Transcript
Page 1: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

arX

iv:0

706.

2857

v2 [

hep-

th]

30

Oct

200

7

FIAN/TD-15/07

ITEP/TH-24/07

O n M icroscopic O rigin ofIntegrability in Seiberg-W itten T heory�

A.M arshakov

Theory Departm ent,P.N.Lebedev Physics Institute,

Institute ofTheoreticaland Experim entalPhysics,

M oscow,Russia

e-m ail: m ars@ lpi.ru, m ars@ itep.ru

W ediscussm icroscopicoriginofintegrabilityin Seiberg-W itten theory,followingm ostlytheresultsof

[1],aswellaspresenttheircertain extension and considerseveralexplicitexam ples.In particular,we

discussin m ore detailthe theory with the only switched on higherperturbation in the ultraviolet,

where extra explicit form ulas are obtained using bosonization and elliptic uniform ization ofthe

spectralcurve.

1 Introduction

Supersym m etric gauge theories have becom e recently an area,which allows the application ofthe nontrivial

m ethods ofm odern m athem aticalphysics. In particular,one is often interested in the propertiesofthe low-

energy e�ective actions, which in the theories with extended supersym m etry can be expressed in term s of

the holom orphic functions on m odulispaces ofvacua,or prepotentials. These prepotentialsobey rem arkable

properties,which can be shortly characterized by the fact,thatthey are quasiclassicaltau-functions [2],and

the low-energy e�ective theory [3]can be form ulated in term sofan integrablesystem [4].

Exact form ofthe prepotentialprovides com prehensive inform ation about the e�ective theory at strong

coupling,while atweak coupling the prepotentialcan be expanded overthe contributionsofthe gaugetheory

instantons. Asoften happensin conventionalquantum �eld theory,even each term in thisin�nite expansion,

containing the integration overthe non-com pactinstanton m odulispace,isill-de�ned. Itturnsout,however,

thatthere existsa preserