiply this

expression by the remaining terms in the

divisor to complete the second column of the table.

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ

I know this value, added to โˆ’4๐‘ฅ๐‘ฅ3 + 0๐‘ฅ๐‘ฅ3, must equal the diagonal sum, 0๐‘ฅ๐‘ฅ3.

I need to find an expression that equals 4๐‘ฅ๐‘ฅ3 when multiplied by ๐‘ฅ๐‘ฅ3. I can multiply this expression by the remaining terms in the divisor to complete the third column of the table and confirm the constant term.

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“

The expression across the top row of the table is the quotient.

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ“๐Ÿ“

ยฉ 2015 Great Minds eureka-math.org

6

Homework Helper A Story of FunctionsALGEBRA II

ALG II-M1-HWH-1.3.0-08.2015

โˆ’1๐‘ฅ๐‘ฅ 4

๐Ÿ‘๐Ÿ‘

Page 8: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 4: Comparing Methodsโ€”Long Division, Again?

I repeat the steps in the division algorithm until the remainder has a degree less than that of the divisor.

I need to find an expression that multiplied by ๐‘ฅ๐‘ฅ will result in ๐‘ฅ๐‘ฅ3, the first term in the dividend. Then I multiply this expression by the terms of the divisor, subtract them from the dividend, and bring down the next term from the dividend.

Lesson 4: Comparing Methodsโ€”Long Division, Again?

1. Is ๐‘ฅ๐‘ฅ + 5 a factor of ๐‘ฅ๐‘ฅ3 โˆ’ 125? Justify your answer using the long division algorithm.

๐’™๐’™ + ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐’™๐’™๐Ÿ๐Ÿ

๐’™๐’™ + ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

โˆ’(๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ)

โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™

Because long division does not result in a zero remainder, I know that ๐’™๐’™ + ๐Ÿ“๐Ÿ“ is not a factor of ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“.

๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ“๐Ÿ“๐’™๐’™

๐’™๐’™ + ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

โˆ’(๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ)

โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™

โˆ’(โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™)

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ“๐Ÿ“๐’™๐’™ +๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐’™๐’™ + ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

โˆ’(๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ)

โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ +๐ŸŽ๐ŸŽ๐’™๐’™

โˆ’(โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™)

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

โˆ’(๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“)

โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

I know that, just like with long division of integers, the divisor is a factor of the dividend if the remainder is zero.

ยฉ 2015 Great Minds eureka-math.org

7

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 9: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 5: Putting It All Together

To rewrite the polynomial, I can use the reverse tabular method or division algorithm (from Lessons 3โ€“4) to find each quotient and then add the resulting polynomials.

Lesson 5: Putting It All Together

Operations with Polynomials

For Problems 1โ€“2, quickly determine the first and last terms of each polynomial if it was rewritten in standard form. Then rewrite each expression as a polynomial in standard form.

1. ๐‘ฅ๐‘ฅ3โˆ’8๐‘ฅ๐‘ฅโˆ’2

+ ๐‘ฅ๐‘ฅ3โˆ’๐‘ฅ๐‘ฅ2โˆ’10๐‘ฅ๐‘ฅโˆ’8๐‘ฅ๐‘ฅโˆ’4

The first term is

๐’™๐’™๐Ÿ‘๐Ÿ‘

๐’™๐’™+ ๐’™๐’™๐Ÿ‘๐Ÿ‘

๐’™๐’™= ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ,

and the last term is โˆ’๐Ÿ–๐Ÿ–โˆ’๐Ÿ๐Ÿ

+ โˆ’๐Ÿ–๐Ÿ–โˆ’๐Ÿ’๐Ÿ’

= ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ = ๐Ÿ”๐Ÿ”.

Standard form: ๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ–๐Ÿ–๐’™๐’™โˆ’๐Ÿ๐Ÿ

+ ๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ–๐Ÿ–๐’™๐’™โˆ’๐Ÿ’๐Ÿ’

= ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ’๐Ÿ’๏ฟฝ + ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๐’™๐’™ + ๐Ÿ”๐Ÿ”

๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ‘๐Ÿ‘๐’™๐’™ +๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’ ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ โˆ’๐Ÿ–๐Ÿ–

โˆ’(๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ)

๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™

โˆ’(๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™)

๐Ÿ๐Ÿ๐’™๐’™ โˆ’๐Ÿ–๐Ÿ–

โˆ’(๐Ÿ๐Ÿ๐’™๐’™ โˆ’๐Ÿ–๐Ÿ–)

๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐’™๐’™ +๐Ÿ’๐Ÿ’

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ ๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐’™๐’™ โˆ’๐Ÿ–๐Ÿ–

โˆ’(๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ)

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐’™๐’™

โˆ’(๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ’๐Ÿ’๐’™๐’™)

๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’๐Ÿ–๐Ÿ–

โˆ’(๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’๐Ÿ–๐Ÿ–)

๐Ÿ๐Ÿ

For each quotient, I can find the term with the highest degree by dividing the first term in the numerator by the first term in the denominator. Since the highest-degree terms are like terms, I combine them to find the first term of the polynomial. I can use the same process with the last terms of the quotients to find the last term of the polynomial.

ยฉ 2015 Great Minds eureka-math.org

8

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 10: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 5: Putting It All Together

I can use the identities (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2 and (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)(๐‘Ž๐‘Ž + ๐‘๐‘) = ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 to multiply the polynomials.

I can multiply the first terms in each product and add them to find the first term of the polynomial. I can multiply the constant terms in each product and add them to find the last term.

2. (๐‘ฅ๐‘ฅ โˆ’ 5)2 + (2๐‘ฅ๐‘ฅ โˆ’ 1)(2๐‘ฅ๐‘ฅ + 1)

The first term is ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ = ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ; the last term is ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’.

๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ(๐’™๐’™)(โˆ’๐Ÿ“๐Ÿ“) + (โˆ’๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ๏ฟฝ + ๏ฟฝ(๐Ÿ๐Ÿ๐’™๐’™)๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๏ฟฝ = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๏ฟฝ + ๏ฟฝ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

ยฉ 2015 Great Minds eureka-math.org

9

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 11: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1

Lesson 6: Dividing by ๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž and by ๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž

ALGEBRA II

I recognize that I can use an identity to factor the numerator for Problems 4 and 5: ๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘› = (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)(๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’2 + ๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’3 +โ‹ฏ+ ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’2๐‘ฅ๐‘ฅ1 + ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1)

I can factor the numerator using the difference of squares identity:

๐‘ฅ๐‘ฅ2 โˆ’ ๐‘Ž๐‘Ž2 = (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)(๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž)

I can rewrite the numerator as (4๐‘ฅ๐‘ฅ)3 โˆ’ 33. Then I can factor this expression using the difference of cubes identity:

๐‘ฅ๐‘ฅ3 โˆ’ ๐‘Ž๐‘Ž3 = (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)(๐‘ฅ๐‘ฅ2 + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž2).

Lesson 6: Dividing by ๐’™๐’™ โˆ’ ๐’‚๐’‚ and by ๐’™๐’™ + ๐’‚๐’‚

Compute each quotient.

1. 9๐‘ฅ๐‘ฅ2โˆ’253๐‘ฅ๐‘ฅ+5

(๐Ÿ‘๐Ÿ‘๐’™๐’™)๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ“๐Ÿ“=

(๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)(๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ“๐Ÿ“)๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ“๐Ÿ“

= ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“

2. 64๐‘ฅ๐‘ฅ3โˆ’274๐‘ฅ๐‘ฅโˆ’3

(๐Ÿ’๐Ÿ’๐’™๐’™)๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘=

(๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๏ฟฝ(๐Ÿ’๐Ÿ’๐’™๐’™)๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘(๐Ÿ’๐Ÿ’๐’™๐’™) + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๏ฟฝ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ—๐Ÿ—

3. 8๐‘ฅ๐‘ฅ3+11+2x

(๐Ÿ๐Ÿ๐’™๐’™)๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™=

(๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ)๏ฟฝ(๐Ÿ๐Ÿ๐’™๐’™)๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐’™๐’™) + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ

= ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ

4. ๐‘ฅ๐‘ฅ9โˆ’1๐‘ฅ๐‘ฅโˆ’1

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’™๐’™๐Ÿ–๐Ÿ– + ๐’™๐’™๐Ÿ•๐Ÿ• + ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™๐Ÿ“๐Ÿ“ + ๐’™๐’™๐Ÿ’๐Ÿ’ + ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ + ๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

= ๐’™๐’™๐Ÿ–๐Ÿ– + ๐’™๐’™๐Ÿ•๐Ÿ• + ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™๐Ÿ“๐Ÿ“ + ๐’™๐’™๐Ÿ’๐Ÿ’ + ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ + ๐Ÿ๐Ÿ

5. ๐‘ฅ๐‘ฅ5โˆ’32๐‘ฅ๐‘ฅโˆ’2

๐’™๐’™๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ=

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’™๐’™๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๏ฟฝ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

= ๐’™๐’™๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ–๐Ÿ–๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

ยฉ 2015 Great Minds eureka-math.org

10

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 12: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 7: Mental Math

I can rewrite the product 52 โ‹… 28 as the difference of two squares, ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘Ž๐‘Ž2, where ๐‘ฅ๐‘ฅ is the arithmetic mean of the factors (numbers being multiplied) and ๐‘Ž๐‘Ž is the positive difference between either factor and ๐‘ฅ๐‘ฅ. This means that ๐‘ฅ๐‘ฅ = 40 and ๐‘Ž๐‘Ž = 12.

I know that ๐‘ฅ๐‘ฅ3 + ๐‘Ž๐‘Ž3 = (๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž)(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž). In this case, ๐‘ฅ๐‘ฅ = 12 and ๐‘Ž๐‘Ž = 1.

I know that ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘Ž๐‘Ž2 = (๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž)(๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž). In this case, ๐‘ฅ๐‘ฅ = 11 and ๐‘Ž๐‘Ž = 6.

Lesson 7: Mental Math

Use Polynomial Identities to Perform Arithmetic

1. Using an appropriate polynomial identity, quickly compute the product 52 โ‹… 28. Show each step. Be sureto state your values for ๐‘ฅ๐‘ฅ and ๐‘Ž๐‘Ž.

๐’™๐’™ =๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ + ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“= ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐’‚๐’‚ = ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โ‹… ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ = (๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“)(๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“) = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ

2. Rewrite 121 โˆ’ 36 as a product of two integers.

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = (๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ“๐Ÿ“

3. Quickly compute the difference of squares 842 โˆ’ 162.

๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = (๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

Use Polynomial Identities to Determine if a Number is Prime

4. Is 1729 prime? Use the fact that 123 = 1728 and an identity to support your answer.

The number ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ is not prime because it can be factored as ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โ‹… ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = (๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ + ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆ’ (๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“) + ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๏ฟฝ = (๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘)(๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ + ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โ‹… ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

ยฉ 2015 Great Minds eureka-math.org

11

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 13: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 7: Mental Math

I need to find a value ๐‘๐‘ so 11 is a factor of ๐‘๐‘๐‘›๐‘› โˆ’ 1. I can do this by finding a value of ๐‘๐‘ so that (๐‘๐‘ โˆ’ 1) is divisible by 11. One way to do this is to set ๐‘๐‘ โˆ’ 1 = 11, so that ๐‘๐‘ = 12.

I need to rewrite 99,999,951 either as a difference of perfect squares or as a sum or difference of perfect cubes.

5. Show that 99,999,951 is not prime without using a calculator or computer.

Use Polynomial Identities to Determine Divisibility

6. Find a value of ๐‘๐‘ so that the expression ๐‘๐‘๐‘›๐‘› โˆ’ 1 is always divisible by 11 for any positive integer ๐‘›๐‘›. Explainwhy your value of ๐‘๐‘ works for any positive integer ๐‘›๐‘›.

We can factor ๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ as follows:

๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ = (๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’ƒ๐’ƒ๐’๐’โˆ’๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’๐’โˆ’๐Ÿ“๐Ÿ“ + ๐’ƒ๐’ƒ๐’๐’โˆ’๐Ÿ‘๐Ÿ‘ +โ‹ฏ+ ๐’ƒ๐’ƒ + ๐Ÿ๐Ÿ๏ฟฝ.

Choose ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ so that ๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Since ๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ, then ๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ will have ๐Ÿ๐Ÿ๐Ÿ๐Ÿ as a factor

and therefore will always be divisible by ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Note: Any value of ๐‘๐‘ where (๐‘๐‘ โˆ’ 1) is a multiple of 11 will produce a valid solution. Possible values of ๐‘๐‘ include 12, 23, 34, and 45.

7. Find a value of ๐‘๐‘ so that the expression ๐‘๐‘๐‘›๐‘› โˆ’ 1 is divisible by both 3 and 11 for any positive integer ๐‘›๐‘›.Explain why your value of ๐‘๐‘ works for any positive integer ๐‘›๐‘›.

We can factor ๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ as follows:

๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ = (๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ)(๐’ƒ๐’ƒ๐’๐’โˆ’๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’๐’โˆ’๐Ÿ“๐Ÿ“ + ๐’ƒ๐’ƒ๐’๐’โˆ’๐Ÿ‘๐Ÿ‘ +โ‹ฏ+ ๐’ƒ๐’ƒ + ๐Ÿ๐Ÿ).

Choose ๐’ƒ๐’ƒ = ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’ so that ๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.

Since ๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘, then ๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ will have ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ as a factor, which is a multiple of both ๐Ÿ‘๐Ÿ‘ and ๐Ÿ๐Ÿ๐Ÿ๐Ÿ. Therefore, ๐’ƒ๐’ƒ๐’๐’ โˆ’ ๐Ÿ๐Ÿ will always be divisible by ๐Ÿ‘๐Ÿ‘ and ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Note: Any value of ๐‘๐‘ where (๐‘๐‘ โˆ’ 1) is a multiple of 33 will produce a valid solution. Possible values of ๐‘๐‘ include 34, 67, and 100

๐Ÿ๐Ÿ๐Ÿ๐Ÿ,๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ,๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’,๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’,๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๏ฟฝ๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’,๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โ‹… ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

ยฉ 2015 Great Minds eureka-math.org

12

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 14: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 8: The Power of Algebraโ€”Finding Primes

Lesson 8: The Power of Algebraโ€”Finding Primes

Apply Polynomial Identities to Factor Composite Numbers

1. Factor 512 โˆ’ 1 in three different ways: using the identity (๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›)(๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’2 +โ‹ฏ+ ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1), thedifference of squares identity, and the difference of cubes identity.

i. ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = (๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๐Ÿ—๐Ÿ— + ๐Ÿ“๐Ÿ“๐Ÿ–๐Ÿ– + โ‹ฏ+ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ

ii. ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”๏ฟฝ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = (๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ)

iii. ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๏ฟฝ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ ๏ฟฝ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’๏ฟฝ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ= ๏ฟฝ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ(๐Ÿ“๐Ÿ“๐Ÿ–๐Ÿ– + ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ)

Apply Polynomial Identities to Analyze Divisibility

2. Explain why if ๐‘›๐‘› is odd, the number 3๐‘›๐‘› + 1 will always be divisible by 4.

For any odd value of ๐’๐’,

๐Ÿ‘๐Ÿ‘๐’๐’ + ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐’๐’ + ๐’‚๐’‚๐’๐’ = (๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ‘๐Ÿ‘๐’๐’โˆ’๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘๐’๐’โˆ’๐Ÿ๐Ÿ + ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ‘๐Ÿ‘๐’๐’โˆ’๐Ÿ‘๐Ÿ‘ โˆ’โ‹ฏ+ ๏ฟฝ๐Ÿ๐Ÿ๐’๐’โˆ’๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๏ฟฝ๐Ÿ๐Ÿ๐’๐’โˆ’๐Ÿ๐Ÿ๏ฟฝ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐’๐’โˆ’๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ’๐Ÿ’๏ฟฝ๐Ÿ‘๐Ÿ‘๐’๐’โˆ’๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘๐’๐’โˆ’๐Ÿ๐Ÿ + ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ‘๐Ÿ‘๐’๐’โˆ’๐Ÿ‘๐Ÿ‘ โˆ’โ‹ฏ+ ๏ฟฝ๐Ÿ๐Ÿ๐’๐’โˆ’๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๏ฟฝ๐Ÿ๐Ÿ๐’๐’โˆ’๐Ÿ๐Ÿ๏ฟฝ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐’๐’โˆ’๐Ÿ๐Ÿ๏ฟฝ.

Since ๐Ÿ’๐Ÿ’ is a factor of ๐Ÿ‘๐Ÿ‘๐’๐’ + ๐Ÿ๐Ÿ for any odd value of ๐’๐’, the number ๐Ÿ‘๐Ÿ‘๐’๐’ + ๐Ÿ๐Ÿ is divisible by ๐Ÿ’๐Ÿ’.

I know that 512 โˆ’ 1 can be written as a difference of squares because it can be written in the form ๐‘ฅ๐‘ฅ2๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž2๐‘›๐‘›, where ๐‘ฅ๐‘ฅ = 5, ๐‘Ž๐‘Ž = 1 and ๐‘›๐‘› = 6. I can then apply the difference of squares identity:

๐‘ฅ๐‘ฅ2๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž2๐‘›๐‘› = (๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›)(๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›).

For odd numbers ๐‘›๐‘›, I can use the identity ๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘› = (๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž)(๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 โˆ’ ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’2 + ๐‘Ž๐‘Ž2๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’3 โˆ’ โ‹ฏ+ ๐‘Ž๐‘Ž๐‘›๐‘›โˆ’1).

I know that 512 โˆ’ 1 can be written as a difference of cubes because it can be written in the form ๐‘ฅ๐‘ฅ3๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž3๐‘›๐‘›, where ๐‘ฅ๐‘ฅ = 5, ๐‘Ž๐‘Ž = 1 and ๐‘›๐‘› = 4. I can then apply the difference of cubes identity:

๐‘ฅ๐‘ฅ3๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž3๐‘›๐‘› = (๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘Ž๐‘Ž๐‘›๐‘›)(๐‘ฅ๐‘ฅ2๐‘›๐‘› + ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘›

ยฉ 2015 Great Minds eureka-math.org

13

Homework Helper A Story of Functions

๐‘Ž๐‘Ž2๐‘›๐‘›+ )

ALG II-M1-HWH-1.3.0-08.2015

Page 15: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 8: The Power of Algebraโ€”Finding Primes

3. If ๐‘›๐‘› is a composite number, explain why 4๐‘›๐‘› โˆ’ 1 is never prime.Since ๐’๐’ is composite, there are integers ๐’‚๐’‚ and ๐’ƒ๐’ƒlarger than ๐Ÿ๐Ÿ so that ๐’๐’ = ๐’‚๐’‚๐’ƒ๐’ƒ. Then

๐Ÿ’๐Ÿ’๐’๐’ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’๐’‚๐’‚๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ = (๐Ÿ’๐Ÿ’๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ(๐Ÿ’๐Ÿ’๐’‚๐’‚)๐’ƒ๐’ƒโˆ’๐Ÿ๐Ÿ + (๐Ÿ’๐Ÿ’๐’‚๐’‚)๐’ƒ๐’ƒโˆ’๐Ÿ๐Ÿ + (๐Ÿ’๐Ÿ’๐’‚๐’‚)๐’ƒ๐’ƒโˆ’๐Ÿ‘๐Ÿ‘ + โ‹ฏ+ (๐Ÿ’๐Ÿ’๐’‚๐’‚)๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ.

Since ๐’‚๐’‚ > ๐Ÿ๐Ÿ, the expression ๐Ÿ’๐Ÿ’๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ must be an integer greater than or equal to ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“, so ๐Ÿ’๐Ÿ’๐’‚๐’‚๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ has a factor other than ๐Ÿ๐Ÿ. Therefore, the number ๐Ÿ’๐Ÿ’๐’๐’ โˆ’ ๐Ÿ๐Ÿ is composite.

Apply the Difference of Squares Identity to Rewrite Numbers

4. Express the numbers from 31 to 40 as the difference of two squares, if possible. The first four have beendone for you.

Number Factorization Difference of two squares

31 31 = 31 โ‹… 1 = (16 + 15)(16โˆ’ 15)

162 โ€“ 152 = 256 โˆ’ 225 = 31

32 32 = 8 โ‹… 4 = (6 + 2)(6 โˆ’ 2)

62 โˆ’ 22 = 36 โˆ’ 4 = 32

33 33 = 11 โ‹… 3 = (7 + 4)(7 โˆ’ 4)

72 โˆ’ 42 = 49 โˆ’ 16 = 33

34 Canโ€™t be done.

35 ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“ = ๐Ÿ•๐Ÿ• โ‹… ๐Ÿ“๐Ÿ“ = (๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ)(๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ)

๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“

36 ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” = ๐Ÿ”๐Ÿ” โ‹… ๐Ÿ”๐Ÿ” = (๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ)(๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ)

๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”

37 ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• = ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• โ‹… ๐Ÿ๐Ÿ = (๐Ÿ๐Ÿ๐Ÿ—๐Ÿ— + ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–)(๐Ÿ๐Ÿ๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–)

๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

38 Canโ€™t be done

39 ๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โ‹… ๐Ÿ‘๐Ÿ‘ = (๐Ÿ–๐Ÿ– + ๐Ÿ“๐Ÿ“)(๐Ÿ–๐Ÿ– โˆ’ ๐Ÿ“๐Ÿ“)

๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ = ๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—

40 ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ’๐Ÿ’ = (๐Ÿ•๐Ÿ• + ๐Ÿ‘๐Ÿ‘)(๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ‘๐Ÿ‘)

๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ—๐Ÿ— = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ

I need to write each number as a product of two whole numbers. I can rewrite the product as a difference of two squares using the method we learned in Lesson 7.

If I cannot factor the number into two positive integers with an even sum, the number cannot be written as a difference of squares because the mean would be a fraction.

I can use the identity ๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ 1 = (๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 + ๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’2 + ๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’3 + โ‹ฏ+ ๐‘ฅ๐‘ฅ + 1).

ยฉ 2015 Great Minds eureka-math.org

14

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 16: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 9: Radicals and Conjugates

To write the denominator as an integer, I can multiply the numerator and denominator by a common factor that makes the radicand in the denominator a perfect cube.

Lesson 9: Radicals and Conjugates

Convert Expressions to Simplest Radical Form

Express each of the following as a rational expression or in simplest radical form. Assume that the symbol ๐’™๐’™ represents a positive number. Remember that a simplified radical expression has a denominator that is an integer.

1. โˆš5๐‘ฅ๐‘ฅ๏ฟฝโˆš10 โˆ’ โˆš2๐‘ฅ๐‘ฅ๏ฟฝ

โˆš๐Ÿ“๐Ÿ“๐’™๐’™ โˆ™ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ“๐Ÿ“๐’™๐’™ โˆ™ โˆš๐Ÿ๐Ÿ๐’™๐’™ = โˆš๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ

= โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ™ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๐’™๐’™๐Ÿ๐Ÿ

= โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ™ โˆš๐Ÿ๐Ÿ๐’™๐’™ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ = ๐Ÿ“๐Ÿ“โˆš๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐’™๐’™โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ

2. ๏ฟฝ 2

27

3 + โˆš243 โˆ’ ๏ฟฝ1

4

3

I can distribute the โˆš5๐‘ฅ๐‘ฅ to each term in the parentheses by multiplying the radicands.

Once I distribute the โˆš5๐‘ฅ๐‘ฅ term to each term in the parentheses, I can factor each radicand so that one factor is a perfect square. The perfect square factors can be taken outside the radical.

I know that I can

rewrite ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘

3 as โˆš๐‘Ž๐‘Ž3

โˆš๐‘๐‘3 ,

which will allow me to simplify the numerator and denominator separately.

๏ฟฝ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘+ โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๏ฟฝ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘=

โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + โˆš๐Ÿ–๐Ÿ– โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

=โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + โˆš๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘ โˆ™ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

=โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’

โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘

=โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’

โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ”๐Ÿ”+ ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’

๐Ÿ‘๐Ÿ‘โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ”๐Ÿ”

= ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ”๐Ÿ”

ยฉ 2015 Great Minds eureka-math.org

15

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 17: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 9: Radicals and Conjugates

I can convert the denominator to an integer by multiplying both the numerator and denominator of the fraction by the radical conjugate.

Since 2โˆš3 โˆ’ 4โˆš5 is the expression, 2โˆš3 + 4โˆš5 is its radical conjugate.

I know that for any positive numbers ๐‘Ž๐‘Ž and ๐‘๐‘,

๏ฟฝโˆš๐‘Ž๐‘Ž + โˆš๐‘๐‘๏ฟฝ๏ฟฝโˆš๐‘Ž๐‘Ž โˆ’ โˆš๐‘๐‘๏ฟฝ = ๏ฟฝโˆš๐‘Ž๐‘Ž๏ฟฝ2โˆ’ ๏ฟฝโˆš๐‘๐‘๏ฟฝ

2. In this

case, ๐‘Ž๐‘Ž = ๏ฟฝ2โˆš3๏ฟฝ2

= 12 and ๐‘๐‘ = ๏ฟฝ4โˆš5๏ฟฝ2

= 80.

Simplify Radical Quotients

Simplify each of the following quotients as far as possible.

3. โˆš123 โˆ’ โˆš33

โˆš33

4. 5โˆš2โˆ’โˆš32โˆš3โˆ’4โˆš5

๏ฟฝโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๏ฟฝโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ =

โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘โˆ’ ๏ฟฝ๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ

I remember that an expression is in simplified radical form if it has no terms with an exponent greater than or equal to the index of the radical and if it does not have a radical in the denominator.

๐Ÿ“๐Ÿ“โˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“

โˆ™๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“

=๏ฟฝ๐Ÿ“๐Ÿ“โˆš๐Ÿ๐Ÿ โˆ’ โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ โˆ™ ๏ฟฝ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“๏ฟฝ๏ฟฝ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“๏ฟฝ โˆ™ ๏ฟฝ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“๏ฟฝ

=๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

(๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿโˆš๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ

=๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘) โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ

=๐Ÿ๐Ÿ๏ฟฝ๐Ÿ“๐Ÿ“โˆš๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๏ฟฝ

โˆ’๐Ÿ”๐Ÿ”๐Ÿ–๐Ÿ–

=๐Ÿ“๐Ÿ“โˆš๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

=๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ“๐Ÿ“โˆš๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

ยฉ 2015 Great Minds eureka-math.org

16

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 18: Module 1: Polynomial, Rational, and Radical Relationships

2015-16

Lesson 10: The Power of Algebraโ€”Finding Pythagorean Triples

M1 ALGEBRA II

I see that the constant term, 25, is a perfect square and that the coefficient of the linear ๐‘ฅ๐‘ฅ term is 10, which is twice the square root of 25. That reminds me of the identity: (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)2 = ๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž2.

I need to write the expression in the form (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘). Since both the ๐‘ฆ๐‘ฆ-term and the constant, 1, switch signs between the factors, I know that the ๐‘๐‘ component of the identity is ๐‘ฆ๐‘ฆ + 1.

Lesson 10: The Power of Algebraโ€”Finding Pythagorean Triples

Use the difference of squares identity ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = (๐’™๐’™ โˆ’ ๐’š๐’š)(๐’™๐’™ + ๐’š๐’š) to simplify algebraic expressions.

1. Use the difference of squares identity to find (๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ โˆ’ 1)(๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ + 1).

Use the difference of squares identity to factor algebraic expressions.

2. Use the difference of two squares identity to factor the expression (๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ)(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ) โˆ’ 10๐‘ฅ๐‘ฅ + 25.

(๐’™๐’™ โˆ’ ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐’š๐’š + ๐Ÿ๐Ÿ) = ๏ฟฝ๐’™๐’™ โˆ’ (๐’š๐’š + ๐Ÿ๐Ÿ)๏ฟฝ๏ฟฝ๐’™๐’™ + (๐’š๐’š + ๐Ÿ๐Ÿ)๏ฟฝ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ (๐’š๐’š + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’š๐’š + ๐Ÿ๐Ÿ๏ฟฝ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ

(๐’™๐’™ + ๐’š๐’š)(๐’™๐’™ โˆ’ ๐’š๐’š) โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) โˆ’ ๐’š๐’š๏ฟฝ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) + ๐’š๐’š๏ฟฝ

ยฉ 2015 Great Minds eureka-math.org

17

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 19: Module 1: Polynomial, Rational, and Radical Relationships

2015-16

Lesson 10: The Power of Algebraโ€”Finding Pythagorean Triples

M1 ALGEBRA II

I know ๐‘ฅ๐‘ฅ = 4 and ๐‘ฆ๐‘ฆ = 1 because ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ = 4 and ๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ.

I need to try all the cases where ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ = 18 and ๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ.

Apply the difference of squares identity to find Pythagorean triples.

3. Prove that the Pythagorean triple (15, 8, 17) can be found by choosing a pair of integers ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ with๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ and computing (๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ฆ2, 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ, ๐‘ฅ๐‘ฅ2 + ๐‘ฆ๐‘ฆ2).

4. Prove that the Pythagorean triple (15, 36, 39) cannot be found by choosing a pair of integers ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆwith ๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ and computing (๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฆ๐‘ฆ2, 2๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ, ๐‘ฅ๐‘ฅ2 + ๐‘ฆ๐‘ฆ2).

โ€ข If ๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and ๐’š๐’š = ๐Ÿ๐Ÿ, then ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘. So this combination does notproduce a number in the triple.

โ€ข If ๐’™๐’™ = ๐Ÿ—๐Ÿ— and ๐’š๐’š = ๐Ÿ๐Ÿ, then ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ•. So this combination does not producea number in the triple.

โ€ข If ๐’™๐’™ = ๐Ÿ”๐Ÿ” and ๐’š๐’š = ๐Ÿ‘๐Ÿ‘, then ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•. So this combination does not producea number in the triple.

There are no other integer values of ๐’™๐’™ and ๐’š๐’š that satisfy ๐’™๐’™๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and ๐’™๐’™ > ๐’š๐’š. Therefore, the triple (๐Ÿ๐Ÿ๐Ÿ๐Ÿ,๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”,๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—) cannot be found using the method described.

We want ๐Ÿ๐Ÿ๐’™๐’™๐’š๐’š = ๐Ÿ๐Ÿ, so ๐’™๐’™๐’š๐’š = ๐Ÿ‘๐Ÿ‘, so we can set ๐’™๐’™ = ๐Ÿ‘๐Ÿ‘ and ๐’š๐’š = ๐Ÿ๐Ÿ.

This means that ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and๐’™๐’™๐Ÿ๐Ÿ + ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•.

Therefore, the values ๐’™๐’™ = ๐Ÿ‘๐Ÿ‘ and ๐’š๐’š = ๐Ÿ๐Ÿ generate thePythagorean triple

๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ,๐Ÿ๐Ÿ๐’™๐’™๐’š๐’š,๐’™๐’™๐Ÿ๐Ÿ + ๐’š๐’š๐Ÿ๐Ÿ๏ฟฝ = (๐Ÿ๐Ÿ๐Ÿ๐Ÿ,๐Ÿ๐Ÿ,๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•).

Since ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” is the only even number in (๐Ÿ๐Ÿ๐Ÿ๐Ÿ,๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”,๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—), we must have ๐Ÿ๐Ÿ๐’™๐’™๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”, so ๐’™๐’™๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

ยฉ 2015 Great Minds eureka-math.org

18

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 20: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 11: The Special Role of Zero in Factoring

Lesson 11: The Special Role of Zero in Factoring

Find Solutions to Polynomial Equations

Find all solutions to the given equations.

1. 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1)2(3๐‘ฅ๐‘ฅ โˆ’ 4) = 0

๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ or (๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’) = ๐ŸŽ๐ŸŽ

Solutions: ๐ŸŽ๐ŸŽ, โˆ’๐Ÿ๐Ÿ, ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

2. ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ2 โˆ’ 25)(๐‘ฅ๐‘ฅ2 โˆ’ 1) = 0

๐Ÿ๐Ÿ(๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“)(๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“)(๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ

๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“) = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“) = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ or (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ

Solutions: ๐ŸŽ๐ŸŽ, ๐Ÿ“๐Ÿ“, โˆ’๐Ÿ“๐Ÿ“, ๐Ÿ๐Ÿ, โˆ’๐Ÿ๐Ÿ

3. (๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = (๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ 6)๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ’ (๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”)๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

๏ฟฝ(๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘) + (๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”)๏ฟฝ๏ฟฝ(๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘) โˆ’ (๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”)๏ฟฝ = ๐ŸŽ๐ŸŽ

(๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘)(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ+ ๐Ÿ—๐Ÿ—) = ๐ŸŽ๐ŸŽ

๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ or โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ—๐Ÿ— = ๐ŸŽ๐ŸŽ

Solutions: ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’, ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ

Determine Zeros and Multiplicity for Polynomial Functions

4. Find the zeros with multiplicity for the function ๐‘๐‘(๐‘ฅ๐‘ฅ) = (๐‘ฅ๐‘ฅ3 โˆ’ 1)(๐‘ฅ๐‘ฅ4 โˆ’ 9๐‘ฅ๐‘ฅ2).The number of times a solution appears as a factor in a polynomial function is its multiplicity.

๐ŸŽ๐ŸŽ = (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—)

๐ŸŽ๐ŸŽ = (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘)(๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘)

Then ๐Ÿ๐Ÿ is a zero of multiplicity ๐Ÿ๐Ÿ, ๐ŸŽ๐ŸŽ is a zero of multiplicity ๐Ÿ๐Ÿ, โˆ’๐Ÿ‘๐Ÿ‘ is a zero of multiplicity ๐Ÿ๐Ÿ, and ๐Ÿ‘๐Ÿ‘ is a zero of multiplicity ๐Ÿ๐Ÿ.

To find all the solutions, I need to set each factor equal to zero and solve the resulting equations.

I factored the expression (๐‘ฅ๐‘ฅ3 โˆ’ 1) using the difference of cubes pattern. Since (๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 1) does not factor, it does not contribute any zeros of the function ๐‘๐‘.

I recognize the expression on the left side of the equation as the difference of two perfect squares. I know that ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘). In this case, ๐‘Ž๐‘Ž = (๐‘ฅ๐‘ฅ + 3) and ๐‘๐‘ = (3๐‘ฅ๐‘ฅ โˆ’ 6).

I collected like terms to rewrite the factors.

The exponent 2 means that the equation has a repeated factor, which corresponds to a repeated solution.

ยฉ 2015 Great Minds eureka-math.org

19

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 21: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 11: The Special Role of Zero in Factoring

Construct a Polynomial Function That Has a Specified Set of Zeros with Stated Multiplicity

5. Find two different polynomial functions that have a zero at 1 of multiplicity 3 and a zero at โˆ’2 ofmultiplicity 2.

๐’‘๐’‘(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

๐’’๐’’(๐Ÿ๐Ÿ) = ๐Ÿ“๐Ÿ“(๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

Compare the Remainder of ๐’‘๐’‘(๐Ÿ๐Ÿ) รท (๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚) with ๐’‘๐’‘(๐’‚๐’‚)

6. Consider the polynomial function ๐‘๐‘(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6.a. Divide ๐‘๐‘ by the divisor (๐‘ฅ๐‘ฅ โˆ’ 2), and rewrite in the form ๐‘๐‘(๐‘ฅ๐‘ฅ) = (divisor)(quotient) + remainder.

Either the division algorithm or the reverse tabular method can be used to find the quotient andremainder.

๐’‘๐’‘(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ•๐Ÿ•๏ฟฝ + ๐Ÿ–๐Ÿ–

b. Evaluate ๐‘๐‘(2).

๐’‘๐’‘(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ•๐Ÿ•๏ฟฝ + ๐Ÿ–๐Ÿ–๐’‘๐’‘(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘ โ‹… ๐Ÿ๐Ÿ + ๐Ÿ•๐Ÿ•๏ฟฝ + ๐Ÿ–๐Ÿ–๐’‘๐’‘(๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ + ๐Ÿ–๐Ÿ–๐’‘๐’‘(๐Ÿ๐Ÿ) = ๐Ÿ–๐Ÿ–

๐Ÿ๐Ÿ๐Ÿ๐Ÿ +๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ +๐Ÿ•๐Ÿ•

๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ +๐Ÿ๐Ÿ๐Ÿ๐Ÿ +๐Ÿ๐Ÿ โˆ’๐Ÿ”๐Ÿ”

โˆ’(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ +๐Ÿ๐Ÿ

โˆ’(๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ)

๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ โˆ’๐Ÿ”๐Ÿ”

โˆ’(๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’)

๐Ÿ–๐Ÿ–

I need to include the linear factor (๐‘ฅ๐‘ฅ โˆ’ 1) three times and the linear factor (๐‘ฅ๐‘ฅ + 2) twice in the statement of each function.

I used the division algorithm we learned in Lesson 4 to find the quotient and remainder.

ยฉ 2015 Great Minds eureka-math.org

20

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 22: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 12: Overcoming Obstacles In Factoring

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐’™๐’™ = โˆ’๐Ÿ‘๐Ÿ‘ ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐’™๐’™ + (โˆ’๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ = โˆ’๐Ÿ‘๐Ÿ‘ + (โˆ’๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = โˆ’๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ (๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’ = ยฑโˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

Lesson 12: Overcoming Obstacles In Factoring

Solving Problems by Completing the Square

Solve each of the following equations by completing the square.

1. ๐‘ฅ๐‘ฅ2 โˆ’ 8๐‘ฅ๐‘ฅ + 3 = 0

The solutions are ๐Ÿ’๐Ÿ’ + โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ and ๐Ÿ’๐Ÿ’ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘.

2. 2๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ = โˆ’1

๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ = โˆ’๐Ÿ๐Ÿ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™+ ๐Ÿ—๐Ÿ— = โˆ’๐Ÿ๐Ÿ+ ๐Ÿ—๐Ÿ—

(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ• ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘ = ยฑโˆš๐Ÿ•๐Ÿ•

The solutions are ๐Ÿ‘๐Ÿ‘+โˆš๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

and ๐Ÿ‘๐Ÿ‘โˆ’โˆš๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

.

3. ๐‘ฅ๐‘ฅ4 โˆ’ 6๐‘ฅ๐‘ฅ2 + 4 = 0

๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ = โˆ’๐Ÿ’๐Ÿ’ ๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ—๐Ÿ— = โˆ’๐Ÿ’๐Ÿ’+ ๐Ÿ—๐Ÿ—

(๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ = ยฑโˆš๐Ÿ“๐Ÿ“

๐’™๐’™๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘ ยฑ โˆš๐Ÿ“๐Ÿ“

The solutions are ๏ฟฝ๐Ÿ‘๐Ÿ‘ + โˆš๐Ÿ“๐Ÿ“,๏ฟฝ๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ“๐Ÿ“,โˆ’๏ฟฝ๐Ÿ‘๐Ÿ‘ + โˆš๐Ÿ“๐Ÿ“, and โˆ’๏ฟฝ๐Ÿ‘๐Ÿ‘ โˆ’ โˆš๐Ÿ“๐Ÿ“.

I squared half the linear coefficient and added the result to both sides of the equation.

I recognize that ๐‘ฅ๐‘ฅ2 โˆ’ 8๐‘ฅ๐‘ฅ + 16 fits the pattern for the square of a difference: ๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž2 = (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)2

I multiplied both sides of the equation by 2 so the quadratic term would be a perfect square. Then I can complete the square using the reverse tabular method, shown to the right.

๐Ÿ๐Ÿ๐’™๐’™ โˆ’๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐’™๐’™ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐’™๐’™

โˆ’๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ๐Ÿ๐’™๐’™ ๐Ÿ—๐Ÿ—

ยฉ 2015 Great Minds eureka-math.org

21

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 23: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 12: Overcoming Obstacles In Factoring

Solving Problems by Using the Quadratic Formula

Solve the equation by using the quadratic formula.

4. (๐‘ฅ๐‘ฅ2 โˆ’ 7๐‘ฅ๐‘ฅ + 3)(๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ + 2) = 0

๐’™๐’™ = ๐Ÿ•๐Ÿ•ยฑ๏ฟฝ(โˆ’๐Ÿ•๐Ÿ•)๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

or ๐’™๐’™ = ๐Ÿ“๐Ÿ“ยฑ๏ฟฝ(โˆ’๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)

The solutions are ๐Ÿ•๐Ÿ•+โˆš๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

, ๐Ÿ•๐Ÿ•โˆ’โˆš๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

, ๐Ÿ“๐Ÿ“+โˆš๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

, and ๐Ÿ“๐Ÿ“โˆ’โˆš๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

.

Solving Polynomial Equations by Factoring

Use factoring to solve each equation.

5. 6๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ โˆ’ 3 = 0

๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ—๐Ÿ—๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ ๐Ÿ‘๐Ÿ‘๐’™๐’™(๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘) โˆ’ ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘) = ๐ŸŽ๐ŸŽ

(๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘) = ๐ŸŽ๐ŸŽ

The solutions are โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

and ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘.

6. (2๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ โˆ’ 4) = (2๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ + 3)

(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’) โˆ’ (๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘) = ๐ŸŽ๐ŸŽ(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’) โˆ’ (๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)๏ฟฝ = ๐ŸŽ๐ŸŽ

(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(โˆ’๐Ÿ•๐Ÿ•) = ๐ŸŽ๐ŸŽ

The only solution is ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

7. (๐‘ฅ๐‘ฅ2 + 5)2 โˆ’ 3 = 0

The solutions are ๏ฟฝโˆ’๐Ÿ“๐Ÿ“ + โˆš๐Ÿ‘๐Ÿ‘, โˆ’๏ฟฝโˆ’๐Ÿ“๐Ÿ“ + โˆš๐Ÿ‘๐Ÿ‘,๏ฟฝโˆ’๐Ÿ“๐Ÿ“ โˆ’ โˆš๐Ÿ‘๐Ÿ‘, and โˆ’๏ฟฝโˆ’๐Ÿ“๐Ÿ“โˆ’ โˆš๐Ÿ‘๐Ÿ‘.

I can find the solutions by setting each factor equal to zero. I can solve the resulting quadratic equations using the quadratic formula: If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0, then

๐‘ฅ๐‘ฅ = โˆ’๐‘๐‘ยฑโˆš๐‘๐‘2โˆ’4๐‘Ž๐‘Ž๐‘Ž๐‘Ž2๐‘Ž๐‘Ž

.

I split the linear term into two terms whose coefficients multiply to the product of the leading coefficient and the constant (9 โˆ™ โˆ’2) = (6 โˆ™ โˆ’3). Then I can factor the resulting quadratic expression by grouping.

I factored (2๐‘ฅ๐‘ฅ โˆ’ 1) from both expressions.

I factored the left side of the equation as a difference of two perfect squares: ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘).

๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๏ฟฝ โˆ’ โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๏ฟฝ + โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ = ๐ŸŽ๐ŸŽ

๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๏ฟฝ โˆ’ โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ = ๐ŸŽ๐ŸŽ or ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๏ฟฝ + โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ = ๐ŸŽ๐ŸŽ

๐’™๐’™๐Ÿ๐Ÿ = โˆ’๐Ÿ“๐Ÿ“ + โˆš๐Ÿ‘๐Ÿ‘ or ๐’™๐’™๐Ÿ๐Ÿ = โˆ’๐Ÿ“๐Ÿ“ โˆ’ โˆš๐Ÿ‘๐Ÿ‘

ยฉ 2015 Great Minds eureka-math.org

22

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 24: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 ALGEBRA II

Lesson 13: Mastering Factoring

Lesson 13: Mastering Factoring

Factor Polynomials

1. If possible, factor the following polynomials over the real numbers.

a. 9๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ2 + 6๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ โˆ’ 8

๐Ÿ—๐Ÿ—(๐’™๐’™๐’š๐’š)๐Ÿ๐Ÿ + ๐Ÿ”๐Ÿ”(๐’™๐’™๐’š๐’š) โˆ’ ๐Ÿ–๐Ÿ– = ๐Ÿ—๐Ÿ—(๐’™๐’™๐’š๐’š)๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™๐’š๐’š โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™๐’š๐’š โˆ’ ๐Ÿ–๐Ÿ–= ๐Ÿ‘๐Ÿ‘๐’™๐’™๐’š๐’š(๐Ÿ‘๐Ÿ‘๐’™๐’™๐’š๐’š + ๐Ÿ’๐Ÿ’) โˆ’ ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐’™๐’™๐’š๐’š+ ๐Ÿ’๐Ÿ’) = (๐Ÿ‘๐Ÿ‘๐’™๐’™๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐’™๐’™๐’š๐’š + ๐Ÿ’๐Ÿ’)

b. 18๐‘ฅ๐‘ฅ3 โˆ’ 50๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ4๐‘ง๐‘ง6

๐Ÿ๐Ÿ๐’™๐’™๏ฟฝ๐Ÿ—๐Ÿ—๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ’๐Ÿ’๐’›๐’›๐Ÿ”๐Ÿ”๏ฟฝ = ๐Ÿ๐Ÿ๐’™๐’™ ๏ฟฝ(๐Ÿ‘๐Ÿ‘๐’™๐’™)๐Ÿ๐Ÿ โˆ’ ๏ฟฝ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ๐’›๐’›๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ๏ฟฝ= ๐Ÿ๐Ÿ๐’™๐’™๏ฟฝ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ๐’›๐’›๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ๐’›๐’›๐Ÿ‘๐Ÿ‘๏ฟฝ

c. 3๐‘ฅ๐‘ฅ5 โˆ’ 81๐‘ฅ๐‘ฅ2

๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)(๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ—๐Ÿ—)

d. 16๐‘ฅ๐‘ฅ4 + 25๐‘ฆ๐‘ฆ2

Cannot be factored over the real numbers

Since the greatest common factor (GCF) among the terms is 1 and there are 3 terms, I split the middle term so its coefficients multiplied to the product of the leading coefficient and the constant: 12(โˆ’6) = 9(โˆ’8). I can then factor the polynomial by grouping just as we did in Lesson 12.

After factoring out the GCF, 2๐‘ฅ๐‘ฅ, I recognized the resulting expression was a difference of two perfect squares because the coefficients of the terms were perfect squares, and the exponents were even.

This is the sum of two perfect squares, and I cannot factor the sum of squares over the real numbers.

After factoring out the GCF, I recognize the factor ๐‘ฅ๐‘ฅ3 โˆ’ 72 as a difference of cubes.

ยฉ 2015 Great Minds eureka-math.org

23

Homework Helper A Story of Functions M1

ALG II-M1-HWH-1.3.0-08.2015

Page 25: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 ALGEBRA II

Lesson 13: Mastering Factoring

e. 2๐‘ฅ๐‘ฅ4 โˆ’ 50

๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ= ๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’™๐’™ โˆ’ โˆš๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’™๐’™ + โˆš๐Ÿ๐Ÿ๏ฟฝ

2.

a. Factor ๐‘ฆ๐‘ฆ6 โˆ’ 1 first as a difference of cubes, and then factor completely: (๐‘ฆ๐‘ฆ2)3 โˆ’ 13.

๐’š๐’š๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’š๐’š๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ= (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)(๐’š๐’š + ๐Ÿ๐Ÿ)(๐’š๐’š๐Ÿ’๐Ÿ’ + ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)

b. Factor ๐‘ฆ๐‘ฆ6 โˆ’ 1 first as a difference of squares, and then factor completely: (๐‘ฆ๐‘ฆ3)2 โˆ’ 12.

๐’š๐’š๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = ๏ฟฝ๐’š๐’š๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’š๐’š๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๏ฟฝ= (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)(๐’š๐’š๐Ÿ๐Ÿ + ๐’š๐’š + ๐Ÿ๐Ÿ)(๐’š๐’š + ๐Ÿ๐Ÿ)(๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)

c. Use your results from parts (a) and (b) to factor ๐‘ฆ๐‘ฆ4 + ๐‘ฆ๐‘ฆ2 + 1.

From part (a), we know ๐’š๐’š๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)(๐’š๐’š + ๐Ÿ๐Ÿ)๏ฟฝ๐’š๐’š๐Ÿ’๐Ÿ’ + ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ.From part (b), we know ๐’š๐’š๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ + ๐’š๐’š + ๐Ÿ๐Ÿ๏ฟฝ(๐’š๐’š + ๐Ÿ๐Ÿ)๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ๏ฟฝ, which is equivalentto ๐’š๐’š๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ = (๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)(๐’š๐’š + ๐Ÿ๐Ÿ)๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ + ๐’š๐’š + ๐Ÿ๐Ÿ๏ฟฝ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ๏ฟฝ.

It follows that ๐’š๐’š๐Ÿ’๐Ÿ’ + ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ = (๐’š๐’š๐Ÿ๐Ÿ + ๐’š๐’š + ๐Ÿ๐Ÿ)( ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐’š๐’š โˆ’ ๐Ÿ๐Ÿ).

When I factor the expression as a difference of cubes, the first expression can be factored as a difference of squares.

When I factor the expression as a difference of squares, the first expression can be factored as a difference of cubes and the second as the sum of cubes.

ยฉ 2015 Great Minds eureka-math.org

24

Homework Helper A Story of Functions M1

ALG II-M1-HWH-1.3.0-08.2015

Page 26: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 14: Graphing Factored Polynomials

Lesson 14: Graphing Factored Polynomials

Steps for Creating Sketches of Factored Polynomials

First, determine the zeros of the polynomial from the factors. These values are the ๐‘ฅ๐‘ฅ-intercepts of the graph of the function. Mark these values on the ๐‘ฅ๐‘ฅ-axis of a coordinate grid.

Evaluate the function at ๐‘ฅ๐‘ฅ-values between the zeros to determine whether the graph of the function is negative or positive between the zeros. If the output is positive, the graph lies above the ๐‘ฅ๐‘ฅ-axis. If the output is negative, the graph lies below the ๐‘ฅ๐‘ฅ-axis.

Determining the Number of ๐’™๐’™-intercepts and Relative Maxima and Minima for Graphs of Polynomials

1. For the function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ5 โˆ’ ๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ2 + 1, identify the largest possible number of ๐‘ฅ๐‘ฅ-intercepts and thelargest possible number of relative maxima and minima based on the degree of the polynomial. Then usea calculator or graphing utility to graph the function and find the actual number of ๐‘ฅ๐‘ฅ-intercepts andrelative maxima and minima.

The largest number of possible ๐’™๐’™-intercepts is ๐Ÿ“๐Ÿ“, and the largest possible number of relative maximaand minima is ๐Ÿ’๐Ÿ’.

The graph of ๐’‡๐’‡ has two ๐’™๐’™-intercepts, one relative maximum point, and one relative minimum point.

I know the largest possible number of ๐‘ฅ๐‘ฅ-intercepts is equal to the degree of the polynomial, and the largest possible number of relative maxima and relative minima is equal to one less than the degree of the polynomial.

I know (1, 0) is a relative minimum point because the output values for inputs immediately to the right and left of 1 are greater than 0.

I know (0, 1) is a relative maximum point because the output values for inputs immediately greater than or less than 0 are less than 1.

ยฉ 2015 Great Minds eureka-math.org

25

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 27: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 14: Graphing Factored Polynomials

Sketching a Graph from Factored Polynomials

2. Sketch a graph of the function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2(๐‘ฅ๐‘ฅ + 4)(๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ + 2) by finding the zeros and determining thesign of the values of the function between zeros.

The zeros are โˆ’๐Ÿ๐Ÿ,๐Ÿ๐Ÿ, and โˆ’๐Ÿ’๐Ÿ’.

For ๐’™๐’™ < โˆ’๐Ÿ’๐Ÿ’: ๐’‡๐’‡(โˆ’๐Ÿ“๐Ÿ“) = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘, so the graph of ๐’‡๐’‡ is belowthe ๐’™๐’™-axis for ๐’™๐’™ < โˆ’๐Ÿ’๐Ÿ’.

For โˆ’๐Ÿ’๐Ÿ’ < ๐’™๐’™ < โˆ’๐Ÿ๐Ÿ: ๐’‡๐’‡(โˆ’๐Ÿ‘๐Ÿ‘) = ๐Ÿ–๐Ÿ–, so the graph of ๐’‡๐’‡ isabove the ๐’™๐’™-axis for โˆ’๐Ÿ’๐Ÿ’ < ๐’™๐’™ < โˆ’๐Ÿ๐Ÿ.

For โˆ’๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ๐Ÿ: ๐’‡๐’‡(๐ŸŽ๐ŸŽ) = โˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘, so the graph of ๐’‡๐’‡ isbelow the ๐’™๐’™-axis for โˆ’๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ๐Ÿ.

For ๐’™๐’™ > ๐Ÿ๐Ÿ: ๐’‡๐’‡(๐Ÿ๐Ÿ) = ๐Ÿ’๐Ÿ’๐Ÿ–๐Ÿ–, so the graph is above the ๐’™๐’™-axis for ๐’™๐’™ > ๐Ÿ๐Ÿ.

Since โˆ’4 is the zero with the least value, I know the graph of ๐‘“๐‘“ will not intersect the ๐‘ฅ๐‘ฅ-axis for inputs less than โˆ’4, which means that since ๐‘“๐‘“(โˆ’5) is negative, all outputs for ๐‘ฅ๐‘ฅ < โˆ’4 will also be negative, and this part of the graph will be below the ๐‘ฅ๐‘ฅ-axis.

Since there are no zeros for โˆ’4 < ๐‘ฅ๐‘ฅ < โˆ’2, I know the graph of ๐‘“๐‘“ will not intersect the ๐‘ฅ๐‘ฅ-axis for inputs between โˆ’4 and โˆ’2. Then, since ๐‘“๐‘“(โˆ’3) is positive, all outputs for โˆ’4 < ๐‘ฅ๐‘ฅ < โˆ’2 will also be positive, and this part of the graph will be above the ๐‘ฅ๐‘ฅ-axis.

If I substitute input values between the zeros, I can determine from the resulting outputs if the graph of ๐‘“๐‘“ will be above or below the ๐‘ฅ๐‘ฅ-axis for the regions between the zeros.

ยฉ 2015 Great Minds eureka-math.org

26

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 28: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 14: Graphing Factored Polynomials

3. Sketch a graph of the function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ4 โˆ’ 4๐‘ฅ๐‘ฅ3 + 3๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ โˆ’ 4 by determining the sign of the values ofthe function between zeros โˆ’1, 1, and 2.

4. A function ๐‘“๐‘“ has zeros at โˆ’1, 2, and 4. We know that ๐‘“๐‘“(โˆ’2) and ๐‘“๐‘“(0) are positive, while ๐‘“๐‘“(3) and ๐‘“๐‘“(5)are negative. Sketch a graph of ๐‘“๐‘“.

I notice that the graph is above the ๐‘ฅ๐‘ฅ-axis on either side of the ๐‘ฅ๐‘ฅ-intercept at 2. This means that (2, 0) is a relative minimum point for this function.

Because ๐‘“๐‘“(โˆ’2) and ๐‘“๐‘“(0) are positive and ๐‘“๐‘“(โˆ’1) = 0, I know the graph of ๐‘“๐‘“ lies above the ๐‘ฅ๐‘ฅ-axis for ๐‘ฅ๐‘ฅ < โˆ’1 and โˆ’1 < ๐‘ฅ๐‘ฅ < 2 and that it intersects the ๐‘ฅ๐‘ฅ-axis at โˆ’1,

Because ๐‘“๐‘“(3) and ๐‘“๐‘“(5) are negative and ๐‘“๐‘“(4) = 0, I know the graph of ๐‘“๐‘“ lies below the ๐‘ฅ๐‘ฅ-axis for ๐‘ฅ๐‘ฅ > 4 and 2 < ๐‘ฅ๐‘ฅ < 4 and that it intersects the ๐‘ฅ๐‘ฅ-axis at 4.

Because ๐‘“๐‘“(0) is positive and ๐‘“๐‘“(3) is negative and ๐‘“๐‘“(2) = 0, I know the graph of ๐‘“๐‘“ crosses the ๐‘ฅ๐‘ฅ-axis at 2.

For ๐’™๐’™ < โˆ’๐Ÿ๐Ÿ: Since ๐’‡๐’‡(โˆ’๐Ÿ๐Ÿ) = ๐Ÿ’๐Ÿ’๐Ÿ–๐Ÿ–, the graph is above the ๐’™๐’™-axis for ๐’™๐’™ < โˆ’๐Ÿ๐Ÿ.

For โˆ’๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ๐Ÿ: Since ๐’‡๐’‡(๐ŸŽ๐ŸŽ) = โˆ’๐Ÿ’๐Ÿ’, the graph is below the๐’™๐’™-axis for โˆ’๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ๐Ÿ.

For ๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ๐Ÿ: Since ๐’‡๐’‡(๐Ÿ๐Ÿ.๐Ÿ“๐Ÿ“) = ๐ŸŽ๐ŸŽ.๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“, the graph is abovethe ๐’™๐’™-axis for ๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ๐Ÿ.

For ๐’™๐’™ > ๐Ÿ๐Ÿ: Since ๐’‡๐’‡(๐Ÿ‘๐Ÿ‘) = ๐Ÿ–๐Ÿ–, the graph is above the ๐’™๐’™-axis for๐’™๐’™ > ๐Ÿ๐Ÿ.

ยฉ 2015 Great Minds eureka-math.org

27

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 29: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 15: Structure in Graphs of Polynomial Functions

Lesson 15: Structure in Graphs of Polynomial Functions

Characteristics of Polynomial Graphs

1. Graph the functions ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ, ๐‘”๐‘”(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3, and โ„Ž(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ5 simultaneously using a graphing utility, andzoom in at the origin.

a. At ๐‘ฅ๐‘ฅ = 0.8, order the values of the functions from least to greatest.

At ๐’™๐’™ = ๐ŸŽ๐ŸŽ.๐Ÿ–๐Ÿ–, ๐’‰๐’‰(๐ŸŽ๐ŸŽ.๐Ÿ–๐Ÿ–) < ๐’ˆ๐’ˆ(๐ŸŽ๐ŸŽ.๐Ÿ–๐Ÿ–) < ๐’‡๐’‡(๐ŸŽ๐ŸŽ.๐Ÿ–๐Ÿ–)

b. At ๐‘ฅ๐‘ฅ = 2, order the values of the functions from least to greatest.

At ๐’™๐’™ = ๐Ÿ๐Ÿ, ๐’‡๐’‡(๐Ÿ๐Ÿ) < ๐’ˆ๐’ˆ(๐Ÿ๐Ÿ) < ๐’‰๐’‰(๐Ÿ๐Ÿ)

c. At ๐‘ฅ๐‘ฅ = 1, order the values of the functions from least to greatest.

At ๐’™๐’™ = ๐Ÿ๐Ÿ, ๐’‡๐’‡(๐Ÿ๐Ÿ) = ๐’ˆ๐’ˆ(๐Ÿ๐Ÿ) = ๐’‰๐’‰(๐Ÿ๐Ÿ)

Since โ„Ž is increasing at a faster rate than ๐‘”๐‘” for ๐‘ฅ๐‘ฅ > 1, I can tell that ๐‘ฅ๐‘ฅ5 > ๐‘ฅ๐‘ฅ3 for ๐‘ฅ๐‘ฅ > 1.

ยฉ 2015 Great Minds eureka-math.org

28

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 30: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 15: Structure in Graphs of Polynomial Functions

2. The Oak Ridge National Laboratory conducts research for the United States Department of Energy. Thefollowing table contains data from the ORNL about fuel efficiency and driving speed on level roads forvehicles that weigh between 60,000 lb to 70,000 lb.

Fuel Economy Versus Speed for Flat Terrain

Speed (mph)

Fuel Economy (mpg)

51 5.8 53 7.6 55 8.9 57 8.9 59 9.8 61 8.8 63 8.2 65 7.9 67 7.8 69 7.8 71 7.2 73 7.4 75 7.1

Source: www-cta.ornl.gov/cta/Publications/Reports/ORNL TM 2011 471.pdf - 400k - 2011-12-05

a. Plot the data using a graphing utility.

b. Determine if the data display the characteristics of an odd- or even-degree polynomial function.

The characteristics are similar to that of an even-degree polynomial function.

c. List one possible reason the data might have such a shape.

Fuel efficiency decreases at excessive speeds.

The shape of the graph shows that both ends of the graph point downward, so I know that it would be best represented using a polynomial of even degree.

Speed (mph)

Fue

l eco

nom

y (m

pg)

ยฉ 2015 Great Minds eureka-math.org

29

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 31: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 15: Structure in Graphs of Polynomial Functions

3. Determine if each of the following functions is even or odd. Explain how you know.a. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 3๐‘ฅ๐‘ฅ3 โˆ’ 5๐‘ฅ๐‘ฅ

๐’‡๐’‡(โˆ’๐’™๐’™) = ๐Ÿ‘๐Ÿ‘(โˆ’๐’™๐’™)๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“(โˆ’๐’™๐’™) = โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ“๐Ÿ“๐’™๐’™ = โˆ’๏ฟฝ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™๏ฟฝ = โˆ’๐’‡๐’‡(๐’™๐’™)

The function ๐’‡๐’‡ is odd.

b. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ4 โˆ’ 6๐‘ฅ๐‘ฅ2 + 4

๐’‡๐’‡(โˆ’๐’™๐’™) = ๐Ÿ๐Ÿ(โˆ’๐’™๐’™)๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ”๐Ÿ”(โˆ’๐’™๐’™)๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’ = ๐’‡๐’‡(๐’™๐’™)

The function ๐’‡๐’‡ is even.

c. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 + 1

๐’‡๐’‡(โˆ’๐’™๐’™) = (โˆ’๐’™๐’™)๐Ÿ‘๐Ÿ‘ + (โˆ’๐’™๐’™)๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ = โˆ’๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ

The function ๐’‡๐’‡ is neither even nor odd.

4. Determine the ๐‘ฆ๐‘ฆ-intercept for each function below.a. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ + 2

๐’‡๐’‡(๐ŸŽ๐ŸŽ) = ๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ‘ โˆ’ ๐ŸŽ๐ŸŽ + ๐Ÿ๐Ÿ = ๐Ÿ๐ŸThe ๐’š๐’š-intercept is ๐Ÿ๐Ÿ.

b. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ4 โˆ’ ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ

๐’‡๐’‡(๐ŸŽ๐ŸŽ) = ๐ŸŽ๐ŸŽ๐Ÿ’๐Ÿ’ โˆ’ ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ โˆ’ ๐ŸŽ๐ŸŽ = ๐ŸŽ๐ŸŽThe ๐’š๐’š-intercept is ๐ŸŽ๐ŸŽ.

I know that ๐‘“๐‘“(โˆ’๐‘ฅ๐‘ฅ) = ๐‘“๐‘“(๐‘ฅ๐‘ฅ) for even functions and ๐‘“๐‘“(โˆ’๐‘ฅ๐‘ฅ) = โˆ’๐‘“๐‘“(๐‘ฅ๐‘ฅ) for odd functions. This function does not meet either condition.

I know the ๐‘ฆ๐‘ฆ-intercept is the output of a function when the input is 0.

ยฉ 2015 Great Minds eureka-math.org

30

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 32: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 16: Modeling with Polynomialsโ€”An Introduction

Lesson 16: Modeling with Polynomialsโ€”An Introduction

Modeling Real-World Situations with Polynomials

1. For a fundraiser, members of the math club decide to make and sell slices of pie on March 14. They aretrying to decide how many slices of pie to make and sell at a fixed price. They surveyed student interestaround school and made a scatterplot of the number of slices sold (๐‘ฅ๐‘ฅ) versus profit in dollars (๐‘ฆ๐‘ฆ).

a. Identify the ๐‘ฅ๐‘ฅ-intercepts and the ๐‘ฆ๐‘ฆ-intercept. Interpret their meaning in context.

The ๐’™๐’™-intercepts are approximately ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ. The number ๐Ÿ๐Ÿ๐Ÿ๐Ÿ represents the number of slices ofpie that would be made and sold for the math club to break even; in other words, the revenuewould be equal to the amount spent on supplies. The number ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ represents the number of slicesabove which the supply would exceed the demand so that the cost to produce the slices of piewould exceed the revenue.

The ๐’š๐’š-intercept is approximately โˆ’๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ. The โˆ’๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ represents the money that the math clubmembers must spend on supplies in order to make the pies. That is, they will lose $๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ if they sell ๐Ÿ๐Ÿ slices of pie.

b. How many slices of pie should they sell in order to maximize the profit?

They should sell approximately ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“slices to maximize the profit.

c. What is the maximum profit?

The maximum profit is slightlymore than $๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

With a single turning point, I recognize that this data can be modeled using a quadratic polynomial function.

From the graph, I can see that the coordinates of the vertex are approximately (55, 200). The number 55 is the number of slices sold, and the number 200 is the profit, in dollars.

ยฉ 2015 Great Minds eureka-math.org

31

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 33: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 16: Modeling with Polynomialsโ€”An Introduction

2. The following graph shows the average monthly high temperature in degrees Fahrenheit (๐‘ฅ๐‘ฅ) in Albany,NY, from May 2013 through April 2015, where ๐‘ฆ๐‘ฆ represents the number of months since April 2013.(Source: U.S. Climate Data)

a. What degree polynomial would be a reasonable choice to model this data?

Since the graph has ๐Ÿ’๐Ÿ’ turning points (๐Ÿ๐Ÿrelative minima, ๐Ÿ๐Ÿ relative maxima), a degree๐Ÿ“๐Ÿ“ polynomial could be used.

b. Let ๐‘‡๐‘‡ be the function that represents the temperature, in degrees Fahrenheit, as a function of time๐‘ฅ๐‘ฅ, in months. What is the value of ๐‘‡๐‘‡(10), and what does it represent in the context of the problem?

The value ๐‘ป๐‘ป(๐Ÿ๐Ÿ๐Ÿ๐Ÿ) represents the average monthly high temperature ten months after April 2013,which is February 2014. From the graph, ๐‘ป๐‘ป(๐Ÿ๐Ÿ๐Ÿ๐Ÿ) โ‰ˆ ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“, which means the average monthly hightemperature in February 2014 in Albany was about ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“ยฐ๐…๐….

I remember that the maximum number of relative maxima and minima is equal to one less than the degree of the polynomial.

ยฉ 2015 Great Minds eureka-math.org

32

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 34: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 17: Modeling with Polynomialsโ€”An Introduction

I see from the graph that the vertical intercept is โˆ’50. I can substitute (0,โˆ’50) into the function and isolate ๐‘๐‘ to find its value.

Lesson 17: Modeling with Polynomialsโ€”An Introduction

Modeling Real-World Situations with Polynomials

1. Recall the math club fundraiser from the Problem Set of the previous lesson. The club members wouldlike to find a function to model their data, so Joe draws a curve through the data points as shown.

a. The function that models the profit in terms of the number of slices of pie made has the form๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = ๐‘๐‘(๐‘ฅ๐‘ฅ2 โˆ’ 119๐‘ฅ๐‘ฅ + 721). Use the vertical intercept labeled on the graph to find the value ofthe leading coefficient ๐‘๐‘.

Since ๐‘ท๐‘ท(๐ŸŽ๐ŸŽ) = โˆ’๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ, we have โˆ’๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ = ๐’„๐’„๏ฟฝ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐ŸŽ๐ŸŽ) + ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ.

Then โˆ’๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ = ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’„๐’„, so ๐’„๐’„ โ‰ˆ โˆ’๐ŸŽ๐ŸŽ.๐ŸŽ๐ŸŽ๐Ÿ•๐Ÿ•.

So ๐‘ท๐‘ท(๐’™๐’™) = โˆ’๐ŸŽ๐ŸŽ.๐ŸŽ๐ŸŽ๐Ÿ•๐Ÿ•(๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™+ ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ) is a reasonable model.

b. From the graph, estimate the profit if the math club sells 50 slices of pie.

Reading from the graph, the profit is approximately $๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ if the club sells ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ slices of pie.

c. Use your function to estimate the profit if the math club sells 50 slices of pie.

Because ๐‘ท๐‘ท(๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ) = โˆ’๐ŸŽ๐ŸŽ.๐ŸŽ๐ŸŽ๐Ÿ•๐Ÿ•๏ฟฝ(๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ) + ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ, the equation predicts a profit of$๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ.

I notice that the curve used to model the data has one relative maximum and no relative minima, so the curve can be represented with a quadratic function.

ยฉ 2015 Great Minds eureka-math.org

33

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 35: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 17: Modeling with Polynomialsโ€”An Introduction

I know the surface area of the container is the sum of the area of the circular base, ๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ2, added to the lateral area of the cylinder. I can find the lateral area by multiplying the height of the cylinder by the circumference of the circular base, which is 2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿโ„Ž.

I know the volume of a cylinder is the product of the area of its circular base and the height.

I can substitute the expression for โ„Ž from part (b) to write an expression for volume in terms of ๐‘Ÿ๐‘Ÿ.

2. A container is to be constructed as a cylinder with no top.a. Draw and label the sides of the container.

b. The surface area is 150 cm2. Write a formula for the surface area ๐‘†๐‘†, and then solve for โ„Ž.

๐‘บ๐‘บ = ๐…๐…๐’“๐’“๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐…๐…๐’“๐’“๐…๐… = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

๐…๐… =๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ โˆ’ ๐…๐…๐’“๐’“๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐…๐…๐’“๐’“

c. Write a formula for the function of the volume of the container in terms of ๐‘Ÿ๐‘Ÿ.

๐‘ฝ๐‘ฝ(๐’“๐’“) = ๐…๐…๐’“๐’“๐Ÿ๐Ÿ๐…๐… = ๐…๐…๐’“๐’“๐Ÿ๐Ÿ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ โˆ’ ๐…๐…๐’“๐’“๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐…๐…๐’“๐’“ ๏ฟฝ =๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ๐…๐…๐’“๐’“๐Ÿ๐Ÿ โˆ’ ๐…๐…๐Ÿ๐Ÿ๐’“๐’“๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐…๐…๐’“๐’“= ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๐’“๐’“ โˆ’

๐…๐…๐’“๐’“๐ŸŽ๐ŸŽ

๐Ÿ๐Ÿ

๐’“๐’“

๐…๐…

ยฉ 2015 Great Minds eureka-math.org

34

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 36: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 17: Modeling with Polynomialsโ€”An Introduction

I know the ๐‘ฅ๐‘ฅ-coordinate of the relative maximum point represents the value of ๐‘Ÿ๐‘Ÿ that maximizes volume. I can substitute this value into the expression for part (b) to find โ„Ž.

d. Use a graph of the volume as a function of ๐‘Ÿ๐‘Ÿ to find the maximum volume of the container.

The maximum volume isapproximately ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ• ๐œ๐œ๐œ๐œ๐ŸŽ๐ŸŽ whenthe radius isapproximately ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ.

e. What dimensions should the container have in order to maximize its volume?

The relative maximum occurs when ๐’“๐’“ โ‰ˆ ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ. Then ๐…๐… = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽโˆ’๐…๐…๐’“๐’“๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐…๐…๐’“๐’“โ‰ˆ ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ. The container should

have radius approximately ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ and height approximately ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐œ๐œ๐œ๐œ to maximize its volume.

ยฉ 2015 Great Minds eureka-math.org

35

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 37: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 18: Overcoming a Second Obstacle in Factoringโ€”What If There Is a Remainder?

Lesson 18: Overcoming a Second Obstacle in Factoringโ€”What If

There Is a Remainder?

Finding a Quotient of Two Polynomials by Inspection

1. For the pair of problems shown, find the first quotient by factoring the numerator. Then, find the secondquotient by using the first quotient.

๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅโˆ’12๐‘ฅ๐‘ฅโˆ’4

๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ’๐Ÿ’

= (๐’™๐’™โˆ’๐Ÿ’๐Ÿ’)(๐’™๐’™+๐Ÿ‘๐Ÿ‘)(๐’™๐’™โˆ’๐Ÿ’๐Ÿ’)

= ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘

๐‘ฅ๐‘ฅ2โˆ’๐‘ฅ๐‘ฅโˆ’15๐‘ฅ๐‘ฅโˆ’4

๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ’๐Ÿ’

= (๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)โˆ’๐Ÿ‘๐Ÿ‘(๐’™๐’™โˆ’๐Ÿ’๐Ÿ’)

= (๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ’๐Ÿ’)

โˆ’ ๐Ÿ‘๐Ÿ‘(๐’™๐’™โˆ’๐Ÿ’๐Ÿ’)

= ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘(๐’™๐’™โˆ’๐Ÿ’๐Ÿ’)

2. Rewrite the numerator in the form (๐‘ฅ๐‘ฅ โˆ’ โ„Ž)2 + ๐‘˜๐‘˜ by completing the square. Then, find the quotient.

๐‘ฅ๐‘ฅ2โˆ’2๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1

Once I factor the numerator, I can see that the numerator and denominator have a common factor by which I can divide, if we assume that ๐‘ฅ๐‘ฅ โˆ’ 4 โ‰  0.

To complete the square with the expression ๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ, I need to add a constant that is the square of half the linear coefficient, which means I need to add 1. To maintain the value of the numerator ๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ โˆ’ 1, I can rewrite it as (๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 1) โˆ’ 1 โˆ’ 1, and then I can rewrite the expression in the form (๐‘ฅ๐‘ฅ โˆ’ โ„Ž)2 + ๐‘˜๐‘˜.

I can see that the numerator of this rational expression can be rewritten as the difference of the numerator of the first expression and 3, which means the quotient will be the same as in the first expression, but I will have a remainder of โˆ’3.

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

=๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๏ฟฝ โˆ’ ๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

=๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๏ฟฝ โˆ’ ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

=(๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ) โˆ’ ๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

=๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿโˆ’

๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

=(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿโˆ’

๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

= (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) โˆ’๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

ยฉ 2015 Great Minds eureka-math.org

36

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 38: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 18: Overcoming a Second Obstacle in Factoringโ€”What If There Is a Remainder?

Finding a Quotient of Two Polynomials by the Reverse Tabular Method

3. Find the quotient by using the reverse tabular method.

๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ + 1๐‘ฅ๐‘ฅ โˆ’ 2

๐’™๐’™๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐’™๐’™ โˆ’๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐’™๐’™ ๐’™๐’™

๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ’๐Ÿ’๐’™๐’™ ๐Ÿ’๐Ÿ’ โˆ’๐Ÿ๐Ÿ

๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ โˆ’๐Ÿ”๐Ÿ”๐’™๐’™ ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ‘๐Ÿ‘

๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

=๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ‘๐Ÿ‘

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ=๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ’๐Ÿ’

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿโˆ’

๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

= ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ โˆ’๐Ÿ‘๐Ÿ‘

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

Finding a Quotient of Two Polynomials Using Long Division

4. Find the quotient by using long division.

๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ‘๐Ÿ‘๐’™๐’™ +๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ

๐’™๐’™+ ๐Ÿ๐Ÿ

๐’™๐’™ + ๐Ÿ๐Ÿ ๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐’™๐’™ +๐ŸŽ๐ŸŽ

โˆ’(๐’™๐’™๐Ÿ’๐Ÿ’ +๐’™๐’™๐Ÿ‘๐Ÿ‘)

โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ +๐ŸŽ๐ŸŽ๐’™๐’™๐Ÿ๐Ÿ

โˆ’(โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ)

๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ๐Ÿ๐’™๐’™

โˆ’(๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ +๐Ÿ‘๐Ÿ‘๐’™๐’™)

๐Ÿ๐Ÿ๐’™๐’™ +๐ŸŽ๐ŸŽ

โˆ’(๐Ÿ๐Ÿ๐’™๐’™ +๐Ÿ๐Ÿ)

โˆ’๐Ÿ๐Ÿ

The remainder is โˆ’๐Ÿ‘๐Ÿ‘.

This is the method I used to divide polynomials in Lesson 3.

The remainder is equal to the difference between the constant in the dividend and the constant in the table.

This is the method I used to divide polynomials in Lesson 5.

Using placeholders helps me to align like terms as I carry out the long division procedure.

ยฉ 2015 Great Minds eureka-math.org

37

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 39: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 19: The Reminder Theorem

The remainder theorem tells me that when polynomial ๐‘ƒ๐‘ƒ is divided by ๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ (โˆ’3)๏ฟฝ, the remainder is the value of ๐‘ƒ๐‘ƒ evaluated at โˆ’3.

The remainder theorem tells me that ๐‘ƒ๐‘ƒ(3) has the same value as the remainder to the division of ๐‘ƒ๐‘ƒ by (๐‘ฅ๐‘ฅ โˆ’ 3).

Since the remainder theorem states that ๐‘ƒ๐‘ƒ divided by (๐‘ฅ๐‘ฅ โˆ’ 1) has a remainder equal to ๐‘ƒ๐‘ƒ(1), I know ๐‘ƒ๐‘ƒ(1) = 10.

Lesson 19: The Remainder Theorem

Applying the Remainder Theorem to Find Remainders and Evaluate Polynomials at Specific Inputs

1. Use the remainder theorem to find the remainder for the following division.

๐‘ฅ๐‘ฅ4 + 2๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ + 1๐‘ฅ๐‘ฅ + 3

Let ๐‘ท๐‘ท(๐’™๐’™) = ๐’™๐’™๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ. Then

๐‘ท๐‘ท(โˆ’๐Ÿ‘๐Ÿ‘) = (โˆ’๐Ÿ‘๐Ÿ‘)๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ(โˆ’๐Ÿ‘๐Ÿ‘)๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”(โˆ’๐Ÿ‘๐Ÿ‘) + ๐Ÿ๐Ÿ = ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– + ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’๐Ÿ”๐Ÿ”.

Therefore, the remainder of the division ๐’™๐’™๐Ÿ’๐Ÿ’+๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ”๐Ÿ”๐’™๐’™+๐Ÿ๐Ÿ

๐’™๐’™+๐Ÿ‘๐Ÿ‘ is ๐Ÿ’๐Ÿ’๐Ÿ”๐Ÿ”.

2. Consider the polynomial ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ + 2. Find ๐‘ƒ๐‘ƒ(3) in two ways.

๐‘ท๐‘ท(๐Ÿ‘๐Ÿ‘) = (๐Ÿ‘๐Ÿ‘)๐Ÿ‘๐Ÿ‘ + (๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“(๐Ÿ‘๐Ÿ‘) + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘

= ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ•๐Ÿ• +๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘

so ๐‘ท๐‘ท(๐Ÿ‘๐Ÿ‘) = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘.

3. Find the value ๐‘˜๐‘˜ so that ๐’Œ๐’Œ๐’™๐’™๐Ÿ‘๐Ÿ‘โˆ’๐’™๐’™+๐’Œ๐’Œ๐’™๐’™โˆ’๐Ÿ๐Ÿ

has remainder 10.

Let ๐‘ท๐‘ท(๐’™๐’™) = ๐’Œ๐’Œ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐’™๐’™ + ๐’Œ๐’Œ. Then ๐‘ท๐‘ท(๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ, so

๐’Œ๐’Œ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ โˆ’ ๐Ÿ๐Ÿ + ๐’Œ๐’Œ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Œ๐’Œ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’Œ๐’Œ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

.

ยฉ 2015 Great Minds eureka-math.org

38

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 40: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 19: The Reminder Theorem

By the factor theorem, I know that if ๐‘ƒ๐‘ƒ(๐‘Ž๐‘Ž) = 0, then (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž) is a factor of ๐‘ƒ๐‘ƒ. By the remainder theorem, I know that if (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž) is a factor of ๐‘ƒ๐‘ƒ, then ๐‘ƒ๐‘ƒ(๐‘Ž๐‘Ž) = 0. This means that if ๐‘ƒ๐‘ƒ(๐‘Ž๐‘Ž) โ‰  0, then (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž) is not a factor of ๐‘ƒ๐‘ƒ.

I can find this quotient using long division or the reverse tabular method. I can then factor this quotient as the product of two linear factors.

I can substitute inputs into ๐‘ƒ๐‘ƒ whose values are between the values of the zeros to help discover the shape of the graph. For example, ๐‘ƒ๐‘ƒ(0) =โˆ’3, so the graph is beneath the ๐‘ฅ๐‘ฅ-axis between the ๐‘ฅ๐‘ฅ-values of โˆ’1 and 1.

Applying the Factor Theorem

4. Determine whether the following are factors of the polynomial ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 โˆ’ 4๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 6.a. (๐‘ฅ๐‘ฅ โˆ’ 2)

๐‘ท๐‘ท(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐Ÿ๐Ÿ) + ๐Ÿ”๐Ÿ” = ๐Ÿ๐Ÿ

Yes, ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ is a factor of ๐‘ท๐‘ท.

b. (๐‘ฅ๐‘ฅ โˆ’ 1)

๐‘ท๐‘ท(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐Ÿ๐Ÿ) + ๐Ÿ”๐Ÿ” = ๐Ÿ’๐Ÿ’

No, ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ is not a factor of ๐‘ท๐‘ท.

Using the Remainder Theorem to Graph Polynomials

5. Consider the polynomial function ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 + 3๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 3.a. Verify that ๐‘ƒ๐‘ƒ(โˆ’1) = 0.

๐‘ท๐‘ท(โˆ’๐Ÿ๐Ÿ) = (โˆ’๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘(โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ (โˆ’๐Ÿ๐Ÿ) โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

b. Since ๐‘ƒ๐‘ƒ(โˆ’1) = 0, what are the factors of polynomial ๐‘ƒ๐‘ƒ?

Since ๐‘ท๐‘ท(โˆ’๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ, (๐’™๐’™ + ๐Ÿ๐Ÿ) is a factor of ๐‘ท๐‘ท.

Since ๐’™๐’™๐Ÿ‘๐Ÿ‘+๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿโˆ’๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘

๐’™๐’™+๐Ÿ๐Ÿ= ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘, it follows that

๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘ = (๐’™๐’™ + ๐Ÿ๐Ÿ)๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘๏ฟฝ = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ).

The factors of ๐‘ท๐‘ท are ๐’™๐’™ + ๐Ÿ๐Ÿ,๐’™๐’™ + ๐Ÿ‘๐Ÿ‘ and ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ.

c. Find the zeros of ๐‘ƒ๐‘ƒ, and then use the zeros to sketch the graph of ๐‘ƒ๐‘ƒ.

The zeros of ๐‘ท๐‘ท are โˆ’๐Ÿ๐Ÿ, โˆ’ ๐Ÿ‘๐Ÿ‘, and ๐Ÿ๐Ÿ.

ยฉ 2015 Great Minds eureka-math.org

39

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 41: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 19: The Reminder Theorem

Using the Factor Theorem to Write Equations for Polynomials

6. A fourth-degree polynomial function ๐‘”๐‘” is graphed at right.

a. Write a formula for ๐‘”๐‘” in factored form using ๐‘๐‘ for theconstant factor.

๐’‡๐’‡(๐’™๐’™) = ๐’„๐’„(๐’™๐’™ + ๐Ÿ”๐Ÿ”)(๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

b. Use the fact that ๐‘“๐‘“(โˆ’4) = โˆ’120 to find the constant factor ๐‘๐‘.โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’„๐’„(โˆ’๐Ÿ’๐Ÿ’+ ๐Ÿ”๐Ÿ”)(โˆ’๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ)(โˆ’๐Ÿ’๐Ÿ’โˆ’ ๐Ÿ๐Ÿ)(โˆ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ)โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’„๐’„

๐’„๐’„ = ๐Ÿ๐Ÿ ๐’‡๐’‡(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ”๐Ÿ”)(๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

Since ๐‘“๐‘“ has zeros at โˆ’6,โˆ’2, 1, and 2, I know ๐‘“๐‘“ has factors (๐‘ฅ๐‘ฅ + 6), (๐‘ฅ๐‘ฅ + 2), (๐‘ฅ๐‘ฅ โˆ’ 1), and (๐‘ฅ๐‘ฅ โˆ’ 2). I know that since ๐‘“๐‘“ is a fourth-degree polynomial with four zeros, each zero has a multiplicity of 1.

ยฉ 2015 Great Minds eureka-math.org

40

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 42: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 20: Modeling Riverbeds with Polynomials

Lesson 20: Modeling Riverbeds with Polynomials

This lesson requires students to fit a polynomial function to data values in order to model a riverbed using a polynomial function.

1. Use the remainder theorem to find the polynomial ๐‘ƒ๐‘ƒ of least degree so that ๐‘ƒ๐‘ƒ(3) = 1 and ๐‘ƒ๐‘ƒ(5) = โˆ’3.

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๐’’๐’’(๐’™๐’™) + ๐Ÿ๐Ÿ

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)๐’’๐’’(๐’™๐’™) โˆ’ ๐Ÿ‘๐Ÿ‘

(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๐’’๐’’(๐’™๐’™) + ๐Ÿ๐Ÿ = (๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)๐’’๐’’(๐’™๐’™) โˆ’ ๐Ÿ‘๐Ÿ‘ ๐’™๐’™๐’’๐’’(๐’™๐’™) โˆ’ ๐Ÿ‘๐Ÿ‘๐’’๐’’(๐’™๐’™) + ๐Ÿ๐Ÿ = ๐’™๐’™๐’’๐’’(๐’™๐’™) โˆ’ ๐Ÿ“๐Ÿ“๐’’๐’’(๐’™๐’™)โˆ’ ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐’’๐’’(๐’™๐’™) = โˆ’๐Ÿ’๐Ÿ’ ๐’’๐’’(๐’™๐’™) = โˆ’๐Ÿ๐Ÿ

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)(โˆ’๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ•๐Ÿ•

Check: ๐‘ท๐‘ท(๐Ÿ‘๐Ÿ‘) = โˆ’๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘) + ๐Ÿ•๐Ÿ• = ๐Ÿ๐Ÿ ๐‘ท๐‘ท(๐Ÿ“๐Ÿ“) = โˆ’๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“) + ๐Ÿ•๐Ÿ• = โˆ’๐Ÿ‘๐Ÿ‘.

2. Write a quadratic function ๐‘ƒ๐‘ƒ such that ๐‘ƒ๐‘ƒ(0) = 4, ๐‘ƒ๐‘ƒ(2) = โˆ’4, and ๐‘ƒ๐‘ƒ(5) = โˆ’1 using a system ofequations.

๐‘ท๐‘ท(๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’™๐’™ + ๐’„๐’„

๐’„๐’„ = ๐Ÿ’๐Ÿ’

๐‘ท๐‘ท(๐’™๐’™) = ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’™๐’™ + ๐Ÿ’๐Ÿ’

๐‘ท๐‘ท(๐Ÿ๐Ÿ) = ๐’‚๐’‚(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ(๐Ÿ๐Ÿ) + ๐Ÿ’๐Ÿ’ = โˆ’๐Ÿ’๐Ÿ’, so ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ๐Ÿ๐’ƒ๐’ƒ = โˆ’๐Ÿ–๐Ÿ–

๐‘ท๐‘ท(๐Ÿ“๐Ÿ“) = ๐’‚๐’‚(๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ(๐Ÿ“๐Ÿ“) + ๐Ÿ’๐Ÿ’ = โˆ’๐Ÿ๐Ÿ, so ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’‚๐’‚ + ๐Ÿ“๐Ÿ“๐’ƒ๐’ƒ = โˆ’๐Ÿ“๐Ÿ“

๐Ÿ“๐Ÿ“(๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ๐Ÿ๐’ƒ๐’ƒ) = ๐Ÿ“๐Ÿ“(โˆ’๐Ÿ–๐Ÿ–) so ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‚๐’‚ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ = โˆ’๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’‚๐’‚+ ๐Ÿ“๐Ÿ“๐’ƒ๐’ƒ) = โˆ’๐Ÿ๐Ÿ(โˆ’๐Ÿ“๐Ÿ“) so โˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Adding the two equations gives โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’‚๐’‚ = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ, so ๐’‚๐’‚ = ๐Ÿ๐Ÿ.

๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ๐’ƒ๐’ƒ = โˆ’๐Ÿ–๐Ÿ–, so ๐’ƒ๐’ƒ = โˆ’๐Ÿ”๐Ÿ”.

๐‘ท๐‘ท(๐’™๐’™) = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ’๐Ÿ’

The remainder theorem tells me that for any number ๐‘Ž๐‘Ž, I can find some polynomial ๐‘ž๐‘ž so that ๐‘ƒ๐‘ƒ = (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)๐‘ž๐‘ž(๐‘ฅ๐‘ฅ) + ๐‘ƒ๐‘ƒ(๐‘Ž๐‘Ž).

I can evaluate ๐‘ƒ๐‘ƒ at 2 and at 5 and set the expressions that result equal to the known outputs to create a system of two linear equations. I can solve the system using elimination.

Once I found the value of ๐‘Ž๐‘Ž, I back-substituted its value into the first linear equation to find the value of ๐‘๐‘.

Since ๐‘ƒ๐‘ƒ(0) = 4 and the ๐‘ฆ๐‘ฆ-intercept of ๐‘ƒ๐‘ƒ is ๐‘๐‘, I know that ๐‘๐‘ = 4.

ยฉ 2015 Great Minds eureka-math.org

41

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 43: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 20: Modeling Riverbeds with Polynomials

Representing Data with a Polynomial Using the Remainder Theorem

To use this strategy, remember that ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž)๐‘ž๐‘ž(๐‘ฅ๐‘ฅ) + ๐‘Ÿ๐‘Ÿ, where ๐‘ž๐‘ž is a polynomial with degree one less than ๐‘ƒ๐‘ƒ and ๐‘Ÿ๐‘Ÿ is the remainder. The remainder theorem tells us that ๐‘Ÿ๐‘Ÿ = ๐‘ƒ๐‘ƒ(๐‘Ž๐‘Ž).

3. Find a degree-three polynomial function ๐‘ƒ๐‘ƒ such that ๐‘ƒ๐‘ƒ(โˆ’2) = 0, ๐‘ƒ๐‘ƒ(0) = 4, ๐‘ƒ๐‘ƒ(2) = 16, and ๐‘ƒ๐‘ƒ(3) = 55.Use the table below to organize your work. Write your answer in standard form, and verify by showingthat each point satisfies the equation.

Function Value

Substitute the data point into the current form of the equation for ๐‘ท๐‘ท.

Apply the remainder

theorem to ๐’‚๐’‚, ๐’ƒ๐’ƒ, or ๐’„๐’„.

Rewrite the equation for ๐‘ท๐‘ท in terms of ๐’‚๐’‚, ๐’ƒ๐’ƒ, or ๐’„๐’„.

๐‘ท๐‘ท(โˆ’๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)๐’‚๐’‚(๐’™๐’™)

๐‘ท๐‘ท(๐Ÿ๐Ÿ) = ๐Ÿ’๐Ÿ’

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)๐’‚๐’‚(๐’™๐’™) ๐‘ท๐‘ท(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐’‚๐’‚(๐Ÿ๐Ÿ)

๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐’‚๐’‚(๐Ÿ๐Ÿ) ๐’‚๐’‚(๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ

๐’‚๐’‚(๐’™๐’™) = ๐’™๐’™๐’ƒ๐’ƒ(๐’™๐’™) + ๐Ÿ๐Ÿ ๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™๐’ƒ๐’ƒ(๐’™๐’™) + ๐Ÿ๐Ÿ)

๐‘ท๐‘ท(๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™๐’ƒ๐’ƒ(๐’™๐’™) + ๐Ÿ๐Ÿ) ๐‘ท๐‘ท(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’ƒ๐’ƒ(๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ) ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” = ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ๐’ƒ๐’ƒ(๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ) ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐’ƒ๐’ƒ(๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ(๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ

๐’ƒ๐’ƒ(๐’™๐’™) = (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐’„๐’„(๐’™๐’™)+ ๐Ÿ๐Ÿ ๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)[๐’™๐’™[(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐’„๐’„(๐’™๐’™) + ๐Ÿ๐Ÿ] + ๐Ÿ๐Ÿ]

๐‘ท๐‘ท(๐Ÿ‘๐Ÿ‘) = ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)[๐’™๐’™[(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐’„๐’„(๐’™๐’™) + ๐Ÿ๐Ÿ] + ๐Ÿ๐Ÿ] ๐‘ท๐‘ท(๐Ÿ‘๐Ÿ‘) = (๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)[๐Ÿ‘๐Ÿ‘(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ)๐’„๐’„(๐Ÿ‘๐Ÿ‘) + ๐Ÿ๐Ÿ] + ๐Ÿ๐Ÿ] ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ = ๐Ÿ“๐Ÿ“[๐Ÿ‘๐Ÿ‘(๐’„๐’„(๐Ÿ‘๐Ÿ‘) + ๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ] ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐’„๐’„(๐Ÿ‘๐Ÿ‘) + ๐Ÿ“๐Ÿ“

๐’„๐’„(๐Ÿ‘๐Ÿ‘) = ๐Ÿ๐Ÿ

๐’„๐’„(๐’™๐’™) = ๐Ÿ๐Ÿ ๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)[๐’™๐’™[(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ] + ๐Ÿ๐Ÿ]

Then, ๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)[๐’™๐’™[(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ] + ๐Ÿ๐Ÿ] = (๐’™๐’™ + ๐Ÿ๐Ÿ)[๐’™๐’™(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘) + ๐Ÿ๐Ÿ] = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ).

Expanding and combining like terms gives the polynomial ๐‘ท๐‘ท(๐’™๐’™) = ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ’๐Ÿ’.

๐‘ท๐‘ท(โˆ’๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ(โˆ’๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ + (โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(โˆ’๐Ÿ๐Ÿ) + ๐Ÿ’๐Ÿ’ = โˆ’๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”+ ๐Ÿ’๐Ÿ’ + ๐Ÿ–๐Ÿ– + ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ ๐‘ท๐‘ท(๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ + (๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ) + ๐Ÿ’๐Ÿ’ = ๐Ÿ’๐Ÿ’ ๐‘ท๐‘ท(๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ + (๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ) + ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” + ๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ–๐Ÿ– + ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” ๐‘ท๐‘ท(๐Ÿ‘๐Ÿ‘) = ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘)๐Ÿ‘๐Ÿ‘ + (๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘) + ๐Ÿ’๐Ÿ’ = ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’ + ๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’ = ๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“

I can replace ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ) with the equivalent expression ๐‘ฅ๐‘ฅ๐‘๐‘(๐‘ฅ๐‘ฅ) + 2.

Since ๐‘ƒ๐‘ƒ(โˆ’2) = 0, I know (๐‘ฅ๐‘ฅ + 2) is a factor of ๐‘ƒ๐‘ƒ. Then there is some polynomial ๐‘Ž๐‘Ž so that ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = (๐‘ฅ๐‘ฅ + 2)๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ).

The remainder theorem tells me ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ) = (๐‘ฅ๐‘ฅ โˆ’ 0)๐‘๐‘(๐‘ฅ๐‘ฅ) + ๐‘Ž๐‘Ž(0).

I can evaluate the function at the given inputs to check my answer.

ยฉ 2015 Great Minds eureka-math.org

42

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 44: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 21: Modeling Riverbeds with Polynomials

Lesson 21: Modeling Riverbeds with Polynomials

This lesson addresses modeling a cross-section of a riverbed with a polynomial function using technology. Measurements of depth are provided along a riverbed, and these values are used to create a geometric model for the cross-sectional area of the riverbed. This model in turn is used to compute the volumetric flow of the river.

1. Suppose that depths of the riverbed were measured for a cross-section of a different river. Assume thecross-sectional area of the river can be modeled with polynomial ๐‘„๐‘„.a. Based on the depths provided, sketch the cross-section of the river, and estimate its area.

๐‘„๐‘„(0) = 0 ๐‘„๐‘„(25) = โˆ’20.5 ๐‘„๐‘„(60) = โˆ’25 ๐‘„๐‘„(95) = โˆ’32 ๐‘„๐‘„(132.5) = โˆ’17 ๐‘„๐‘„(165) = โˆ’22.5 ๐‘„๐‘„(200) = 0

Area estimates:

๐‘จ๐‘จ๐Ÿ๐Ÿ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.๐Ÿ๐Ÿ) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘จ๐‘จ๐Ÿ๐Ÿ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ) = ๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘จ๐‘จ๐Ÿ‘๐Ÿ‘ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—)(๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ) = ๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—.๐Ÿ๐Ÿ

๐‘จ๐‘จ๐Ÿ’๐Ÿ’ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ.๐Ÿ๐Ÿ)(๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—.๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ.๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ

๐‘จ๐‘จ๐Ÿ๐Ÿ =๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—.๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’.๐Ÿ—๐Ÿ—) = ๐Ÿ’๐Ÿ’๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ—.๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐‘จ๐‘จ๐Ÿ”๐Ÿ” =๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—.๐Ÿ๐Ÿ) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

So, the total area can be estimated by

๐‘จ๐‘จ = ๐‘จ๐‘จ๐Ÿ๐Ÿ + ๐‘จ๐‘จ๐Ÿ๐Ÿ + ๐‘จ๐‘จ๐Ÿ‘๐Ÿ‘ + ๐‘จ๐‘จ๐Ÿ’๐Ÿ’ + ๐‘จ๐‘จ๐Ÿ๐Ÿ + ๐‘จ๐‘จ๐Ÿ”๐Ÿ” = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘.

The cross-sectional area is approximately ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ square feet.

I can estimate the area by dividing the riverbed cross-section into triangular and trapezoidal sections, finding the area of each section, and finding the sum of these areas.

ยฉ 2015 Great Minds eureka-math.org

43

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 45: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 21: Modeling Riverbeds with Polynomials

b. Suppose that the speed of the water was measured at 200 ftmin

. What is the approximate volumetric flow in this section of the river, measured in gallons per minute?

The volumetric flow is approximately ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐ญ๐ญ๐Ÿ๐Ÿ ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐ญ๐ญ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ

๏ฟฝ โ‰ˆ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”โ€†๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐ญ๐ญ๐Ÿ‘๐Ÿ‘

๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ. Converting to gallons per

minute, this is

๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”โ€†๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐ญ๐ญ๐Ÿ‘๐Ÿ‘

๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๏ฟฝ๏ฟฝ๐Ÿ—๐Ÿ—.๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐ ๐ ๐ ๐ ๐ ๐ ๐Ÿ๐Ÿ๐ญ๐ญ๐Ÿ‘๐Ÿ‘

๏ฟฝ โ‰ˆ ๐Ÿ”๐Ÿ”โ€†๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โ€†๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ ๐ ๐ ๐ ๐ ๐ ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ

.

I know 1 ft3 is equivalent to 7.48052 gallons, and I can use this equivalency to convert the flow

rate from ft3

min to gallons per minute.

ยฉ 2015 Great Minds eureka-math.org

44

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 46: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 22: Equivalent Rational Expressions

Lesson 22: Equivalent Rational Expressions

This lesson addresses generating equivalent rational expressions by multiplying or dividing the numerator and denominator by the same factor and noting restrictions for values of variables.

Reduce Rational Expressions to Lowest Terms

1. Find an equivalent rational expression in lowest terms, and identify the value(s) of the variable that mustbe excluded to prevent division by zero.

a. 3๐‘›๐‘›โˆ’12๐‘›๐‘›2

18๐‘›๐‘›๐Ÿ‘๐Ÿ‘๐’๐’(๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’๐’)

๐Ÿ‘๐Ÿ‘๐’๐’โˆ™๐Ÿ”๐Ÿ”= ๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’๐’๐’

๐Ÿ”๐Ÿ” where ๐’๐’ โ‰  ๐ŸŽ๐ŸŽ

b. ๐‘Ž๐‘Ž๐‘Ž๐‘Ž+๐‘Ž๐‘Ž๐‘๐‘๐‘‘๐‘‘๐‘Ž๐‘Ž

๐’ƒ๐’ƒ(๐’‚๐’‚+๐’„๐’„)๐’…๐’…๐›๐›

= ๐’‚๐’‚+๐’„๐’„๐’…๐’…

where ๐’ƒ๐’ƒ โ‰  ๐ŸŽ๐ŸŽ and ๐’…๐’… โ‰  ๐ŸŽ๐ŸŽ.

c. 2๐‘›๐‘›2+๐‘›๐‘›โˆ’103๐‘›๐‘›โˆ’6

(๐Ÿ๐Ÿ๐’๐’+๐Ÿ“๐Ÿ“)(๐’๐’โˆ’๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘(๐’๐’โˆ’๐Ÿ๐Ÿ)

= ๐Ÿ๐Ÿ๐’๐’+๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘

where ๐’๐’ โ‰  ๐Ÿ๐Ÿ

d. (๐‘ฅ๐‘ฅโˆ’๐‘ฆ๐‘ฆ)2โˆ’4๐‘Ž๐‘Ž2

3๐‘ฆ๐‘ฆโˆ’3๐‘ฅ๐‘ฅโˆ’6๐‘Ž๐‘Ž

2. Write a rational expression with denominator 6๐‘๐‘ that is equivalent to 23.

3. Simplify the following rational expression without using a calculator: ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿโˆ™๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘โˆ™10๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ™๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ

.

๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ

=(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ™ (๐Ÿ๐Ÿ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ๐Ÿ โˆ™ ๐Ÿ“๐Ÿ“

(๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ โˆ™ ๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ“๐Ÿ“=๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” โˆ™ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” โˆ™ ๐Ÿ๐Ÿ โˆ™ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ โˆ™ ๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ“๐Ÿ“

=๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” โˆ™ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ“๐Ÿ“

= ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ–๐Ÿ–๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’

I know ๐‘›๐‘› = 0 is a restricted value because it makes the denominator of the original rational expression zero.

I can split the linear term or use the reverse tabular method to factor the trinomial 2๐‘›๐‘›2 + ๐‘›๐‘› โˆ’ 10 into the product of two linear factors.

I recognize the numerator as a difference of two squares.

I need to multiply the denominator of 3 by 2๐‘๐‘ to make the denominator 6๐‘๐‘.

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๏ฟฝ = ๐Ÿ’๐Ÿ’๐’ƒ๐’ƒ

๐Ÿ”๐Ÿ”๐’ƒ๐’ƒ

๏ฟฝ(๐’™๐’™โˆ’๐’š๐’š)โˆ’๐Ÿ๐Ÿ๐’‚๐’‚๏ฟฝ๏ฟฝ(๐’™๐’™โˆ’๐’š๐’š)+๐Ÿ๐Ÿ๐’‚๐’‚๏ฟฝโˆ’๐Ÿ‘๐Ÿ‘(๐’™๐’™โˆ’๐’š๐’š+๐Ÿ๐Ÿ๐’‚๐’‚)

= ๐’™๐’™โˆ’๐’š๐’šโˆ’๐Ÿ๐Ÿ๐’‚๐’‚โˆ’๐Ÿ‘๐Ÿ‘

where ๐’‚๐’‚ โ‰  ๐’š๐’šโˆ’๐’™๐’™๐Ÿ๐Ÿ

I can also write this statement as ๐‘ฅ๐‘ฅ โ‰  ๐‘ฆ๐‘ฆ + 2๐‘Ž๐‘Ž or ๐‘ฆ๐‘ฆ โ‰  ๐‘ฅ๐‘ฅ โˆ’ 2๐‘Ž๐‘Ž.

ยฉ 2015 Great Minds eureka-math.org

45

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 47: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 23: Comparing Rational Functions

Lesson 23: Comparing Rational Expressions

Writing Rational Expressions in Equivalent Forms

1. Rewrite each rational expression as an equivalent rational expression so that all expressions have acommon denominator.๐Ÿ‘๐Ÿ‘

๐’™๐’™๐Ÿ๐Ÿโˆ’2๐’™๐’™, ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐’™๐’™

, ๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’

๐Ÿ‘๐Ÿ‘๐’™๐’™(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

,๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐’™๐’™

,๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ)

The least common denominator is ๐Ÿ๐Ÿ๐’™๐’™(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ).

๐Ÿ‘๐Ÿ‘(๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐’™๐’™(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ)

,๐Ÿ“๐Ÿ“(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐’™๐’™(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ)

,(๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’™๐’™)

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’™๐’™)

Analyze Denominators of Rational Expressions

2. For positive ๐‘ฅ๐‘ฅ, determine when the following rational expressions have negative denominators.

a. ๐’™๐’™+๐Ÿ‘๐Ÿ‘โˆ’๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ–๐Ÿ–๐’™๐’™โˆ’18

For any real number ๐’™๐’™, โˆ’๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ–๐Ÿ–๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– is always negative. โˆ’๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ–๐Ÿ–๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– = โˆ’๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ โˆ’ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ,

which is the sum of a nonpositive number and a negative number.

b. ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ

(๐’™๐’™โˆ’๐Ÿ๐Ÿ)(๐’™๐’™+๐Ÿ๐Ÿ)(๐‘ฅ๐‘ฅ+5)

For positive ๐’™๐’™, ๐’™๐’™ + ๐Ÿ๐Ÿ and ๐’™๐’™ + ๐Ÿ“๐Ÿ“ are always positive. The number ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ is negative when ๐’™๐’™ < ๐Ÿ๐Ÿ, so the denominator is negative when ๐ŸŽ๐ŸŽ < ๐’™๐’™ < ๐Ÿ๐Ÿ.

Factoring the denominators will help me determine which factors I need to include in the least common denominator.

I need to make sure to multiply the numerator and denominator of a fraction by the same factor(s) so the value stays the same.

Since this expression is the product of โˆ’1 and a squared number (which cannot be negative), I know this expression cannot be positive.

ยฉ 2015 Great Minds eureka-math.org

46

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 48: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 23: Comparing Rational Functions

Comparing Rational Expressions

3. If ๐‘ฅ๐‘ฅ is a positive number, for which values of ๐‘ฅ๐‘ฅ is ๐‘ฅ๐‘ฅ > 1๐‘ฅ๐‘ฅ?

Since ๐’™๐’™ is a positive number, ๐’™๐’™ = ๐’™๐’™๐’™๐’™

(๐’™๐’™) = ๐’™๐’™๐Ÿ๐Ÿ

๐’™๐’™.

If ๐’™๐’™๐Ÿ๐Ÿ

๐’™๐’™> ๐Ÿ๐Ÿ

๐’™๐’™, then ๐’™๐’™๐Ÿ๐Ÿ > ๐Ÿ๐Ÿ, so ๐’™๐’™ > ๐Ÿ๐Ÿ.

4. Determine whether the comparison ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’1

< ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅโˆ’5

is true for all positive values of ๐‘ฅ๐‘ฅ, given that 66โˆ’1

< 66โˆ’5

.

Assuming ๐’™๐’™ โ‰  ๐Ÿ๐Ÿ and ๐’™๐’™ โ‰  ๐Ÿ“๐Ÿ“, ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

= ๐’™๐’™(๐’™๐’™โˆ’๐Ÿ“๐Ÿ“)(๐’™๐’™โˆ’๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ“๐Ÿ“)

and ๐’™๐’™๐’™๐’™โˆ’๐Ÿ“๐Ÿ“

= ๐’™๐’™(๐’™๐’™โˆ’๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ“๐Ÿ“)(๐’™๐’™โˆ’๐Ÿ๐Ÿ)

.

If ๐’™๐’™๐’™๐’™โˆ’๐Ÿ๐Ÿ

< ๐’™๐’™๐’™๐’™โˆ’๐Ÿ“๐Ÿ“

, then ๐’™๐’™(๐’™๐’™โˆ’๐Ÿ“๐Ÿ“)(๐’™๐’™โˆ’๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ“๐Ÿ“)

< ๐’™๐’™(๐’™๐’™โˆ’๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ“๐Ÿ“)(๐’™๐’™โˆ’๐Ÿ๐Ÿ)

and ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™ < ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ whenever (๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) > ๐ŸŽ๐ŸŽ.

However, if (๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) < ๐ŸŽ๐ŸŽ, then ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™ > ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™, which is only true for ๐’™๐’™ < ๐ŸŽ๐ŸŽ. For ๐Ÿ๐Ÿ < ๐’™๐’™ < ๐Ÿ“๐Ÿ“,๐’™๐’™

๐’™๐’™โˆ’๐Ÿ๐Ÿ> ๐’™๐’™

๐’™๐’™โˆ’๐Ÿ“๐Ÿ“.

5. A large class has ๐ด๐ด students, and a smaller class has ๐ต๐ต students. Use this information to compare thefollowing expressions:

a. ๐ด๐ด๐ด๐ด+๐ต๐ต

and ๐ด๐ด๐ต๐ต

Since ๐‘จ๐‘จ is positive, the number ๐‘จ๐‘จ + ๐‘ฉ๐‘ฉ > ๐‘ฉ๐‘ฉ, which means ๐Ÿ๐Ÿ๐‘จ๐‘จ+๐‘ฉ๐‘ฉ

< ๐Ÿ๐Ÿ๐‘ฉ๐‘ฉ

and ๐‘จ๐‘จ๐‘จ๐‘จ+๐‘ฉ๐‘ฉ

< ๐‘จ๐‘จ๐‘ฉ๐‘ฉ

.

The expression ๐‘จ๐‘จ๐‘จ๐‘จ+๐‘ฉ๐‘ฉ

represents the fraction of the total students in class ๐‘จ๐‘จ, which should be greater

than ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

and less than ๐Ÿ๐Ÿ. The expression ๐‘จ๐‘จ๐‘ฉ๐‘ฉ

is the ratio of the students in class ๐‘จ๐‘จ to the students in

class ๐‘ฉ๐‘ฉ, which is greater than ๐Ÿ๐Ÿ. Therefore, ๐‘จ๐‘จ๐‘จ๐‘จ+๐‘ฉ๐‘ฉ

< ๐‘จ๐‘จ๐‘ฉ๐‘ฉ

.

If the denominator is negative, then multiplying the inequality by the denominator will change the direction of the inequality symbol.

I could use a counterexample such as ๐‘ฅ๐‘ฅ = 2 to show the inequality is not true for every positive value of ๐‘ฅ๐‘ฅ.

The inequality is only true if ๐‘ฅ๐‘ฅ > 1 or ๐‘ฅ๐‘ฅ <โˆ’1, but the problem states ๐‘ฅ๐‘ฅ is positive.

I know this because ๐ด๐ด > ๐ต๐ต.

ยฉ 2015 Great Minds eureka-math.org

47

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 49: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 23: Comparing Rational Functions

b. ๐ต๐ต๐ด๐ด+๐ต๐ต

and 12

Since ๐‘จ๐‘จ > ๐‘ฉ๐‘ฉ, adding ๐‘ฉ๐‘ฉ ๐’•๐’•o both sides gives ๐‘จ๐‘จ + ๐‘ฉ๐‘ฉ > ๐‘ฉ๐‘ฉ +๐‘ฉ๐‘ฉ. It follows that ๐Ÿ๐Ÿ

๐‘จ๐‘จ+๐‘ฉ๐‘ฉ< ๐Ÿ๐Ÿ

๐‘ฉ๐‘ฉ+๐‘ฉ๐‘ฉ.

Since ๐‘ฉ๐‘ฉ > ๐ŸŽ๐ŸŽ, multiplying both sides of the inequality by ๐‘ฉ๐‘ฉ does not change the direction of the inequality, so ๐‘ฉ๐‘ฉ

๐‘จ๐‘จ+๐‘ฉ๐‘ฉ< ๐‘ฉ๐‘ฉ

๐‘ฉ๐‘ฉ+๐‘ฉ๐‘ฉ.

Since ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ+๐‘ฉ๐‘ฉ

= ๐‘ฉ๐‘ฉ๐Ÿ๐Ÿ๐‘ฉ๐‘ฉ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ, it follows that ๐‘ฉ๐‘ฉ

๐‘จ๐‘จ+๐‘ฉ๐‘ฉ< ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ. This means

that less than half of the total students are in class ๐‘ฉ๐‘ฉ.

The expression ๐ต๐ต๐ด๐ด+๐ต๐ต

represents the fraction of total students in class ๐ต๐ต.

ยฉ 2015 Great Minds eureka-math.org

48

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 50: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 24: Multiplying and Dividing Rational Expressions

Lesson 24: Multiplying and Dividing Rational Expressions

Multiply or Divide Rational Expressions

1. Complete the following operation.

a. 95๏ฟฝ๐‘ฅ๐‘ฅ+ 1

3๏ฟฝ รท 3

10

๐Ÿ—๐Ÿ—๐Ÿ“๐Ÿ“๏ฟฝ๐’™๐’™ +

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ รท

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

=๐Ÿ—๐Ÿ—๐Ÿ“๐Ÿ“๏ฟฝ๐’™๐’™ +

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ โˆ™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

=๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๏ฟฝ๐’™๐’™ +๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ = ๐Ÿ”๐Ÿ”๏ฟฝ๐’™๐’™ +

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ = ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ

2. Write each rational expression as an equivalent rational expression in lowest terms.

a. ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ—๐Ÿ—๐’™๐’™โˆ’๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“

โˆ™ ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

โˆ’๐Ÿ”๐Ÿ”๐’™๐’™๐Ÿ๐Ÿโˆ’๐‘ฅ๐‘ฅ+2

(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ“๐Ÿ“)๐Ÿ‘๐Ÿ‘(๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)(๐’™๐’™ + ๐Ÿ“๐Ÿ“)

โˆ™(๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)(๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ)

โˆ’๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ) = โˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

b. ๏ฟฝ ๐’™๐’™โˆ’๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’

๏ฟฝโˆ’๐Ÿ๐Ÿ

รท ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘

๏ฟฝ

๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ ๏ฟฝ

๐Ÿ๐Ÿ

รท(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)=

(๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿโˆ™

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

=(๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘

c. ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ’๐Ÿ’๐’™๐’™โˆ’๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘

๏ฟฝ

๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ+๐Ÿ‘๐Ÿ‘๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ‘๐Ÿ‘ ๏ฟฝ

๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘

รท๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’™๐’™ + ๐Ÿ‘๐Ÿ‘=

(๐’™๐’™ + ๐Ÿ“๐Ÿ“)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)

โˆ™๐’™๐’™ + ๐Ÿ‘๐Ÿ‘

(๐’™๐’™ + ๐Ÿ“๐Ÿ“)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) =๐Ÿ๐Ÿ

๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

I recognize that 3๐‘ฅ๐‘ฅ2 โˆ’ 75 is a difference of squares multiplied by the constant 3. I can factor the remaining expressions the way we did earlier in the module.

I see the only common factor in both the numerator and denominator of the product is ๐‘ฅ๐‘ฅ โˆ’ 1.

I know this complex fraction can be written as the quotient of the numerator divided by the denominator.

I remember that division is multiplication by the reciprocal.

ยฉ 2015 Great Minds eureka-math.org

49

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 51: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 24: Multiplying and Dividing Rational Expressions

3. Determine which of the following numbers is larger without using a calculator, 1215

1512 or 18

20

2018.

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿรท๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ=๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ™๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ=๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“โ‹… ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“โˆ™ (๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

=๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โ‹… ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โ‹… ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” โ‹… ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ=๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ”๐Ÿ” โ‹… ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ•

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๏ฟฝ๐Ÿ”๐Ÿ”

โ‹…๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“= ๏ฟฝ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๏ฟฝ๐Ÿ”๐Ÿ”

โ‹… ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๏ฟฝ๐Ÿ“๐Ÿ“

= ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๏ฟฝ๐Ÿ”๐Ÿ”

โ‹… ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

๏ฟฝ๐Ÿ“๐Ÿ“

Since ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—

> ๐Ÿ๐Ÿ, and ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘

> ๐Ÿ๐Ÿ, the product ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—๏ฟฝ๐Ÿ”๐Ÿ”โ‹… ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ”

๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ“๐Ÿ“

> ๐Ÿ๐Ÿ.

This means that ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ๐Ÿ> ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

4. One of two numbers can be represented by the rational expression ๐’™๐’™๐’™๐’™โˆ’๐Ÿ’๐Ÿ’

, where ๐‘ฅ๐‘ฅ โ‰  0 and ๐‘ฅ๐‘ฅ โ‰  4.

Find a representation of the second number if the product of the two numbers is 2.

๏ฟฝ๐’™๐’™

๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๏ฟฝ๐’š๐’š = ๐Ÿ๐Ÿ

๏ฟฝ ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๏ฟฝ๐’š๐’š

๏ฟฝ ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๏ฟฝ

=๐Ÿ๐Ÿ

๏ฟฝ ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๏ฟฝ

๐’š๐’š =๐Ÿ๐Ÿ

๏ฟฝ ๐’™๐’™๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๏ฟฝ

= ๐Ÿ๐Ÿ โˆ™๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™

=๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™

I know that if ๐ด๐ด and ๐ต๐ต are both positive and ๐ด๐ด >๐ต๐ต, then ๐ด๐ด

๐ต๐ต> 1. That means if

I divide ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

1512 by ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and the

quotient is greater than

1, then ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

1512 is larger than ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Since ๐‘ฅ๐‘ฅ โ‰  0 and ๐‘ฅ๐‘ฅ โ‰  4, I can divide both sides of the equation by ๐’™๐’™

๐’™๐’™โˆ’๐Ÿ’๐Ÿ’

without changing their value.

I know the product of two fractions whose values are greater than 1 is greater than 1.

I can define the unknown number as ๐‘ฆ๐‘ฆ.

ยฉ 2015 Great Minds eureka-math.org

50

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 52: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 25: Adding and Subtracting Rational Expressions

Lesson 25: Adding and Subtracting Rational Expressions

1. Write each sum or difference as a single rational expression.

a. โˆš๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘

+ โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

โˆš๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘

+โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

=๐Ÿ“๐Ÿ“ โˆ™ โˆš๐Ÿ“๐Ÿ“๐Ÿ“๐Ÿ“ โˆ™ ๐Ÿ‘๐Ÿ‘

+๐Ÿ‘๐Ÿ‘ โˆ™ โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ“๐Ÿ“

=๐Ÿ“๐Ÿ“โˆš๐Ÿ“๐Ÿ“ + ๐Ÿ‘๐Ÿ‘โˆš๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“

b. ๐’™๐’™๐’™๐’™+๐’š๐’š

+ ๐’š๐’š๐’š๐’šโˆ’๐’™๐’™

๐’™๐’™๐’™๐’™ + ๐’š๐’š

+๐’š๐’š

๐’š๐’š โˆ’ ๐’™๐’™=

๐’™๐’™ โˆ™ (๐’š๐’š โˆ’ ๐’™๐’™)(๐’™๐’™ + ๐’š๐’š)(๐’š๐’š โˆ’ ๐’™๐’™)

+๐’š๐’š(๐’™๐’™ + ๐’š๐’š)

(๐’š๐’š โˆ’ ๐’™๐’™)(๐’™๐’™ + ๐’š๐’š)=๐’™๐’™ โˆ™ (๐’š๐’š โˆ’ ๐’™๐’™) + ๐’š๐’š(๐’™๐’™ + ๐’š๐’š)

(๐’™๐’™ + ๐’š๐’š)(๐’š๐’š โˆ’ ๐’™๐’™)=๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™๐’š๐’š โˆ’ ๐’™๐’™๐Ÿ๐Ÿ

(๐’™๐’™ + ๐’š๐’š)(๐’š๐’š โˆ’ ๐’™๐’™)

c. ๐Ÿ๐Ÿ๐’Ž๐’Žโˆ’๐’๐’

โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž+๐Ÿ๐Ÿ๐’๐’

โˆ’ ๐’Ž๐’Ž๐’๐’๐Ÿ๐Ÿโˆ’๐’Ž๐’Ž๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’Ž๐’Žโˆ’ ๐’๐’

โˆ’๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’Ž๐’Ž + ๐Ÿ๐Ÿ๐’๐’โˆ’

๐’Ž๐’Ž๐’๐’๐Ÿ๐Ÿ โˆ’๐’Ž๐’Ž๐Ÿ๐Ÿ

=๐Ÿ๐Ÿ

๐’Ž๐’Žโˆ’ ๐’๐’โˆ’

๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐’Ž๐’Ž + ๐’๐’)โˆ’

๐’Ž๐’Ž(๐’๐’ โˆ’๐’Ž๐’Ž)(๐’๐’ +๐’Ž๐’Ž)

=๐Ÿ๐Ÿ(๐’Ž๐’Ž + ๐’๐’)

๐Ÿ๐Ÿ(๐’Ž๐’Ž + ๐’๐’)(๐’Ž๐’Žโˆ’๐’๐’)โˆ’๐Ÿ๐Ÿ(๐’Ž๐’Žโˆ’๐’๐’)

๐Ÿ๐Ÿ(๐’Ž๐’Ž + ๐’๐’)(๐’Ž๐’Žโˆ’๐’๐’) +๐Ÿ๐Ÿ๐’Ž๐’Ž

๐Ÿ๐Ÿ(๐’Ž๐’Žโˆ’๐’๐’)(๐’๐’ +๐’Ž๐’Ž)

=๐Ÿ๐Ÿ(๐’Ž๐’Ž + ๐’๐’) โˆ’ (๐’Ž๐’Žโˆ’๐’๐’) + ๐Ÿ๐Ÿ๐’Ž๐’Ž

๐Ÿ๐Ÿ(๐’Ž๐’Žโˆ’๐’๐’)(๐’Ž๐’Ž + ๐’๐’) =๐Ÿ‘๐Ÿ‘๐’Ž๐’Ž + ๐Ÿ‘๐Ÿ‘๐’๐’

๐Ÿ๐Ÿ(๐’Ž๐’Žโˆ’๐’๐’)(๐’Ž๐’Ž+ ๐’๐’)

=๐Ÿ‘๐Ÿ‘(๐’Ž๐’Ž + ๐’๐’)

๐Ÿ๐Ÿ(๐’Ž๐’Žโˆ’๐’๐’)(๐’Ž๐’Ž + ๐’๐’)

=๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ(๐’Ž๐’Žโˆ’๐’๐’)

d. ๏ฟฝ๐‘Ž๐‘Ž๐‘๐‘โˆ’ ๐‘๐‘

๐‘Ž๐‘Ž๏ฟฝ ๏ฟฝ๐‘๐‘+๐‘‘๐‘‘

๐‘Ž๐‘Ž+๐‘๐‘+ ๐‘๐‘โˆ’๐‘‘๐‘‘

๐‘Ž๐‘Žโˆ’๐‘๐‘๏ฟฝ

๏ฟฝ๐’‚๐’‚๐’ƒ๐’ƒโˆ’๐’ƒ๐’ƒ๐’‚๐’‚๏ฟฝ ๏ฟฝ๐’„๐’„ + ๐’…๐’…๐’‚๐’‚ + ๐’ƒ๐’ƒ

+๐’„๐’„ โˆ’ ๐’…๐’…๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ

๏ฟฝ = ๏ฟฝ๐’‚๐’‚ โˆ™ ๐’‚๐’‚๐’ƒ๐’ƒ โˆ™ ๐’‚๐’‚

โˆ’๐’ƒ๐’ƒ โˆ™ ๐’ƒ๐’ƒ๐’‚๐’‚ โˆ™ ๐’ƒ๐’ƒ

๏ฟฝ๏ฟฝ(๐’„๐’„ + ๐’…๐’…)(๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ)(๐’‚๐’‚ + ๐’ƒ๐’ƒ)(๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ) +

(๐’„๐’„ โˆ’ ๐’…๐’…)(๐’‚๐’‚ + ๐’ƒ๐’ƒ)(๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ)(๐’‚๐’‚ + ๐’ƒ๐’ƒ)๏ฟฝ

=๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

๐’‚๐’‚๐’ƒ๐’ƒ ๏ฟฝ(๐’„๐’„ + ๐’…๐’…)(๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ) + (๐’„๐’„ โˆ’ ๐’…๐’…)(๐’‚๐’‚ + ๐’ƒ๐’ƒ)

๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’ƒ๐’ƒ๐Ÿ๐Ÿ ๏ฟฝ

=๐’‚๐’‚๐’„๐’„ โˆ’ ๐’ƒ๐’ƒ๐’„๐’„ + ๐’‚๐’‚๐’…๐’… โˆ’ ๐’ƒ๐’ƒ๐’…๐’… + ๐’‚๐’‚๐’„๐’„ + ๐’ƒ๐’ƒ๐’„๐’„ โˆ’ ๐’‚๐’‚๐’…๐’… โˆ’ ๐’…๐’…๐’ƒ๐’ƒ

๐’‚๐’‚๐’ƒ๐’ƒ=๐Ÿ๐Ÿ๐’‚๐’‚๐’„๐’„ โˆ’ ๐Ÿ๐Ÿ๐’…๐’…๐’ƒ๐’ƒ

๐’‚๐’‚๐’ƒ๐’ƒ

This looks almost like the pattern for a square of a difference, but the coefficient of the ๐‘ฅ๐‘ฅ2 term is negative, so I cannot factor the expression.

I know (๐‘›๐‘› โˆ’๐‘š๐‘š) =โˆ’1 โˆ™ (๐‘š๐‘šโˆ’ ๐‘›๐‘›), so I can multiply the third fraction by โˆ’2

โˆ’2 to

write an equivalent fraction with the least common denominator of 2(๐‘š๐‘š โˆ’ ๐‘›๐‘›)(๐‘š๐‘š + ๐‘›๐‘›).

ยฉ 2015 Great Minds eureka-math.org

51

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 53: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 26: Solving Rational Equations

Lesson 26: Solving Rational Equations

1. Solve the following equations, and check for extraneous solutions.

a. 6๐‘ฅ๐‘ฅโˆ’18๐‘ฅ๐‘ฅโˆ’3

= 6

๐Ÿ”๐Ÿ”๐’™๐’™โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘

= ๐Ÿ”๐Ÿ”(๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘)๐’™๐’™โˆ’๐Ÿ‘๐Ÿ‘

= ๐Ÿ”๐Ÿ” if ๐’™๐’™ โ‰  ๐Ÿ‘๐Ÿ‘.

Therefore, the equation is true for all real numbers except ๐Ÿ‘๐Ÿ‘.

b. ๐‘ฆ๐‘ฆ+1๐‘ฆ๐‘ฆ+3

+ 1๐‘ฆ๐‘ฆ

= y+9๐‘ฆ๐‘ฆ2+3๐‘ฆ๐‘ฆ

First, we multiply both sides of the equation by the least common denominator ๐’š๐’š(๐’š๐’š + ๐Ÿ‘๐Ÿ‘):

๐’š๐’š(๐’š๐’š + ๐Ÿ‘๐Ÿ‘) ๏ฟฝ๐’š๐’š+๐Ÿ๐Ÿ๐’š๐’š+๐Ÿ‘๐Ÿ‘

๏ฟฝ+ ๐’š๐’š(๐’š๐’š + ๐Ÿ‘๐Ÿ‘) ๏ฟฝ๐Ÿ๐Ÿ๐’š๐’š๏ฟฝ = ๐’š๐’š(๐’š๐’š + ๐Ÿ‘๐Ÿ‘) ๏ฟฝ ๐’š๐’š+๐Ÿ—๐Ÿ—

๐’š๐’š(๐’š๐’š+๐Ÿ‘๐Ÿ‘)๏ฟฝ when ๐’š๐’š โ‰  ๐ŸŽ๐ŸŽ and ๐’š๐’š โ‰  โˆ’๐Ÿ‘๐Ÿ‘

๐’š๐’š(๐’š๐’š + ๐Ÿ๐Ÿ) + (๐’š๐’š + ๐Ÿ‘๐Ÿ‘) = ๐’š๐’š + ๐Ÿ—๐Ÿ— ๐’š๐’š๐Ÿ๐Ÿ + ๐’š๐’š + ๐’š๐’š + ๐Ÿ‘๐Ÿ‘ = ๐’š๐’š + ๐Ÿ—๐Ÿ—

๐’š๐’š๐Ÿ๐Ÿ + ๐’š๐’š โˆ’ ๐Ÿ”๐Ÿ” = ๐ŸŽ๐ŸŽ

The solutions to this equation are โˆ’๐Ÿ‘๐Ÿ‘ and ๐Ÿ๐Ÿ.

Because โ€“๐Ÿ‘๐Ÿ‘ is an excluded value, the only solution to the original equation is ๐’š๐’š = ๐Ÿ๐Ÿ.

I can multiply each side of the equation by the least common denominator ๐‘ฆ๐‘ฆ(๐‘ฆ๐‘ฆ + 3). I need to remember to exclude values 0 and โˆ’3 from the possible solutions.

I know that the denominator of the fraction equals 0 when ๐‘ฅ๐‘ฅ = 3, which makes the expression undefined for this value.

ยฉ 2015 Great Minds eureka-math.org

52

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 54: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 26: Solving Rational Equations

2. Create and solve a rational equation that has 1 as an extraneous solution.

If ๐Ÿ๐Ÿ is an extraneous solution, there must be a factor of (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) in the denominator of one or more ofthe rational expressions in the equation. Also, ๐Ÿ๐Ÿ must be a potential solution to the rational equation.

For example, ๐Ÿ๐Ÿ is a solution to ๐’™๐’™ + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ, so the rational equation ๐’™๐’™+๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ๐Ÿ

has an extraneous solution of ๐Ÿ๐Ÿ.

Check: Suppose that ๐’™๐’™+๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐’™๐’™โˆ’๐Ÿ๐Ÿ

. Then (๐’™๐’™+๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ๐Ÿ)(๐’™๐’™โˆ’๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ(๐’™๐’™โˆ’๐Ÿ๐Ÿ)

(๐’™๐’™โˆ’๐Ÿ๐Ÿ) for ๐’™๐’™ โ‰  ๐Ÿ๐Ÿ.

Equating numerators gives:

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ

๐’™๐’™ = ๐Ÿ๐Ÿ

However, ๐’™๐’™ = ๐Ÿ๐Ÿ causes division by zero, so ๐Ÿ๐Ÿ is an extraneous solution.

3. Does there exist a pair of consecutive integers whose reciprocals sum to 78? Explain how you know.

If ๐’™๐’™ is an integer, ๐’™๐’™ + ๐Ÿ๐Ÿ represents the next integer.๐Ÿ๐Ÿ๐’™๐’™

+ ๐Ÿ๐Ÿ๐’™๐’™+๐Ÿ๐Ÿ

= ๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ

๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)(๐’™๐’™+๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐’™๐’™(๐’™๐’™+๐Ÿ๐Ÿ)

+ ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)(๐’™๐’™)๐Ÿ๐Ÿ๐’™๐’™(๐’™๐’™+๐Ÿ๐Ÿ)

= ๐Ÿ•๐Ÿ•(๐’™๐’™)(๐’™๐’™+๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๐’™๐’™(๐’™๐’™+๐Ÿ๐Ÿ)

for ๐’™๐’™ โ‰  ๐ŸŽ๐ŸŽ and ๐’™๐’™ โ‰  โˆ’๐Ÿ๐Ÿ

Equating numerators gives ๐Ÿ๐Ÿ(๐’™๐’™ + ๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ๐’™๐’™ = ๐Ÿ•๐Ÿ•๐’™๐’™(๐’™๐’™ + ๐Ÿ๐Ÿ)

๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ = ๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ•๐Ÿ•๐’™๐’™ ๐Ÿ•๐Ÿ•๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ.

Using the quadratic formula gives

๐’™๐’™ = ๐Ÿ—๐Ÿ—ยฑ๏ฟฝ(โˆ’๐Ÿ—๐Ÿ—)๐Ÿ๐Ÿโˆ’๐Ÿ’๐Ÿ’(๐Ÿ•๐Ÿ•)(โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•)

, which means that the solutions are ๐Ÿ—๐Ÿ—+โˆš๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

and ๐Ÿ—๐Ÿ—โˆ’โˆš๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

. Thus, there are no

integer solutions.

I can model the relationship in the problem with an equation.

If I write the expressions with a common denominator, I can equate the numerators for all defined values of ๐‘ฅ๐‘ฅ and solve the resulting equation.

I know that โˆš305 is not an integer.

ยฉ 2015 Great Minds eureka-math.org

53

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 55: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 27: Word Problems Leading to Rational Equations

Lesson 27: Word Problems Leading to Rational Equations

1. If two air pumps can fill a bounce house in 10 minutes, and one air pump can fill the bounce house in 30minutes on its own, how long would the other air pump take to fill the bounce house on its own?

Let ๐’™๐’™ represent the time in minutes it takes the second air pump to fill the bounce house on its own.

๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

+๐Ÿ๐Ÿ๐’™๐’™

=๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

+๐Ÿ๐Ÿ๐’™๐’™

=๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ

So, ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

+ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐’™๐’™

= ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

, and then ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘๐’™๐’™. It follows that ๐Ÿ๐Ÿ๐’™๐’™ = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘, so ๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

It would take the second air pump ๐Ÿ๐Ÿ๐Ÿ๐Ÿ minutes to fill the bounce house on its own.

2. The difference in the average speed of two cars is 12 miles per hour. The slower car takes 2 hours longerto travel 385 miles than the faster car takes to travel 335 miles. Find the speed of the faster car.

Let t represent the time it takes, in hours, for the faster car to drive 335 miles.

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’•๐’•

โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’•๐’• + ๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐’•๐’•)(๐’•๐’•+ ๐Ÿ๐Ÿ)

๐’•๐’• ๏ฟฝ โˆ’ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐’•๐’•)(๐’•๐’• + ๐Ÿ๐Ÿ)

๐’•๐’• + ๐Ÿ๐Ÿ ๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•(๐’•๐’• + ๐Ÿ๐Ÿ)

Thus, ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ(๐’•๐’• + ๐Ÿ๐Ÿ) โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’•๐’• = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’• and ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’•๐’• + ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’•๐’• = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•. Combining like terms gives ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’•๐’•๐Ÿ๐Ÿ + ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ๐’•๐’• โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘, so ๐Ÿ๐Ÿ(๐’•๐’• โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ”๐Ÿ”๐’•๐’• + ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”) = ๐Ÿ‘๐Ÿ‘.

The only possible solution is ๐Ÿ๐Ÿ.

Because ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ”, the speed of the faster car is ๐Ÿ”๐Ÿ”๐Ÿ”๐Ÿ” miles per hour.

I know multiplying by 30๐‘ฅ๐‘ฅ will not change the solution to the equation because ๐‘ฅ๐‘ฅ does not equal zero (it would not make sense for an air pump to take 0 minutes to fill the bounce house).

I know the fraction of a bounce house filled by the first air pump in one minute added to the fraction of a bounce house filled by the second air pump in one minute is equal to the fraction of the bounce house filled by both air pumps in one minute.

I know distance is the average speed multiplied by time, so average speed is distance divided by time. I also know that the difference in the average speeds of the cars is 12 miles per hour.

Solving (6๐‘ก๐‘ก + 67) = 0 produces a negative solution for ๐‘ก๐‘ก, which does not make sense in this context.

Average speed is distance divided by time.

ยฉ 2015 Great Minds eureka-math.org

54

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 56: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 27: Word Problems Leading to Rational Equations

I can multiply this equation by the least common denominator ๐‘ƒ๐‘ƒ(๐‘ก๐‘ก + 1) because I know neither factor has a value of zero.

3. Consider an ecosystem of squirrels on a college campus that starts with 30 squirrels and can sustain up to150 squirrels. An equation that roughly models this scenario is

๐‘ƒ๐‘ƒ =150

1 + 4๐‘ก๐‘ก + 1

,

where ๐‘ƒ๐‘ƒ represents the squirrel population in year ๐‘ก๐‘ก of the study.

a. Solve this equation for ๐‘ก๐‘ก. Describe what the resulting equation represents in the context of thisproblem.

Since ๐‘ท๐‘ท = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿ๐’•๐’•+๐Ÿ๐Ÿ

, it follows that ๐‘ท๐‘ท๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’•๐’•+๐Ÿ๐Ÿ

๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘, and then ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’•๐’•+๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐‘ท๐‘ท

.

Then

๐‘ท๐‘ท(๐’•๐’• + ๐Ÿ๐Ÿ) ๏ฟฝ๐Ÿ๐Ÿ +๐Ÿ๐Ÿ

๐’•๐’• + ๐Ÿ๐Ÿ๏ฟฝ = ๐‘ท๐‘ท(๐’•๐’• + ๐Ÿ๐Ÿ) ๏ฟฝ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐‘ท๐‘ท

๏ฟฝ

๐‘ท๐‘ท(๐’•๐’• + ๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ๐‘ท๐‘ท = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘(๐’•๐’• + ๐Ÿ๐Ÿ) ๐‘ท๐‘ท๐’•๐’• + ๐‘ท๐‘ท + ๐Ÿ๐Ÿ๐‘ท๐‘ท = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’•๐’• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’•๐’• โˆ’ ๐‘ท๐‘ท๐’•๐’• = ๐Ÿ๐Ÿ๐‘ท๐‘ท โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๐’•๐’•(๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐‘ท๐‘ท) = ๐Ÿ๐Ÿ๐‘ท๐‘ท โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

๐’•๐’• =๐Ÿ๐Ÿ๐‘ท๐‘ท โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐‘ท๐‘ท

The resulting equation represents the relationship between the number of squirrels, ๐‘ท๐‘ท, and the year, ๐’•๐’•. If we know how many squirrels we have, between ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ and ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘, we will know how long it took for the squirrel population to grow from ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ to that value, ๐‘ท๐‘ท. If the population is ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘, then this equation says we are in year ๐Ÿ‘๐Ÿ‘ of the study, which fits with the given scenario.

b. At what time does the population reach 100 squirrels?

When ๐‘ท๐‘ท = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘, then ๐’•๐’• = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘)โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘

= ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘

= ๐Ÿ”๐Ÿ”; therefore, the squirrel population is ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ in year ๐Ÿ”๐Ÿ” of the study.

I need to assume that ๐‘ƒ๐‘ƒ โ‰  150 so that I can divide both sides of the equation by 150 โˆ’ ๐‘ƒ๐‘ƒ.

ยฉ 2015 Great Minds eureka-math.org

55

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 57: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 28: A Focus on Square Roots

Lesson 28: A Focus on Square Roots

Rationalize the Denominator

1. Rationalize the denominator in the following expressions:

a. ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ“๐Ÿ“โˆ’โˆš๐’™๐’™

If ๐’™๐’™ โ‰  ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“, then ๐Ÿ‘๐Ÿ‘๐’™๐’™

๐Ÿ“๐Ÿ“ โˆ’ โˆš๐’™๐’™=

๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ“๐Ÿ“ โˆ’ โˆš๐’™๐’™

โˆ™๐Ÿ“๐Ÿ“ + โˆš๐’™๐’™๐Ÿ“๐Ÿ“ + โˆš๐’™๐’™

=๐Ÿ‘๐Ÿ‘๐’™๐’™(๐Ÿ“๐Ÿ“) + ๐Ÿ‘๐Ÿ‘๐’™๐’™๏ฟฝโˆš๐’™๐’™๏ฟฝ

๐Ÿ“๐Ÿ“(๐Ÿ“๐Ÿ“) + ๐Ÿ“๐Ÿ“โˆš๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“โˆš๐’™๐’™ โˆ’ (โˆš๐’™๐’™)๐Ÿ๐Ÿ=๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐’™๐’™โˆš๐’™๐’™๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ โˆ’ ๐’™๐’™

.

b. 3โˆš๐‘ฅ๐‘ฅ+4

If ๐’™๐’™ > โˆ’๐Ÿ’๐Ÿ’, then ๐Ÿ‘๐Ÿ‘

โˆš๐’™๐’™ + ๐Ÿ’๐Ÿ’=

๐Ÿ‘๐Ÿ‘โˆš๐’™๐’™ + ๐Ÿ’๐Ÿ’

โˆ™โˆš๐’™๐’™ + ๐Ÿ’๐Ÿ’โˆš๐’™๐’™ + ๐Ÿ’๐Ÿ’

=๐Ÿ‘๐Ÿ‘โˆš๐’™๐’™ + ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ’๐Ÿ’

.

Solve Equations That Contain Radicals

2. Solve each equation, and check the solutions.

a. 3โˆš๐‘ฅ๐‘ฅ + 3 + 4 = โˆ’2

๐Ÿ‘๐Ÿ‘โˆš๐’™๐’™ + ๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ”๐Ÿ”โˆš๐’™๐’™ + ๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ๐Ÿ

๏ฟฝโˆš๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ

= (โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

๐’™๐’™ + ๐Ÿ‘๐Ÿ‘ = ๐Ÿ’๐Ÿ’ ๐’™๐’™ = ๐Ÿ๐Ÿ

Check: If ๐’™๐’™ = ๐Ÿ๐Ÿ is a solution, then โˆš๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ๐Ÿ, but ๐Ÿ๐Ÿ โ‰  โˆ’๐Ÿ๐Ÿ, so ๐Ÿ๐Ÿ is an extraneous solution.

There are no real solutions to the original equation.

b. โˆš๐‘ฅ๐‘ฅ + 5 โˆ’ 2โˆš๐‘ฅ๐‘ฅ โˆ’ 1 = 0

โˆš๐’™๐’™ + ๐Ÿ“๐Ÿ“ = ๐Ÿ๐Ÿโˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ

๏ฟฝโˆš๐’™๐’™ + ๐Ÿ“๐Ÿ“๏ฟฝ๐Ÿ๐Ÿ

= ๏ฟฝ๐Ÿ๐Ÿโˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

๐’™๐’™ + ๐Ÿ“๐Ÿ“ = ๐Ÿ’๐Ÿ’(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) ๐’™๐’™ + ๐Ÿ“๐Ÿ“ = ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ = ๐Ÿ—๐Ÿ— ๐’™๐’™ = ๐Ÿ‘๐Ÿ‘

Check: โˆš๐Ÿ‘๐Ÿ‘ + ๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = โˆš๐Ÿ–๐Ÿ– โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ = ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ, so ๐Ÿ‘๐Ÿ‘ is a valid solution.

I know that โˆš๐‘Ž๐‘Ž โˆ™โˆš๐‘Ž๐‘Ž = ๐‘Ž๐‘Ž for non-negative values of ๐‘Ž๐‘Ž. In this case,

๐‘Ž๐‘Ž = ๐‘ฅ๐‘ฅ + 4.

I first need to separate the square root expressions on opposite sides of the equal sign and then square both sides of the equation.

I know that when the denominator of a rational expression is in the form ๐‘Ž๐‘Ž +โˆš๐‘๐‘, I can rationalize the denominator bymultiplying both the numerator and denominator by ๐‘Ž๐‘Ž โˆ’ โˆš๐‘๐‘.

I can see that there are no real solutions because the principal square root of a number cannot be negative.

ยฉ 2015 Great Minds eureka-math.org

56

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 58: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 28: A Focus on Square Roots

c. โˆš๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ = 6

๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™๏ฟฝ๐Ÿ๐Ÿ

= ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™ = ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” = ๐ŸŽ๐ŸŽ

(๐’™๐’™ โˆ’ ๐Ÿ—๐Ÿ—)(๐’™๐’™ + ๐Ÿ’๐Ÿ’) = ๐ŸŽ๐ŸŽ Either ๐’™๐’™ = ๐Ÿ—๐Ÿ— or ๐’™๐’™ = โˆ’๐Ÿ’๐Ÿ’

Check: ๏ฟฝ๐Ÿ—๐Ÿ—๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“(๐Ÿ—๐Ÿ—) = โˆš๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“ = โˆš๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” = ๐Ÿ”๐Ÿ”; ๏ฟฝ(โˆ’๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“(โˆ’๐Ÿ’๐Ÿ’) = โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” + ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ = โˆš๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” = ๐Ÿ”๐Ÿ”

Both ๐Ÿ—๐Ÿ— and โˆ’๐Ÿ’๐Ÿ’ are solutions to the original equation.

d. 3โˆš๐‘ฅ๐‘ฅโˆ’1

= 2

๐Ÿ‘๐Ÿ‘โˆš๐’™๐’™โˆ’๐Ÿ๐Ÿ

โˆ™ (โˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ(โˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) for ๐’™๐’™ โ‰  ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿโˆš๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)๐Ÿ“๐Ÿ“ = ๐Ÿ๐Ÿโˆš๐’™๐’™๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ

= โˆš๐’™๐’™ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

= ๐’™๐’™

Check: ๐Ÿ‘๐Ÿ‘

๏ฟฝ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’ โˆ’๐Ÿ๐Ÿ

= ๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ“๐Ÿ๐Ÿโˆ’๐Ÿ๐Ÿ

= ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๏ฟฝ

= ๐Ÿ‘๐Ÿ‘ โ‹… ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

The only solution is ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ’

.

e. โˆš2๐‘ฅ๐‘ฅ + 13 + 5 = 2

โˆš๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ‘๐Ÿ‘ ๏ฟฝโˆš๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๏ฟฝ

๐Ÿ‘๐Ÿ‘= (โˆ’๐Ÿ‘๐Ÿ‘)๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐’™๐’™ = โˆ’๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– ๐’™๐’™ = โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

Check: ๏ฟฝ๐Ÿ๐Ÿ(โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’) + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ“๐Ÿ“ = โˆšโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ“๐Ÿ“ = โˆ’๐Ÿ‘๐Ÿ‘ + ๐Ÿ“๐Ÿ“ = ๐Ÿ๐Ÿ

The only solution is โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’.

I could also solve this equation by rationalizing the denominator of 3

โˆš๐‘ฅ๐‘ฅโˆ’1, but multiplying by the least

common denominator takes fewer steps.

ยฉ 2015 Great Minds eureka-math.org

57

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 59: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 29: Solving Radical Equations

Lesson 29: Solving Radical Equations

Solve each equation.

1. โˆš3๐‘ฅ๐‘ฅ + 1 = 1 โˆ’ 2๐‘ฅ๐‘ฅ

๏ฟฝโˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

= (๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘) + (๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ•๐Ÿ•๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ ๐Ÿ‘๐Ÿ‘(๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ•๐Ÿ•) = ๐ŸŽ๐ŸŽ

๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ or ๐Ÿ‘๐Ÿ‘ =๐Ÿ•๐Ÿ•๐Ÿ’๐Ÿ’

If ๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ, then โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ‘๐Ÿ‘(๐ŸŽ๐ŸŽ) + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ, and ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ โˆ’ ๐ŸŽ๐ŸŽ = ๐Ÿ๐Ÿ, so ๐ŸŽ๐ŸŽ is a valid solution.

If ๐Ÿ‘๐Ÿ‘ = ๐Ÿ•๐Ÿ•๐Ÿ’๐Ÿ’, then โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ•๐Ÿ•

๐Ÿ’๐Ÿ’๏ฟฝ + ๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ’๐Ÿ’= ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ, and ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

๐Ÿ’๐Ÿ’= โˆ’๐Ÿ๐Ÿ

๐Ÿ๐Ÿ, so ๐Ÿ•๐Ÿ•

๐Ÿ’๐Ÿ’ is not a solution.

The only solution is ๐ŸŽ๐ŸŽ.

2. โˆš๐‘ฅ๐‘ฅ โˆ’ 5 + โˆš2๐‘ฅ๐‘ฅ โˆ’ 3 = 4

โˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘

๏ฟฝโˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

= ๏ฟฝ๐Ÿ’๐Ÿ’ โˆ’ โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ(๐Ÿ’๐Ÿ’)โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘ + ๏ฟฝโˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘ ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– = ๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘

(๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–)๐Ÿ๐Ÿ = ๏ฟฝ๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘) ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ (๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ

๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ or ๐Ÿ‘๐Ÿ‘ = ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ

If ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ, then โˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ + ๏ฟฝ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) โˆ’ ๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’, so ๐Ÿ๐Ÿ is a solution. If ๐Ÿ‘๐Ÿ‘ = ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ, then โˆš๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ + ๏ฟฝ๐Ÿ๐Ÿ(๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ) โˆ’ ๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ + โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‰  ๐Ÿ’๐Ÿ’, so ๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ is not a solution to the original equation.

The only solution to the original equation is ๐Ÿ๐Ÿ.

I can use the pattern (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 = ๐‘Ž๐‘Ž2 โˆ’ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2

to expand the expression ๏ฟฝ4 โˆ’ โˆš2๐‘ฅ๐‘ฅ โˆ’ 3๏ฟฝ2

. I willbe left with a term containing a square root, which I will need to isolate.

I know that squaring an equation does not always generate an equivalent equation, so I will need to check for extraneous solutions possibly introduced by squaring.

Now that I have isolated the radical term, I can square both sides of the equation, which will create a quadratic equation I can solve.

ยฉ 2015 Great Minds eureka-math.org

58

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 60: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 29: Solving Radical Equations

3. Consider the trapezoid ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด shown to the right, where ๐ด๐ด๐ด๐ด = ๐ด๐ด๐ด๐ด. a. If the length of ๐ด๐ด๐ด๐ด๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ is 12, the length of ๐ด๐ด๐ด๐ด๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ is 18,

and the height of the trapezoid is ๐‘ฅ๐‘ฅ, write an expressionfor the perimeter of trapezoid ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด in terms of ๐‘ฅ๐‘ฅ.

(๐‘จ๐‘จ๐‘จ๐‘จ)๐Ÿ๐Ÿ = (๐‘จ๐‘จ๐‘ซ๐‘ซ)๐Ÿ๐Ÿ + (๐‘จ๐‘จ๐‘ซ๐‘ซ)๐Ÿ๐Ÿ (๐‘จ๐‘จ๐‘จ๐‘จ)๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

๐‘จ๐‘จ๐‘จ๐‘จ = ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ

Since ๐‘จ๐‘จ๐‘จ๐‘จ + ๐‘จ๐‘จ๐‘ฉ๐‘ฉ+ ๐‘ฉ๐‘ฉ๐‘จ๐‘จ+ ๐‘จ๐‘จ๐‘จ๐‘จ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– + ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ, the perimeter of ๐‘จ๐‘จ๐‘จ๐‘จ๐‘ฉ๐‘ฉ๐‘จ๐‘จ is ๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ +๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ.

b. Find the value of ๐‘ฅ๐‘ฅ for which the perimeter of trapezoid ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด is equal to 60 cm.

๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ + ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘๐ŸŽ๐ŸŽ ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ

The height of trapezoid ๐‘จ๐‘จ๐‘จ๐‘จ๐‘ฉ๐‘ฉ๐‘จ๐‘จ is ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ centimeters when the perimeter is ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ centimeters.

I can use the Pythagorean theorem to find the length ๐ด๐ด๐ด๐ด, which has the same value as ๐ด๐ด๐ด๐ด.

Since ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด is an isosceles trapezoid, I can decompose it into a rectangle of width 12 and height ๐‘ฅ๐‘ฅ, and two congruent right triangles.

ยฉ 2015 Great Minds eureka-math.org

59

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 61: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 30: Linear Systems in Three Variables

Lesson 30: Linear Systems in Three Variables

1. Solve the following systems of equations:a. ๐‘Ÿ๐‘Ÿ = 3(๐‘ ๐‘  + ๐‘ก๐‘ก)

๐‘ก๐‘ก = ๐‘ ๐‘  โˆ’ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ = 2๐‘ ๐‘  โˆ’ 1

๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ‘๐Ÿ‘(๐Ÿ๐Ÿ + ๐’•๐’•) ๐’•๐’• = ๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)

โˆ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’•๐’• = ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ + ๐’•๐’• = ๐Ÿ๐Ÿ

Adding the equations gives โˆ’๐Ÿ๐Ÿ๐’•๐’• = ๐Ÿ๐Ÿ, so ๐’•๐’• = โˆ’๐Ÿ๐Ÿ.

Then, ๐Ÿ๐Ÿ + ๐’•๐’• = ๐Ÿ๐Ÿ so ๐Ÿ๐Ÿ + (โˆ’๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ and then ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ. Since ๐’“๐’“ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ, it follows that ๐’“๐’“ = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) โ€“ ๐Ÿ๐Ÿ and then ๐’“๐’“ = ๐Ÿ‘๐Ÿ‘.

Solution: (๐Ÿ‘๐Ÿ‘,๐Ÿ๐Ÿ,โˆ’๐Ÿ๐Ÿ)

b. ๐‘๐‘ + ๐‘ž๐‘ž + 3๐‘Ÿ๐‘Ÿ = 05๐‘๐‘ โˆ’ 2๐‘ž๐‘ž + 3๐‘Ÿ๐‘Ÿ = 7๐‘๐‘ โˆ’ ๐‘ž๐‘ž + ๐‘Ÿ๐‘Ÿ = 2

Then, ๐’“๐’“ = ๐ŸŽ๐ŸŽ. Since ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐Ÿ—๐Ÿ—๐’“๐’“ = ๐Ÿ•๐Ÿ• and ๐’“๐’“ = ๐ŸŽ๐ŸŽ, it follows that ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐ŸŽ๐ŸŽ = ๐Ÿ•๐Ÿ• and ๐Ÿ•๐Ÿ• = ๐Ÿ๐Ÿ. Then since ๐Ÿ•๐Ÿ• + ๐’’๐’’ + ๐Ÿ‘๐Ÿ‘๐’“๐’“ = ๐ŸŽ๐ŸŽ, it follows that ๐Ÿ๐Ÿ + ๐’’๐’’ + ๐Ÿ‘๐Ÿ‘(๐ŸŽ๐ŸŽ) = ๐ŸŽ๐ŸŽ and then ๐’’๐’’ = โˆ’๐Ÿ๐Ÿ.

Solution: (๐Ÿ๐Ÿ,โˆ’๐Ÿ๐Ÿ,๐ŸŽ๐ŸŽ)

โˆ’๐Ÿ•๐Ÿ•(๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•+ ๐Ÿ’๐Ÿ’๐’“๐’“) = โˆ’๐Ÿ•๐Ÿ•(๐Ÿ๐Ÿ) ๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐Ÿ—๐Ÿ—๐’“๐’“) = ๐Ÿ๐Ÿ(๐Ÿ•๐Ÿ•)

โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’“๐’“ = โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’“๐’“ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

If I substitute the expression (2๐‘ ๐‘  โˆ’ 1) for ๐‘Ÿ๐‘Ÿ into the first and second equations, I can create two equations with two variables. Since the coefficients of ๐‘ ๐‘  are opposites in the resulting equations, I can then add the equations to eliminate ๐‘ ๐‘ .

Once I find the value of ๐‘ก๐‘ก, I can back substitute its value into ๐‘ ๐‘  + ๐‘ก๐‘ก = 1 to find the value of ๐‘ ๐‘  and then back substitute the value of ๐‘ ๐‘  into ๐‘Ÿ๐‘Ÿ = 2๐‘ ๐‘  โˆ’ 1 to find the value of ๐‘Ÿ๐‘Ÿ.

If I add the first and third equations, I can eliminate ๐‘ž๐‘ž. I can also eliminate ๐‘ž๐‘ž by adding twice the first equation to the second equation.

I can add these equations to solve for ๐‘Ÿ๐‘Ÿ.

Multiply both sides of ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ• + ๐Ÿ’๐Ÿ’๐’“๐’“ = ๐Ÿ๐Ÿ by โˆ’๐Ÿ•๐Ÿ•, and multiply both sides of ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐Ÿ—๐Ÿ—๐’“๐’“ = ๐Ÿ•๐Ÿ• by ๐Ÿ๐Ÿ.

๐Ÿ•๐Ÿ• + ๐’’๐’’ + ๐Ÿ‘๐Ÿ‘๐’“๐’“ = ๐ŸŽ๐ŸŽ + ๐Ÿ•๐Ÿ• โˆ’ ๐’’๐’’ + ๐’“๐’“ = ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ• + ๐Ÿ’๐Ÿ’๐’“๐’“ = ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐’’๐’’ + ๐Ÿ”๐Ÿ”๐’“๐’“ = ๐ŸŽ๐ŸŽ + ๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ๐Ÿ๐’’๐’’ + ๐Ÿ‘๐Ÿ‘๐’“๐’“ = ๐Ÿ•๐Ÿ• ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ• + ๐Ÿ—๐Ÿ—๐’“๐’“ = ๐Ÿ•๐Ÿ•

โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ•โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’“๐’“ = โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ•๐Ÿ• + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’“๐’“ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

โˆ’๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐’“๐’“ = ๐ŸŽ๐ŸŽ

ยฉ 2015 Great Minds eureka-math.org

60

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 62: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 30: Linear Systems in Three Variables

๐’‚๐’‚ + ๐’ƒ๐’ƒ โˆ’ ๐’„๐’„ = ๐ŸŽ๐ŸŽ + ๐’‚๐’‚ + ๐’ƒ๐’ƒ + ๐’„๐’„ = ๐Ÿ”๐Ÿ” ๐Ÿ๐Ÿ๐’‚๐’‚ + ๐Ÿ๐Ÿ๐’ƒ๐’ƒ = ๐Ÿ”๐Ÿ”

๐’‚๐’‚ + ๐’ƒ๐’ƒ + ๐’„๐’„ = ๐Ÿ”๐Ÿ” + ๐Ÿ‘๐Ÿ‘๐’‚๐’‚ โˆ’ ๐’„๐’„ = ๐ŸŽ๐ŸŽ ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐’ƒ๐’ƒ = ๐Ÿ”๐Ÿ”

๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐Ÿ’๐Ÿ’๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚ โˆ’ ๐’ƒ๐’ƒ = โˆ’๐Ÿ”๐Ÿ”

๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒ = ๐Ÿ”๐Ÿ”

c. 1๐‘ฅ๐‘ฅ

+ 1๐‘ฆ๐‘ฆโˆ’ 1

๐‘ง๐‘ง= 0

3๐‘ฅ๐‘ฅโˆ’

1๐‘ง๐‘ง

= 0

1๐‘ฅ๐‘ฅ

+1๐‘ฆ๐‘ฆ

+1๐‘ง๐‘ง

= 6

Let ๐’‚๐’‚ = ๐Ÿ๐Ÿ๐’™๐’™, ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ

๐’š๐’š, ๐’„๐’„ = ๐Ÿ๐Ÿ

๐’›๐’›. Then the system becomes

๐’‚๐’‚ + ๐’ƒ๐’ƒ โˆ’ ๐’„๐’„ = ๐ŸŽ๐ŸŽ ๐Ÿ‘๐Ÿ‘๐’‚๐’‚ โˆ’ ๐’„๐’„ = ๐ŸŽ๐ŸŽ ๐’‚๐’‚ + ๐’ƒ๐’ƒ + ๐’„๐’„ = ๐Ÿ”๐Ÿ”

So, ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ. Since ๐Ÿ’๐Ÿ’๐’‚๐’‚ + ๐’ƒ๐’ƒ = ๐Ÿ”๐Ÿ” and ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ, we see that ๐’‚๐’‚ = ๐Ÿ๐Ÿ.

Then ๐Ÿ‘๐Ÿ‘๐’‚๐’‚ โˆ’ ๐’„๐’„ = ๐ŸŽ๐ŸŽ and ๐’‚๐’‚ = ๐Ÿ๐Ÿ gives ๐’„๐’„ = ๐Ÿ‘๐Ÿ‘.

Since ๐’‚๐’‚ = ๐Ÿ๐Ÿ๐’™๐’™ and ๐’‚๐’‚ = ๐Ÿ๐Ÿ, we know ๐’™๐’™ = ๐Ÿ๐Ÿ.

Since ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ๐’š๐’š

and ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ, we know ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Since ๐’„๐’„ = ๐Ÿ๐Ÿ๐’›๐’› and ๐’„๐’„ = ๐Ÿ‘๐Ÿ‘, we know ๐’›๐’› = ๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ‘.

Solution: ๏ฟฝ๐Ÿ๐Ÿ, ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

, ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๏ฟฝ

If I define variables to represent 1๐‘ฅ๐‘ฅ

, 1๐‘ฆ๐‘ฆ

, and 1๐‘ง๐‘ง, I

can rewrite the system of equations in a format similar to that of the other systems I have solved.

I need to be sure to write the solution to the original system by finding values of ๐‘ฅ๐‘ฅ,๐‘ฆ๐‘ฆ, and ๐‘ง๐‘ง.

I can add pairs of equations to eliminate ๐‘๐‘.

I can combine the new equations to eliminate ๐‘Ž๐‘Ž.

ยฉ 2015 Great Minds eureka-math.org

61

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 63: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 30: Linear Systems in Three Variables

๐’™๐’™ + ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ”๐Ÿ”๐ŸŽ๐ŸŽ โˆ’ ๐’™๐’™ โˆ’ ๐’š๐’š = โˆ’๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ

๐’š๐’š = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

2. A chemist needs to make 50 ml of a 12% acid solution. If he uses 10% and 20% solutions to create the12% solution, how many ml of each does he need?

Let ๐’™๐’™ represent the amount of ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ% solution used and ๐’š๐’š represent the amount of ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ% solution used.

๐’™๐’™ + ๐’š๐’š = ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐’™๐’™ + ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐’š๐’š = ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ)

Multiply the second equation by ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ: ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ(๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐’™๐’™ + ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐’š๐’š) = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ(๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ) becomes ๐’™๐’™ + ๐Ÿ๐Ÿ๐’š๐’š = ๐Ÿ”๐Ÿ”๐ŸŽ๐ŸŽ.

The sum of the amount of the two solutions used is 50 ml.

I can add โˆ’1 times the first equation to ten times the second equation to find the value of ๐‘ฆ๐‘ฆ .

The amount of acid in a solution is the product of the volume of the solution and its concentration.

Since ๐’š๐’š = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ and ๐’™๐’™ + ๐’š๐’š = ๐Ÿ“๐Ÿ“๐ŸŽ๐ŸŽ, we have ๐’™๐’™ = ๐Ÿ’๐Ÿ’๐ŸŽ๐ŸŽ. The chemist used ๐ฆ๐ฆ๐ฆ๐ฆ of the ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ% solution and ๐ฆ๐ฆ๐ฆ๐ฆ of the ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ% solution.

ยฉ 2015 Great Minds eureka-math.org

62

Homework Helper A Story of Functions

๐Ÿ’๐Ÿ’๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

ALG II-M1-HWH-1.3.0-08.2015

Page 64: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 31: Systems of Equations

Lesson 31: Systems of Equations

1. Where do the lines given by ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ โˆ’ ๐‘๐‘ and ๐‘ฆ๐‘ฆ = 3๐‘ฅ๐‘ฅ + 1 intersect?

๐’™๐’™ โˆ’ ๐’ƒ๐’ƒ = ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ = โˆ’๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ

๐’™๐’™ =โˆ’๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’š๐’š = ๐’™๐’™ โˆ’ ๐’ƒ๐’ƒ

๐’š๐’š =โˆ’๐’ƒ๐’ƒ โˆ’ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿโˆ’ ๐’ƒ๐’ƒ =

โˆ’๐’ƒ๐’ƒโˆ’ ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’ƒ๐’ƒ๐Ÿ๐Ÿ

=โˆ’๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒโˆ’ ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ

The point of intersection for the lines is ๏ฟฝโ€“๐’ƒ๐’ƒโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

, โˆ’๐Ÿ‘๐Ÿ‘๐’ƒ๐’ƒโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๏ฟฝ.

2. Find all solutions to the following systems of equations. Illustrate each system with a graph.a. (๐‘ฅ๐‘ฅ โˆ’ 1)2 + (๐‘ฆ๐‘ฆ + 2)2 = 9

2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 7

First, ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐’š๐’š = ๐Ÿ•๐Ÿ•, so ๐’š๐’š = ๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ•๐Ÿ•.

Then (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๏ฟฝ(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ•๐Ÿ•) + ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ = ๐Ÿ—๐Ÿ—, so (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ = ๐Ÿ—๐Ÿ—.

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๐Ÿ—๐Ÿ—๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ• = ๐Ÿ๐Ÿ (๐Ÿ“๐Ÿ“๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ

Then ๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“

or ๐’™๐’™ = ๐Ÿ๐Ÿ.

If ๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“

, ๐’š๐’š = ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“๏ฟฝ โˆ’ ๐Ÿ•๐Ÿ• = โˆ’๐Ÿ๐Ÿ

๐Ÿ“๐Ÿ“.

If ๐’™๐’™ = ๐Ÿ๐Ÿ, ๐’š๐’š = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) โˆ’ ๐Ÿ•๐Ÿ• = โˆ’๐Ÿ“๐Ÿ“.

The points of intersection are ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ“๐Ÿ“

,โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๏ฟฝ and (๐Ÿ๐Ÿ,โˆ’๐Ÿ“๐Ÿ“).

I can solve the linear equation for ๐‘ฆ๐‘ฆ and substitute the result into the quadratic equation.

I should back substitute these values of ๐‘ฅ๐‘ฅ into the linear equation 2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ = 7 to avoid extraneous solutions that might arise if I used the more complicated equation.

I know that, at the point of intersection, the ๐‘ฆ๐‘ฆ-coordinates will be the same, so I can set ๐‘ฅ๐‘ฅ โˆ’ ๐‘๐‘ = 3๐‘ฅ๐‘ฅ + 1.

My graph shows the two points of intersection.

ยฉ 2015 Great Minds eureka-math.org

63

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 65: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 31: Systems of Equations

b. ๐‘ฆ๐‘ฆ = 4๐‘ฅ๐‘ฅ โˆ’ 11๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘ฅ๐‘ฅ + 5

๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ–๐Ÿ–๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ (๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’)(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’) = ๐Ÿ๐Ÿ

The only solution is ๐Ÿ’๐Ÿ’.

If ๐’™๐’™ = ๐Ÿ’๐Ÿ’, then ๐’š๐’š = ๐Ÿ’๐Ÿ’(๐Ÿ’๐Ÿ’) โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ“๐Ÿ“.

The only point of intersection is (๐Ÿ’๐Ÿ’,๐Ÿ“๐Ÿ“).

3. Find all values of ๐‘˜๐‘˜ so that the following system has nosolutions.(๐‘ฆ๐‘ฆ โˆ’ ๐‘˜๐‘˜)2 = ๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ = โˆ’2๐‘ฅ๐‘ฅ + ๐‘˜๐‘˜

๏ฟฝ(โˆ’๐Ÿ๐Ÿ๐’™๐’™+ ๐’Œ๐’Œ) โˆ’ ๐’Œ๐’Œ๏ฟฝ๐Ÿ๐Ÿ = ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘(โˆ’๐Ÿ๐Ÿ๐’™๐’™)๐Ÿ๐Ÿ = ๐’™๐’™ + ๐Ÿ‘๐Ÿ‘ ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ

(๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ

๐’™๐’™ = ๐Ÿ๐Ÿ or ๐’™๐’™ = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

If ๐’™๐’™ = ๐Ÿ๐Ÿ, then ๐’š๐’š = โˆ’๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) + ๐’Œ๐’Œ = ๐’Œ๐’Œ โˆ’ ๐Ÿ๐Ÿ.

If ๐’™๐’™ = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’, then ๐’š๐’š = โˆ’๐Ÿ๐Ÿ๏ฟฝโˆ’ ๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’๏ฟฝ + ๐’Œ๐’Œ = ๐’Œ๐’Œ + ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ, so the intersection points are (๐Ÿ๐Ÿ,๐’Œ๐’Œ โˆ’ ๐Ÿ๐Ÿ) and ๏ฟฝโˆ’๐Ÿ‘๐Ÿ‘

๐Ÿ’๐Ÿ’,๐’Œ๐’Œ + ๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๏ฟฝ.

The graphs will intersect in two locations regardless of the value of ๐’Œ๐’Œ. There are no values for ๐’Œ๐’Œ so that the system has no solutions.

The repeated factor indicates that there is one point of intersection, which is shown on the graph.

These are examples of the graphs of systems for two different values of ๐‘˜๐‘˜.

Substitute โˆ’2๐‘ฅ๐‘ฅ + ๐‘˜๐‘˜ for ๐‘ฆ๐‘ฆ in the first equation, and solve for ๐‘ฅ๐‘ฅ.

ยฉ 2015 Great Minds eureka-math.org

64

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 66: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 32: Graphing Systems of Equations

If the graph of the circle does not contain the point (0, 3), either the circle does not intersect the ๐‘ฆ๐‘ฆ-axis, or it intersects the ๐‘ฆ๐‘ฆ-axis in two places.

Lesson 32: Graphing Systems of Equations

1. Use the distance formula to find the length of the diagonal of a rectangle whose vertices are (1,3), (4,3),(4,9), and (1,9).

Using the vertices (๐Ÿ’๐Ÿ’,๐Ÿ‘๐Ÿ‘) and (๐Ÿ๐Ÿ,๐Ÿ—๐Ÿ—), we have ๐’…๐’… = ๏ฟฝ(๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ + (๐Ÿ—๐Ÿ— โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = โˆš๐Ÿ—๐Ÿ— + ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ = โˆš๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = ๐Ÿ‘๐Ÿ‘โˆš๐Ÿ’๐Ÿ’.

The diagonal is ๐Ÿ‘๐Ÿ‘โˆš๐Ÿ’๐Ÿ’ units long.

2. Write an equation for the circle with center (2, 3) in the form (๐‘ฅ๐‘ฅ โˆ’ โ„Ž)2 + (๐‘ฆ๐‘ฆ โˆ’ ๐‘˜๐‘˜)2 = ๐‘Ÿ๐‘Ÿ2 that is tangentto the ๐‘ฆ๐‘ฆ-axis, where the center is (โ„Ž,๐‘˜๐‘˜) and the radius is ๐‘Ÿ๐‘Ÿ. Then write the equation in the standard form๐‘ฅ๐‘ฅ2 + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ2 + ๐‘๐‘๐‘ฆ๐‘ฆ + ๐‘๐‘ = 0, and construct the graph of the equation.

Since the center of the circle has coordinates (๐Ÿ๐Ÿ,๐Ÿ‘๐Ÿ‘) and the circle istangent at to the ๐’š๐’š-axis, the circle must pass through the point (๐ŸŽ๐ŸŽ,๐Ÿ‘๐Ÿ‘),which means the radius is ๐Ÿ๐Ÿ units long.

Equation for circle: (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐’š๐’š โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ’๐Ÿ’ + ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ—๐Ÿ— = ๐Ÿ’๐Ÿ’

Standard form: ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’š๐’š + ๐Ÿ—๐Ÿ— = ๐ŸŽ๐ŸŽ

Since the diagonals of a rectangle are congruent, I can use any two nonadjacent vertices to find the length of the diagonal.

I know ๐‘‘๐‘‘ = ๏ฟฝ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ1)2 + (๐‘ฆ๐‘ฆ2 โˆ’ ๐‘ฆ๐‘ฆ1)2 by the distance formula.

ยฉ 2015 Great Minds eureka-math.org

65

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 67: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 32: Graphing Systems of Equations

I can substitute (๐‘ฅ๐‘ฅ โˆ’ 1) for ๐‘ฆ๐‘ฆ2 in the second equation.

I can use the distance formula to find the distance between the centers (0, 0) and (3,โˆ’3).

I know that if two circles intersect, the distance between the centers is less than or equal to the sum of their radii. Since the distance between the centers is greater than the sum of the radii, the circles cannot overlap.

3. By finding the radius of each circle and the distance between their centers, show that the circles withequations ๐‘ฅ๐‘ฅ2 + ๐‘ฆ๐‘ฆ2 = 1 and ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ2 + 6๐‘ฆ๐‘ฆ + 9 = 0 do not intersect. Illustrate graphically.

The graph of ๐’™๐’™๐Ÿ๐Ÿ + ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ has center (๐ŸŽ๐ŸŽ,๐ŸŽ๐ŸŽ) and radius ๐Ÿ๐Ÿ unit.

๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’š๐’š + ๐Ÿ—๐Ÿ— = ๐ŸŽ๐ŸŽ ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ—๐Ÿ—๏ฟฝ + ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’š๐’š + ๐Ÿ—๐Ÿ—๏ฟฝ = ๐Ÿ—๐Ÿ—

(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ + (๐’š๐’š + ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ = ๐Ÿ—๐Ÿ—

The graph of ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐’š๐’š + ๐Ÿ—๐Ÿ— = ๐ŸŽ๐ŸŽ is a circle with center (๐Ÿ‘๐Ÿ‘,โˆ’๐Ÿ‘๐Ÿ‘) and radius 3 units.

Since ๏ฟฝ(๐Ÿ‘๐Ÿ‘ โˆ’ ๐ŸŽ๐ŸŽ)๐Ÿ๐Ÿ + (โˆ’๐Ÿ‘๐Ÿ‘ โˆ’ ๐ŸŽ๐ŸŽ)๐Ÿ๐Ÿ = โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ, the distance between the centers of the circles is โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ units.

Since ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’, the sum of the radii is ๐Ÿ’๐Ÿ’ units. Since โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ > ๐Ÿ’๐Ÿ’, the circles do not overlap.

4. Solve the system ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ2 + 1 and ๐‘ฅ๐‘ฅ2 + ๐‘ฆ๐‘ฆ2 = 5.Illustrate graphically.

Because ๐’™๐’™ = ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ, it follows that ๐’š๐’š๐Ÿ๐Ÿ = ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ.

If ๐’™๐’™ = ๐Ÿ๐Ÿ, then ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ, so ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ. Thus either ๐’š๐’š = ๐Ÿ๐Ÿ or ๐’š๐’š = โˆ’๐Ÿ๐Ÿ. If ๐’™๐’™ = โˆ’๐Ÿ‘๐Ÿ‘, then ๐’š๐’š๐Ÿ๐Ÿ = โˆ’๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ, so ๐’š๐’š๐Ÿ๐Ÿ = โˆ’๐Ÿ’๐Ÿ’ which has no real solution.

The points of intersection are (๐Ÿ๐Ÿ,๐Ÿ๐Ÿ) and (๐Ÿ๐Ÿ,โˆ’๐Ÿ๐Ÿ).

๐’™๐’™๐Ÿ๐Ÿ + ๐’š๐’š๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ’ ๐’™๐’™๐Ÿ๐Ÿ + (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) = ๐Ÿ’๐Ÿ’

๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’ = ๐ŸŽ๐ŸŽ ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐ŸŽ๐ŸŽ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘) = ๐ŸŽ๐ŸŽ ๐’™๐’™ = ๐Ÿ๐Ÿ or ๐’™๐’™ = โˆ’๐Ÿ‘๐Ÿ‘

ยฉ 2015 Great Minds eureka-math.org

66

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 68: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 33: The Definition of a Parabola

Lesson 33: The Definition of a Parabola

1. Demonstrate your understanding of the definition of a parabola by drawing several pairs of congruentsegments given the parabola, its focus, and directrix. Measure the segments that you drew in eitherinches or centimeters to confirm the accuracy of your sketches.

2. Find the values of ๐‘ฅ๐‘ฅ for which the point (๐‘ฅ๐‘ฅ, 2) is equidistant from (3,5) and the line ๐‘ฆ๐‘ฆ = โˆ’3.

The distance from (๐’™๐’™,๐Ÿ๐Ÿ) to (๐Ÿ‘๐Ÿ‘,๐Ÿ“๐Ÿ“) is ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ + (๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ—๐Ÿ— + ๐Ÿ—๐Ÿ— = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Then, ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ โˆ’ ๐Ÿ•๐Ÿ• = ๐ŸŽ๐ŸŽ

(๐’™๐’™ โˆ’ ๐Ÿ•๐Ÿ•)(๐’™๐’™ + ๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ ๐’™๐’™ = ๐Ÿ•๐Ÿ• or ๐’™๐’™ = โˆ’๐Ÿ๐Ÿ

The points (๐Ÿ•๐Ÿ•,๐Ÿ๐Ÿ) and (โˆ’๐Ÿ๐Ÿ,๐Ÿ๐Ÿ) are both equidistant from the point (๐Ÿ‘๐Ÿ‘,๐Ÿ“๐Ÿ“) and the line ๐’š๐’š = โˆ’๐Ÿ‘๐Ÿ‘.

3. Consider the equation ๐‘ฆ๐‘ฆ = 14๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ.

a. Find the coordinates of the points on the graph of ๐‘ฆ๐‘ฆ = 14๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ whose ๐‘ฅ๐‘ฅ-values are 0 and 2.

If ๐’™๐’™ = ๐ŸŽ๐ŸŽ, then ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

(๐ŸŽ๐ŸŽ)๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ(๐ŸŽ๐ŸŽ) = ๐ŸŽ๐ŸŽ.

If ๐’™๐’™ = ๐Ÿ๐Ÿ, then ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

(๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ) = ๐Ÿ“๐Ÿ“.

The coordinates are (๐ŸŽ๐ŸŽ,๐ŸŽ๐ŸŽ) and (๐Ÿ๐Ÿ,๐Ÿ“๐Ÿ“).

I know the distance between a point (๐‘Ž๐‘Ž, ๐‘๐‘) and a horizontal line ๐‘ฆ๐‘ฆ = ๐‘˜๐‘˜ is |๐‘˜๐‘˜ โˆ’ ๐‘๐‘|.

I can set the distances I calculated equal to each other.

Because ๐Ÿ๐Ÿ โˆ’ (โˆ’๐Ÿ‘๐Ÿ‘) = ๐Ÿ“๐Ÿ“, the distance from(๐’™๐’™,๐Ÿ๐Ÿ) to the line ๐’š๐’š = โˆ’๐Ÿ‘๐Ÿ‘ is ๐Ÿ“๐Ÿ“ units.

ยฉ 2015 Great Minds eureka-math.org

67

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 69: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 33: The Definition of a Parabola

b. Show that each point in part (a) is equidistant from the point (โˆ’4,โˆ’3) and the line ๐‘ฆ๐‘ฆ = โˆ’5.

The distance from the point (๐ŸŽ๐ŸŽ,๐ŸŽ๐ŸŽ) to the line ๐’š๐’š = โˆ’๐Ÿ“๐Ÿ“ is ๐Ÿ“๐Ÿ“.

The distance between (๐ŸŽ๐ŸŽ,๐ŸŽ๐ŸŽ) and (โˆ’๐Ÿ’๐Ÿ’,โˆ’๐Ÿ‘๐Ÿ‘) is ๏ฟฝ(โˆ’๐Ÿ’๐Ÿ’โˆ’ ๐ŸŽ๐ŸŽ)๐Ÿ๐Ÿ + (โˆ’๐Ÿ‘๐Ÿ‘ โˆ’ ๐ŸŽ๐ŸŽ)๐Ÿ๐Ÿ = โˆš๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๐Ÿ“๐Ÿ“.

Thus, the point (๐ŸŽ๐ŸŽ,๐ŸŽ๐ŸŽ) is equidistant from the point (โˆ’๐Ÿ’๐Ÿ’,โˆ’๐Ÿ‘๐Ÿ‘) and the line ๐’š๐’š = โˆ’๐Ÿ“๐Ÿ“.

The distance from the point (๐Ÿ๐Ÿ,๐Ÿ“๐Ÿ“) to the line ๐’š๐’š = โˆ’๐Ÿ“๐Ÿ“ is ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ.

The distance between (๐Ÿ๐Ÿ,๐Ÿ“๐Ÿ“) and (โˆ’๐Ÿ’๐Ÿ’,โˆ’๐Ÿ‘๐Ÿ‘) is ๏ฟฝ(โˆ’๐Ÿ’๐Ÿ’โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (โˆ’๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ = โˆš๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ.

Thus, the point (๐Ÿ๐Ÿ,๐Ÿ“๐Ÿ“) is equidistant from the point (โˆ’๐Ÿ’๐Ÿ’,โˆ’๐Ÿ‘๐Ÿ‘) and the line ๐’š๐’š = โˆ’๐Ÿ“๐Ÿ“.

c. Show that if the point with coordinates (๐‘ฅ๐‘ฅ,๐‘ฆ๐‘ฆ) is equidistant from the point (โˆ’4,โˆ’3) and the line๐‘ฆ๐‘ฆ = โˆ’5, then ๐‘ฆ๐‘ฆ = 1

4๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ.

The distance between the point with coordinates (๐’™๐’™,๐’š๐’š) and the line ๐’š๐’š = โˆ’๐Ÿ“๐Ÿ“ is ๐’š๐’š+ ๐Ÿ“๐Ÿ“.

The distance between the points (๐’™๐’™,๐’š๐’š) and ๏ฟฝโ€“๐Ÿ’๐Ÿ’,โˆ’๐Ÿ‘๐Ÿ‘๏ฟฝ is ๏ฟฝ(๐’™๐’™ + ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ + (๐’š๐’š + ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ.

So, if ๐’š๐’š + ๐Ÿ“๐Ÿ“ = ๏ฟฝ(๐’™๐’™ + ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ + (๐’š๐’š + ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ, then (๐’š๐’š + ๐Ÿ“๐Ÿ“)๐Ÿ๐Ÿ = (๐’™๐’™ + ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ + (๐’š๐’š + ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ

๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐’š๐’š+ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” + ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ”๐Ÿ”๐’š๐’š + ๐Ÿ—๐Ÿ— ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐’š๐’š โˆ’ ๐Ÿ”๐Ÿ”๐’š๐’š + ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” + ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ—๐Ÿ—

๐Ÿ’๐Ÿ’๐’š๐’š = ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™

๐’š๐’š =๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™๏ฟฝ

๐’š๐’š =๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™

4. Derive the analytic equation of a parabola with focus (2,6) and directrix on the ๐‘ฅ๐‘ฅ-axis.

The distance between the point with coordinates (๐’™๐’™,๐’š๐’š) and the line ๐’š๐’š = ๐ŸŽ๐ŸŽ is ๐’š๐’š, and the distance betweenthe points (๐’™๐’™,๐’š๐’š) and (๐Ÿ๐Ÿ,๐Ÿ”๐Ÿ”) is ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐’š๐’š โˆ’ ๐Ÿ”๐Ÿ”)๐Ÿ๐Ÿ. These distances are equal.

๐’š๐’š = ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐’š๐’š โˆ’ ๐Ÿ”๐Ÿ”)๐Ÿ๐Ÿ

๐’š๐’š๐Ÿ๐Ÿ = (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š + ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๏ฟฝ๐’š๐’š๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๏ฟฝ = (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š = (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”

๐’š๐’š =๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๏ฟฝ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ”๏ฟฝ

๐’š๐’š =๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘

Since the point (๐‘ฅ๐‘ฅ,๐‘ฆ๐‘ฆ) is equidistant from (โˆ’4,โˆ’3) and the line, I set these distances equal to find the relationship between ๐‘ฆ๐‘ฆ and ๐‘ฅ๐‘ฅ.

I know the equation of the parabola will have the form ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ โˆ’ โ„Ž)2 + ๐‘˜๐‘˜, so I am leaving the expression (๐‘ฅ๐‘ฅ โˆ’ 2)2 in factored form and expanding the expression (๐‘ฆ๐‘ฆ โˆ’ 6)2.

ยฉ 2015 Great Minds eureka-math.org

68

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 70: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 34: Are All Parabolas Congruent?

Lesson 34: Are All Parabolas Congruent?

1. Use the definition of a parabola to sketch the parabola defined by the given focus and directrix. Thenwrite an analytic equation for each parabola.a. Focus: (0,4) Directrix: ๐‘ฆ๐‘ฆ = 2

The vertex of the parabola is (๐ŸŽ๐ŸŽ,๐Ÿ‘๐Ÿ‘).

Since the distance from the vertex to the focus is ๐Ÿ๐Ÿ unit, ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐’‘๐’‘ = ๐Ÿ๐Ÿ, and then ๐’‘๐’‘ = ๐Ÿ๐Ÿ.

The parabola opens up, so ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‘๐’‘

(๐’™๐’™ โˆ’ ๐’‰๐’‰)๐Ÿ๐Ÿ + ๐’Œ๐’Œ.

Then ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘.

b. Focus: (4,0) Directrix: ๐‘ฅ๐‘ฅ = โˆ’2

The vertex of the parabola is (๐Ÿ๐Ÿ,๐ŸŽ๐ŸŽ).

Since the distance from the vertex to the focus is ๐Ÿ‘๐Ÿ‘ units, ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‘๐’‘ =

๐Ÿ‘๐Ÿ‘,and then ๐’‘๐’‘ = ๐Ÿ”๐Ÿ”.

The parabola opens to the right, so ๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‘๐’‘

(๐’š๐’š โˆ’ ๐’Œ๐’Œ)๐Ÿ๐Ÿ + ๐’‰๐’‰,

which gives ๐’™๐’™ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ.

The vertex lies along the ๐‘ฆ๐‘ฆ-axis, halfway between the focus and directrix.

I know the distance from the vertex to the focus is 1

2๐‘๐‘.

I know the parabola opens upward because the directrix is beneath it. Therefore, I can use the general form for the equation of a parabola that opens up with vertex (โ„Ž,๐‘˜๐‘˜).

I know the parabola opens to the right because the directrix is to the left of it. Because of this, I can use the general form for the equation of a parabola that opens to the right with vertex (โ„Ž,๐‘˜๐‘˜).

ยฉ 2015 Great Minds eureka-math.org

69

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 71: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 34: Are All Parabolas Congruent?

c. Explain how you can tell whether the parabolas in parts (a) and (b) are congruent.

The parabolas are not congruent because they do not have the same value of ๐’‘๐’‘.

2. Let ๐‘ƒ๐‘ƒ be the parabola with focus (0,8) and directrix ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ.

a. Sketch this parabola. Then write an equation in the form ๐‘ฆ๐‘ฆ = 12๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 whose graph is a parabola that is

congruent to ๐‘ƒ๐‘ƒ.

The vertex of the parabola is equidistant from the focus anddirectrix along the line through the focus that isperpendicular to the directrix. The equation of that line is๐’š๐’š โˆ’ ๐Ÿ–๐Ÿ– = โˆ’๐Ÿ๐Ÿ(๐’™๐’™ โˆ’ ๐ŸŽ๐ŸŽ), which simplifies to ๐’š๐’š = โˆ’๐’™๐’™ + ๐Ÿ–๐Ÿ–.

The point where the line ๐’š๐’š = โˆ’๐’™๐’™ + ๐Ÿ–๐Ÿ– intersects the directrix has coordinates (๐’™๐’™,๐’™๐’™), so ๐’™๐’™ = โˆ’๐’™๐’™ + ๐Ÿ–๐Ÿ–.

Then ๐Ÿ๐Ÿ๐’™๐’™ = ๐Ÿ–๐Ÿ–, so ๐’™๐’™ = ๐Ÿ’๐Ÿ’, and the intersection point on the directrix is (๐Ÿ’๐Ÿ’,๐Ÿ’๐Ÿ’).

The vertex is the point halfway between (๐ŸŽ๐ŸŽ,๐Ÿ–๐Ÿ–) and (๐Ÿ’๐Ÿ’,๐Ÿ’๐Ÿ’), which is ๏ฟฝ๐ŸŽ๐ŸŽ+๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ

, ๐Ÿ–๐Ÿ–+๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๏ฟฝ = (๐Ÿ๐Ÿ,๐Ÿ”๐Ÿ”).

The distance from the vertex to the focus is ๏ฟฝ(๐ŸŽ๐ŸŽ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ + (๐Ÿ–๐Ÿ– โˆ’ ๐Ÿ”๐Ÿ”)๐Ÿ๐Ÿ = โˆš๐Ÿ’๐Ÿ’ + ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ.

Then, ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’‘๐’‘, so ๐’‘๐’‘ = ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ. It follows that ๐’š๐’š = ๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ.

I know this line will have slope โˆ’1 because that is the slope of a line perpendicular to a line of slope 1, such as ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ.

ยฉ 2015 Great Minds eureka-math.org

70

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 72: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 34: Are All Parabolas Congruent?

The distance between the origin and the point on the directrix that aligns with the focus is 4โˆš2, so the directrix, vertex, and focus will align at ๐‘ฅ๐‘ฅ = 4โˆš2. The distance from the directrix to the focus is 4โˆš2.

b. Write an equation whose graph is ๐‘ƒ๐‘ƒโ€ฒ, the parabola congruent to ๐‘ƒ๐‘ƒ that results after ๐‘ƒ๐‘ƒ is rotatedclockwise 45ยฐ about the focus.

The equation for the directrix is ๐’š๐’š = ๐Ÿ–๐Ÿ– โˆ’ ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ.The equation for the parabola is ๐’š๐’š = ๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ–๐Ÿ– โˆ’ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ.

c. Write an equation whose graph is ๐‘ƒ๐‘ƒโ€ฒโ€ฒ, the parabola congruent to ๐‘ƒ๐‘ƒ that results after the directrix of๐‘ƒ๐‘ƒ is rotated 45ยฐ clockwise about the origin.

The focus is ๏ฟฝ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ,๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ๏ฟฝ, and the directrix is the ๐’™๐’™-axis.

The equation for the parabola is

๐’š๐’š =๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ–โˆš๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ๏ฟฝ

๐Ÿ๐Ÿ+ ๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ.

I know the directrix will be a horizontal line, and the distance between the focus, whose coordinates are (0, 8) and the directrix along the ๐‘ฆ๐‘ฆ-axis, is 4โˆš2.

The distance from the vertex to the focus is 2โˆš2.

ยฉ 2015 Great Minds eureka-math.org

71

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 73: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 35: Are All Parabolas Similar?

Lesson 35: Are All Parabolas Similar?

1. Let ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ2. The graph of ๐‘“๐‘“ is shown below.a. On the same axes, graph the function ๐‘”๐‘”, where

๐‘”๐‘”(๐‘ฅ๐‘ฅ) = ๐‘“๐‘“ ๏ฟฝ12๐‘ฅ๐‘ฅ๏ฟฝ. Then, graph the function โ„Ž, where โ„Ž(๐‘ฅ๐‘ฅ) = 2๐‘”๐‘”(๐‘ฅ๐‘ฅ).

b. Based on your work, make a conjecture about the resulting function when the original function istransformed with a horizontal scaling and then a vertical scaling by the same factor, ๐‘˜๐‘˜.

In this example, the resulting function is a dilation with scale factor ๐’Œ๐’Œ.

2. Let ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ2.a. What are the focus and directrix of the parabola that is the graph of the function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ2?

Since ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

= ๐Ÿ๐Ÿ, we know that the distance between the focus and the directrix is ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’. The point

(๐ŸŽ๐ŸŽ,๐ŸŽ๐ŸŽ) is both the vertex of the parabola and the midpoint of the segment connecting the focus and the directrix. Since the distance between the focus and vertex is ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ, this distance is ๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ–, which is the

same as the distance between the vertex and directrix. Therefore, the focus has coordinates ๏ฟฝ๐ŸŽ๐ŸŽ, ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–๏ฟฝ

and the directrix has equation ๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ–๐Ÿ–.

I notice that applying a horizontal scaling with factor 2 and then applying a vertical scaling with factor 2 to the resulting image produces a graph that is a dilation of the graph of ๐‘“๐‘“ with scale factor 2.

I notice that this equation is in the form ๐‘ฆ๐‘ฆ = 12๐‘๐‘๐‘ฅ๐‘ฅ2, which

produces a parabola with vertex at the origin that opens upward.

ยฉ 2015 Great Minds eureka-math.org

72

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 74: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 35: Are All Parabolas Similar?

b. Describe the sequence of transformations that would take the graph of ๐‘“๐‘“ to each parabola describedbelow. Then write an analytic equation for each parabola described.

i. Focus: ๏ฟฝ0,โˆ’ 18๏ฟฝ, directrix: ๐‘ฆ๐‘ฆ = 1

8

๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

ii. Focus: (0,โˆ’38), directrix: ๐‘ฆ๐‘ฆ = โˆ’ 5

8

This parabola is a vertical translation of the graph of ๐’‡๐’‡ down ๐Ÿ๐Ÿ๐Ÿ๐Ÿ unit.

๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

iii. Focus: (1,0), directrix: ๐‘ฅ๐‘ฅ = โˆ’1

๐Ÿ๐Ÿ =๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ๐Ÿ

c. Which of the graphs represent parabolas that are similar? Which represent parabolas that arecongruent?

All the graphs represent similar parabolas because all parabolas are similar. The graphs of theparabolas described in parts (i) and (ii) are congruent to the original parabola because the value of๐Ÿ๐Ÿ is the same.

I notice the distance between the focus and directrix is the same as in the graph of ๐‘“๐‘“ and the vertex is (0, 0). Since the directrix is above the focus, this transformation is a reflection across the ๐‘ฅ๐‘ฅ-axis.

I notice the distance between the focus and directrix is 8 times the corresponding distance on the graph of ๐‘“๐‘“. I also notice the directrix is vertical and to the left of the focus, which means that the graph has been rotated 90ยฐ clockwise.

This parabola is a vertical scaling of the graph of ๐’‡๐’‡ by a factor of ๐Ÿ๐Ÿ

๐Ÿ–๐Ÿ– and a

clockwise rotation of the resulting image by ๐Ÿ—๐Ÿ—๐ŸŽ๐ŸŽยฐ about the origin.

This parabola is a reflection of thegraph of ๐’‡๐’‡ across the ๐Ÿ๐Ÿ-axis.

ยฉ 2015 Great Minds eureka-math.org

73

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 75: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 35: Are All Parabolas Similar?

Since I performed rigid transformations on the graph of ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ2, the transformed graph is congruent to it.

3. Write the equation of a parabola congruent to ๐‘ฆ๐‘ฆ = 2๐‘ฅ๐‘ฅ2 that contains the point (1,โˆ’4). Describe thetransformations that would take this parabola to your new parabola.

Note: There are many possible correct answers.

๐’š๐’š = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’

The graph of the equation ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ has its vertex at theorigin. The graph of the equation ๐’š๐’š = ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’ is atranslation ๐Ÿ๐Ÿ unit to the right and ๐Ÿ’๐Ÿ’ units down, so its vertexis (๐Ÿ๐Ÿ,โˆ’๐Ÿ’๐Ÿ’).

ยฉ 2015 Great Minds eureka-math.org

74

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 76: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 36: Overcoming a Third Obstacle to Factoringโ€”What If There Are No Real Number Solutions?

The graph of the first equation is a parabola with vertex at (0, 1) that opens down. The graph of the second equation is a line with slope โˆ’1 and ๐‘ฆ๐‘ฆ-intercept 2.

I know that given ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0, if ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ < 0, there are no real solutions to the equation. Since ๐‘ฅ๐‘ฅ represents the ๐‘ฅ๐‘ฅ-coordinate of the point of intersection of the graphs, there are no points of intersection.

Lesson 36: Overcoming a Third Obstacle to Factoringโ€”What If

There Are No Real Number Solutions?

1. Solve the following systems of equations, or show that no real solution exists. Graphically confirm youranswers.a. 3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฆ๐‘ฆ = 10

6๐‘ฅ๐‘ฅ + 4๐‘ฆ๐‘ฆ = 16

So, ๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ. Then ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๏ฟฝโˆ’๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ so ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ and

thus ๐Ÿ‘๐Ÿ‘ = ๐Ÿ‘๐Ÿ‘.

The solution is ๏ฟฝ๐Ÿ‘๐Ÿ‘,โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ.

b. 3๐‘ฅ๐‘ฅ2 + ๐‘ฆ๐‘ฆ = 1๐‘ฅ๐‘ฅ + ๐‘ฆ๐‘ฆ = 2

๐’š๐’š = โˆ’๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿ

Substituting โˆ’๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ for ๐’š๐’šgives๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + (โˆ’๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ, sothe discriminant is

๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’ = (โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘)(๐Ÿ๐Ÿ) = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

Since the discriminant is negative, there are no real solutions to the equation ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ.

There are no real solutions to the system.

I can solve the system using elimination like we did in Lessons 30โ€“31.

โˆ’๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐’š๐’š) = โˆ’๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ) ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

โˆ’๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘+ ๐Ÿ’๐Ÿ’๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”

๐Ÿ–๐Ÿ–๐’š๐’š = โˆ’๐Ÿ’๐Ÿ’

ยฉ 2015 Great Minds eureka-math.org

75

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 77: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 36: Overcoming a Third Obstacle to Factoringโ€”What If There Are No Real Number Solutions?

I know when a linear equation is written in the form ๐‘ฆ๐‘ฆ = ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘๐‘, ๐‘Ž๐‘Ž represents the slope of the line.

I can complete the square to help me identify key features of the graph of ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 7.

A translation upward by ๐Ÿ‘๐Ÿ‘ units will result in aparabola that opens up with a vertex at (๐Ÿ‘๐Ÿ‘,๐Ÿ๐Ÿ).Since the vertex is above the ๐Ÿ‘๐Ÿ‘-axis and theparabola opens up, the graph will not intersect the๐Ÿ‘๐Ÿ‘-axis.

2. Find the value of ๐‘˜๐‘˜ so that the graph of the following system of equations has no solution.2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฆ๐‘ฆ + 8 = 0 ๐‘˜๐‘˜๐‘ฅ๐‘ฅ + 3๐‘ฆ๐‘ฆ โˆ’ 9 = 0

If ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐’š๐’š + ๐Ÿ–๐Ÿ– = ๐Ÿ๐Ÿ, then ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ–๐Ÿ–.

If ๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘๐’š๐’š โˆ’ ๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿ, then ๐’š๐’š = โˆ’๐’Œ๐’Œ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘.

Since there are no solutions to the system, the lines are parallel and the slopes of the lines must be equal. Therefore, ๐Ÿ๐Ÿ = โˆ’๐’Œ๐’Œ

๐Ÿ‘๐Ÿ‘, and it follows that ๐’Œ๐’Œ = โˆ’๐Ÿ”๐Ÿ”.

3. Consider the equation ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 7 = 0.a. Offer a geometric explanation to why the equation has two real solutions.

๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ + ๐Ÿ•๐Ÿ• = ๐Ÿ๐Ÿ (๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ + ๐Ÿ—๐Ÿ—) + ๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ—๐Ÿ— = ๐Ÿ๐Ÿ

(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ

The graph of this equation is a parabola that opens upward with vertex (๐Ÿ‘๐Ÿ‘,โˆ’๐Ÿ๐Ÿ). Since the graph opens up and has a vertex below the ๐Ÿ‘๐Ÿ‘-axis, the graph will intersect the ๐Ÿ‘๐Ÿ‘-axis in two locations, which means the equation has two real solutions.

b. Describe a geometric transformation to the graph of ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 7 so the graph intersects the๐‘ฅ๐‘ฅ-axis in one location.

A translation upward by ๐Ÿ๐Ÿ units will result in a graph that opens up with a vertex at (๐Ÿ‘๐Ÿ‘,๐Ÿ๐Ÿ). Sincethe vertex is on the ๐Ÿ‘๐Ÿ‘-axis and the parabola opens up, it will intersect the ๐Ÿ‘๐Ÿ‘-axis in only onelocation.

c. Describe a geometric transformation to the graphof ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 7 so the graph does notintersect the ๐‘ฅ๐‘ฅ-axis.

ยฉ 2015 Great Minds eureka-math.org

76

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 78: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 36: Overcoming a Third Obstacle to Factoringโ€”What If There Are No Real Number Solutions?

d. Find the equation of a line that would intersect the graph of ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 7 in one location.

The graph of ๐’š๐’š = โˆ’๐Ÿ๐Ÿ is a horizontal line tangent to the vertex of the graph of ๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘ + ๐Ÿ•๐Ÿ•.

Note: There are multiple correct solutions to parts (b)โ€“(d).

ยฉ 2015 Great Minds eureka-math.org

77

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 79: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 37: A Surprising Boost from Geometry

Lesson 37: A Surprising Boost from Geometry

1. Express the quantities below in ๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘ form, and graph the corresponding points on the complex plane.Label each point appropriately.a. (12 + 2๐‘๐‘) โˆ’ 3(6 โˆ’ ๐‘๐‘)

๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = โˆ’๐Ÿ”๐Ÿ” + ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ

b. (4 + ๐‘๐‘)(5 + 3๐‘๐‘)

(๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ)(๐Ÿ“๐Ÿ“ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ) = ๐Ÿ’๐Ÿ’(๐Ÿ“๐Ÿ“) + ๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“) + ๐Ÿ๐Ÿ(๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ)= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

c. ๐‘๐‘(4 โˆ’ ๐‘๐‘)(2 + 3๐‘๐‘)

2. Find the real value of ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ in each of the following equations using the fact that if ๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘ = ๐‘๐‘ + ๐‘‘๐‘‘๐‘๐‘,then ๐‘Ž๐‘Ž = ๐‘๐‘ and ๐‘๐‘ = ๐‘‘๐‘‘.

2(4 + ๐‘ฅ๐‘ฅ) โˆ’ 5(3๐‘ฆ๐‘ฆ + 2)๐‘๐‘ = 4๐‘ฅ๐‘ฅ โˆ’ (3 + ๐‘ฆ๐‘ฆ)๐‘๐‘

Since ๐’‚๐’‚ = ๐’„๐’„, it follows that ๐Ÿ๐Ÿ(๐Ÿ’๐Ÿ’ + ๐’™๐’™) = ๐Ÿ’๐Ÿ’๐’™๐’™. Then ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ = ๐Ÿ’๐Ÿ’๐’™๐’™, so ๐Ÿ๐Ÿ๐’™๐’™ = ๐Ÿ๐Ÿ, and ๐’™๐’™ = ๐Ÿ’๐Ÿ’.

Since ๐’ƒ๐’ƒ = ๐’…๐’…, it follows that โˆ’๐Ÿ“๐Ÿ“(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ) = โˆ’(๐Ÿ‘๐Ÿ‘+ ๐Ÿ‘๐Ÿ‘). Then โˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = โˆ’๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘, so ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ๐Ÿ, and ๐Ÿ‘๐Ÿ‘ = โˆ’๐Ÿ๐Ÿ

๐Ÿ๐Ÿ.

I know ๐‘๐‘2 = โˆ’1. ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘(โˆ’๐Ÿ๐Ÿ)๏ฟฝ

= ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ) = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

ยฉ 2015 Great Minds eureka-math.org

78

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 80: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 37: A Surprising Boost from Geometry

3. Express each of the following complex numbers in ๐‘Ž๐‘Ž + ๐‘๐‘๐‘๐‘ form.a. ๐‘๐‘23

๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๏ฟฝ๐Ÿ“๐Ÿ“ โˆ™ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ

b. (1 + ๐‘๐‘)5

(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ“๐Ÿ“ = (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)= ๏ฟฝ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ โ‹… (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)

= ๏ฟฝ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ)= (๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = โˆ’๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ) = โˆ’๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ

c. โˆšโˆ’4 โ‹… โˆšโˆ’25

โˆšโˆ’๐Ÿ’๐Ÿ’ โ‹… โˆšโˆ’๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โ‹… ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

I know ๐‘๐‘4 = ๐‘๐‘2 โˆ™ ๐‘๐‘2 = โˆ’1 โˆ™ โˆ’1 = 1.

ยฉ 2015 Great Minds eureka-math.org

79

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 81: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 38: Complex Numbers as Solutions to Equations

Lesson 38: Complex Numbers as Solutions to Equations

1. Solve the equation 5๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ + 1 = 0.

This is a quadratic equation with ๐’‚๐’‚ = ๐Ÿ“๐Ÿ“, ๐’ƒ๐’ƒ = ๐Ÿ‘๐Ÿ‘, and ๐’„๐’„ = ๐Ÿ๐Ÿ.

๐’™๐’™ =โˆ’(๐Ÿ‘๐Ÿ‘) ยฑ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ“๐Ÿ“)(๐Ÿ๐Ÿ)

๐Ÿ๐Ÿ(๐Ÿ“๐Ÿ“) =โˆ’๐Ÿ‘๐Ÿ‘ ยฑ โˆšโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ=โˆ’๐Ÿ‘๐Ÿ‘ ยฑ ๐’Š๐’Šโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Thus, the solutions are โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ ๐’Š๐’Šโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

and โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐Ÿโˆ’ ๐’Š๐’Šโˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐Ÿ๐Ÿ๐Ÿ๐Ÿ.

2. Suppose we have a quadratic equation ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0 so that ๐‘Ž๐‘Ž โ‰  0, ๐‘๐‘ = 0, and ๐‘๐‘ < 0. Does thisequation have one solution or two distinct solutions? Are the solutions real or complex? Explain how youknow.

Because ๐’ƒ๐’ƒ = ๐Ÿ๐Ÿ, ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ + ๐’„๐’„ = ๐Ÿ๐Ÿ, so ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ = โˆ’๐’„๐’„.

Then since ๐’„๐’„ < ๐Ÿ๐Ÿ, we know โˆ’๐’„๐’„ > ๐Ÿ๐Ÿ, and it must be that ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ > ๐Ÿ๐Ÿ.

If ๐’‚๐’‚ > ๐Ÿ๐Ÿ, then ๐’™๐’™๐Ÿ๐Ÿ > ๐Ÿ๐Ÿ, and the equation has two distinct real solutions.

Otherwise, if ๐’‚๐’‚ < ๐Ÿ๐Ÿ, then ๐’™๐’™๐Ÿ๐Ÿ < ๐Ÿ๐Ÿ, and there are two distinct complex solutions.

3. Write a quadratic equation in standard form such that 2๐‘–๐‘– and โˆ’2๐‘–๐‘– are its solutions.(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’Š๐’Š)(๐’™๐’™ + ๐Ÿ๐Ÿ๐’Š๐’Š) = ๐Ÿ๐Ÿ

๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’Š๐’Š๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐’Š๐’Š๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๐’Š๐’Š๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ

4. Is it possible that the quadratic equation ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0 has two real solutions if ๐‘Ž๐‘Ž and ๐‘๐‘ areopposites?

I can use the multiplication property of inequality to isolate ๐‘ฅ๐‘ฅ2.

I know if ๐‘Ž๐‘Ž is a solution to the polynomial equation ๐‘๐‘(๐‘ฅ๐‘ฅ) = 0, then (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž) is a factor of ๐‘๐‘.

I know that the equation ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0 has two distinct real solutions when ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘ > 0.

I can use the quadratic formula to solve the equation.

Since ๐’‚๐’‚ and ๐’„๐’„ are opposites, ๐’„๐’„ = โˆ’๐’‚๐’‚. Then๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚๐’„๐’„ = ๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐’‚๐’‚)(โˆ’๐’‚๐’‚) = ๐’ƒ๐’ƒ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ.

Since ๐’ƒ๐’ƒ๐Ÿ๐Ÿ is nonnegative and ๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ is positive, ๐’ƒ๐’ƒ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’‚๐’‚๐Ÿ๐Ÿ > ๐Ÿ๐Ÿ.

Therefore, there are always two real solutions to the equation ๐’‚๐’‚๐’™๐’™๐Ÿ๐Ÿ + ๐’ƒ๐’ƒ๐’™๐’™ + ๐’„๐’„ = ๐Ÿ๐Ÿ when ๐’‚๐’‚ = โˆ’๐’„๐’„.

ยฉ 2015 Great Minds eureka-math.org

80

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 82: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 38: Complex Numbers as Solutions to Equations

5. Let ๐‘˜๐‘˜ be a real number, and consider the quadratic equation ๐‘˜๐‘˜๐‘ฅ๐‘ฅ2 + (๐‘˜๐‘˜ โˆ’ 2)๐‘ฅ๐‘ฅ + 4 = 0.a. Show that the discriminant of ๐‘˜๐‘˜๐‘ฅ๐‘ฅ2 + (๐‘˜๐‘˜ โˆ’ 2)๐‘ฅ๐‘ฅ + 4 = 0 defines a quadratic function of ๐‘˜๐‘˜.

Here, ๐’‚๐’‚ = ๐’Œ๐’Œ, ๐’ƒ๐’ƒ = ๐’Œ๐’Œ โˆ’ ๐Ÿ๐Ÿ, and ๐’„๐’„ = ๐Ÿ’๐Ÿ’.

๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’‚๐’‚๐’„๐’„ = (๐’Œ๐’Œ โˆ’ ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’ โ‹… (๐’Œ๐’Œ) โ‹… ๐Ÿ’๐Ÿ’= ๐’Œ๐’Œ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’Œ๐’Œ + ๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Œ๐’Œ = ๐’Œ๐’Œ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Œ๐’Œ + ๐Ÿ’๐Ÿ’

With ๐’Œ๐’Œ unknown, we can write ๐’‡๐’‡(๐’Œ๐’Œ) = ๐’Œ๐’Œ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Œ๐’Œ + ๐Ÿ’๐Ÿ’, which is a quadratic function of ๐’Œ๐’Œ.

b. Find the zeros of the function in part (a), and make a sketch of itsgraph.

If ๐’‡๐’‡(๐’Œ๐’Œ) = ๐Ÿ๐Ÿ, then ๐Ÿ๐Ÿ = ๐’Œ๐’Œ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’Œ๐’Œ + ๐Ÿ’๐Ÿ’.

๐’Œ๐’Œ =โˆ’(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ) ยฑ ๏ฟฝ(โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ)(๐Ÿ’๐Ÿ’)

๐Ÿ๐Ÿ

=๐Ÿ๐Ÿ๐Ÿ๐Ÿ ยฑ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ยฑ ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ

The zeros of the function are ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ and ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ.

c. For what value of ๐‘˜๐‘˜ are there two complex solutions to thegiven quadratic equation?

There are two complex solutions when ๐’‡๐’‡(๐’Œ๐’Œ) < ๐Ÿ๐Ÿ.

This occurs for all real numbers ๐’Œ๐’Œ such that ๐Ÿ๐Ÿ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ < ๐’Œ๐’Œ < ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ.

I know the discriminant of a quadratic equation written in the form ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0 is ๐‘๐‘2 โˆ’ 4๐‘Ž๐‘Ž๐‘๐‘.

I know the discriminant is less than zero where the graph of ๐‘“๐‘“ is below the ๐‘ฅ๐‘ฅ-axis, which is between the values of the zeros.

ยฉ 2015 Great Minds eureka-math.org

81

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 83: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 39: Factoring Extended to the Complex Realm

Lesson 39: Factoring Extended to the Complex Realm

1. Rewrite each expression in standard form.a. (๐‘ฅ๐‘ฅ โˆ’ 4๐‘–๐‘–)(๐‘ฅ๐‘ฅ + 4๐‘–๐‘–)

(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’)(๐’™๐’™ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’) = ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

b. (๐‘ฅ๐‘ฅ + 2 โˆ’ ๐‘–๐‘–)(๐‘ฅ๐‘ฅ โˆ’ 2 + ๐‘–๐‘–)

3. Write a polynomial equation of degree 4 in standard form that has the solutions 2๐‘–๐‘–, โˆ’2๐‘–๐‘–, 3, โˆ’2.

(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’)(๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’)(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ + ๐Ÿ๐Ÿ) = ๐ŸŽ๐ŸŽ ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ = ๐ŸŽ๐ŸŽ

๐’™๐’™๐Ÿ๐Ÿ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ + ๐Ÿ’๐Ÿ’๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ = ๐ŸŽ๐ŸŽ ๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐ŸŽ๐ŸŽ

๐’™๐’™๐Ÿ’๐Ÿ’ โˆ’ ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ = ๐ŸŽ๐ŸŽ

4. Find the solutions to ๐‘ฅ๐‘ฅ4 โˆ’ 8๐‘ฅ๐‘ฅ2 โˆ’ 9 = 0 and the ๐‘ฅ๐‘ฅ-intercepts of the graph of ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ4 โˆ’ 8๐‘ฅ๐‘ฅ2 โˆ’ 9.๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ = ๐ŸŽ๐ŸŽ

(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)(๐’™๐’™ + ๐Ÿ’๐Ÿ’)(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’) = ๐ŸŽ๐ŸŽ

The solutions are โˆ’๐Ÿ‘๐Ÿ‘, ๐Ÿ‘๐Ÿ‘, โˆ’๐Ÿ’๐Ÿ’, and ๐Ÿ’๐Ÿ’.

The ๐’™๐’™-intercepts are โˆ’๐Ÿ‘๐Ÿ‘ and ๐Ÿ‘๐Ÿ‘.

5. Explain how you know that the graph of ๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ4 + 13๐‘ฅ๐‘ฅ2 + 36 has no ๐‘ฅ๐‘ฅ-intercepts.

If ๐’™๐’™๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ = ๐ŸŽ๐ŸŽ, then ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ—๐Ÿ—๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๏ฟฝ = ๐ŸŽ๐ŸŽ, so (๐’™๐’™ + ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’)(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’)(๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’) = ๐ŸŽ๐ŸŽ.

The solutions to the quadratic equation are โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’, ๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’, โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’, and ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’. Since none of the solutions are real,the graph has no ๐’™๐’™-intercepts.

I know if ๐‘Ž๐‘Ž is a solution to ๐‘๐‘(๐‘ฅ๐‘ฅ) = 0, then (๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž) is a factor, so the factors must be (๐‘ฅ๐‘ฅ โˆ’ 2๐‘–๐‘–), (๐‘ฅ๐‘ฅ +2๐‘–๐‘–), (๐‘ฅ๐‘ฅ โˆ’ 3), and (๐‘ฅ๐‘ฅ + 2).

I recognize this pattern as the factoring for the sum of squares: (๐‘Ž๐‘Ž + ๐‘๐‘๐‘–๐‘–)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘–๐‘–) = ๐‘Ž๐‘Ž2 + ๐‘๐‘2.

I recognize this pattern as the factoring for the difference of two squares:

(๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘) = ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2. I can see that ๐‘Ž๐‘Ž = ๐‘ฅ๐‘ฅ and ๐‘๐‘ = (2 โˆ’ ๐‘–๐‘–).

I can also let ๐‘ข๐‘ข = ๐‘ฅ๐‘ฅ2 and factor the equation ๐‘ข๐‘ข2 โˆ’ 8๐‘ข๐‘ข โˆ’ 9.

I know only real solutions to the equation are ๐‘ฅ๐‘ฅ-intercepts of the graph.

(๐’™๐’™ + ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’) = ๏ฟฝ๐’™๐’™ + (๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’)๏ฟฝ๏ฟฝ๐’™๐’™ โˆ’ (๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’)๏ฟฝ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๏ฟฝ๐Ÿ’๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ + ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๏ฟฝ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ (๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’) = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’

ยฉ 2015 Great Minds eureka-math.org

82

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 84: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 40: Obstacles Resolvedโ€”A Surprising Result

Lesson 40: Obstacles Resolvedโ€”A Surprising Result

1. Write each quadratic function below as a product of of linear factors.a. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 9๐‘ฅ๐‘ฅ2 + 16

๐’‡๐’‡(๐’™๐’™) = (๐Ÿ‘๐Ÿ‘๐’™๐’™ + ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’)(๐Ÿ‘๐Ÿ‘๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’)

b. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 12

๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ—๐Ÿ— + ๐Ÿ‘๐Ÿ‘

๐’‡๐’‡(๐’™๐’™) = (๐’™๐’™๐Ÿ๐Ÿ โˆ’ ๐Ÿ”๐Ÿ”๐’™๐’™ + ๐Ÿ—๐Ÿ—) โˆ’ (โˆ’๐Ÿ‘๐Ÿ‘) = (๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ โˆ’ (๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘)๐Ÿ๐Ÿ

๐’‡๐’‡(๐’™๐’™) = ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘) โˆ’ ๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘) + ๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘๏ฟฝ

c. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 + 10๐‘ฅ๐‘ฅ

๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๏ฟฝ = ๐’™๐’™(๐’™๐’™ + ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’โˆš๐Ÿ๐Ÿ๐Ÿ๐Ÿ)

2. For each cubic function below, one of the zeros is given. Express each function as a product of linearfactors.a. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ3 + 3๐‘ฅ๐‘ฅ2 โˆ’ 8๐‘ฅ๐‘ฅ + 3; ๐‘“๐‘“(1) = 0

b. ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 1; ๐‘“๐‘“(โˆ’1) = 0

๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐Ÿ๐Ÿ(๐’™๐’™ + ๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ(๐’™๐’™ + ๐Ÿ๐Ÿ) = ๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ(๐’™๐’™ + ๐Ÿ๐Ÿ) = (๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’)(๐’™๐’™ + ๐Ÿ’๐Ÿ’)(๐’™๐’™ + ๐Ÿ๐Ÿ)

3. Consider the polynomial function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ6 โˆ’ 65๐‘ฅ๐‘ฅ3 + 64.a. How many linear factors does ๐‘ฅ๐‘ฅ6 โˆ’ 65๐‘ฅ๐‘ฅ3 + 64 have? Explain.

There are ๐Ÿ”๐Ÿ” linear factors because the fundamental theorem of algebra states that a polynomialwith degree ๐’๐’ can be written as a product of ๐’๐’ linear factors.

I can factor this expression using the sum of squares identity, which we discovered in Lesson 39.

If I complete the square, I can rewrite this quadratic expression as the difference of two squares.

Since ๐‘๐‘2 = โˆ’3, I know ๐‘๐‘ = ยฑโˆšโˆ’3 = ยฑ๐‘–๐‘–โˆš3.

I can find the quotient of ๐‘“๐‘“ divided by (๐‘ฅ๐‘ฅ โˆ’ 1) using the long division algorithm from Lesson 5 or the reverse tabular method from Lesson 4.

The factor theorem tells me that if ๐‘“๐‘“(1) = 0, then (๐‘ฅ๐‘ฅ โˆ’ 1) is a factor of ๐‘“๐‘“.

I can factor this polynomial expression by grouping.

๐’‡๐’‡(๐’™๐’™) = (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ๐Ÿ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ“๐Ÿ“๐’™๐’™ โˆ’ ๐Ÿ‘๐Ÿ‘๏ฟฝ= (๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)(๐’™๐’™ + ๐Ÿ‘๐Ÿ‘)

ยฉ 2015 Great Minds eureka-math.org

83

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015

Page 85: Module 1: Polynomial, Rational, and Radical Relationships

2015-16 M1 ALGEBRA II

Lesson 40: Obstacles Resolvedโ€”A Surprising Result

b. Find the zeros of ๐‘“๐‘“.

๐’‡๐’‡(๐’™๐’™) = ๐’™๐’™๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ“๐Ÿ“๐’™๐’™๐Ÿ‘๐Ÿ‘ + ๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’ = ๏ฟฝ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’๏ฟฝ๏ฟฝ๐’™๐’™๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ = (๐’™๐’™ โˆ’ ๐Ÿ’๐Ÿ’)๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ + ๐Ÿ๐Ÿ๏ฟฝ

To find the zeros of ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๐’™๐’™ + ๐Ÿ’๐Ÿ’:

๐’™๐’™ =โˆ’๐’ƒ๐’ƒยฑ โˆš๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’=โˆ’๐Ÿ’๐Ÿ’ ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ”๐Ÿ”๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ=โˆ’๐Ÿ’๐Ÿ’ ยฑ โˆšโˆ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ=โˆ’๐Ÿ’๐Ÿ’ ยฑ โˆš๐Ÿ๐Ÿ๐Ÿ”๐Ÿ”โˆšโˆ’๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ= โˆ’๐Ÿ๐Ÿยฑ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘

To find the zeros of ๐’™๐’™๐Ÿ๐Ÿ + ๐’™๐’™ + ๐Ÿ๐Ÿ:

๐’™๐’™ =โˆ’๐’ƒ๐’ƒยฑ โˆš๐’ƒ๐’ƒ๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’=โˆ’๐Ÿ๐Ÿยฑ โˆš๐Ÿ๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’

๐Ÿ๐Ÿ=โˆ’๐Ÿ๐Ÿยฑ โˆšโˆ’๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ=โˆ’๐Ÿ๐Ÿ ยฑ ๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ= โˆ’

๐Ÿ๐Ÿ๐Ÿ๐Ÿ

ยฑโˆš๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’.

The zeros of ๐’‡๐’‡ are ๐Ÿ’๐Ÿ’, โˆ’๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘, โˆ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’โˆš๐Ÿ‘๐Ÿ‘, ๐Ÿ๐Ÿ, โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ

+ โˆš๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’, โˆ’๐Ÿ๐Ÿ

๐Ÿ๐Ÿโˆ’ โˆš๐Ÿ‘๐Ÿ‘

๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’.

4. Consider the polynomial function ๐‘ƒ๐‘ƒ(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ4 + ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 โˆ’ 9๐‘ฅ๐‘ฅ โˆ’ 10.a. Use the graph to find the real zeros of ๐‘ƒ๐‘ƒ.

The real zeros are โˆ’๐Ÿ๐Ÿ and ๐Ÿ๐Ÿ.

b. Confirm that the zeros are correct by evaluating the function๐‘ƒ๐‘ƒ at those values.

๐‘ท๐‘ท(โˆ’๐Ÿ๐Ÿ) = (โˆ’๐Ÿ๐Ÿ)๐Ÿ’๐Ÿ’ + (โˆ’๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ + (โˆ’๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—(โˆ’๐Ÿ๐Ÿ)โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ ๐‘ท๐‘ท(๐Ÿ๐Ÿ) = (๐Ÿ๐Ÿ)๐Ÿ’๐Ÿ’ + (๐Ÿ๐Ÿ)๐Ÿ‘๐Ÿ‘ + (๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ ๐Ÿ—๐Ÿ—(๐Ÿ๐Ÿ) โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ

c. Express ๐‘ƒ๐‘ƒ in terms of linear factors.

I can factor each of these expressions using the difference of cubes pattern: ๐‘Ž๐‘Ž3 โˆ’ ๐‘๐‘3 = (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)(๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2).

๐‘ท๐‘ท(๐’™๐’™) = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ“๐Ÿ“๏ฟฝ= (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐’™๐’™๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’™๐’™ + ๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๏ฟฝ = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ(๐’™๐’™ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ โˆ’ (๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’)๐Ÿ๐Ÿ๏ฟฝ = (๐’™๐’™ + ๐Ÿ๐Ÿ)(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) + ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๏ฟฝ๏ฟฝ(๐’™๐’™ โˆ’ ๐Ÿ๐Ÿ) โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’๏ฟฝ

The zero product property tells me that I can set each factor equal to 0 to find the zeros of the polynomial.

I can use the reverse tabular method or the long division algorithm to factor (๐‘ฅ๐‘ฅ + 1)(๐‘ฅ๐‘ฅ โˆ’ 2) from ๐‘ƒ๐‘ƒ.

ยฉ 2015 Great Minds eureka-math.org

84

Homework Helper A Story of Functions

ALG II-M1-HWH-1.3.0-08.2015


Recommended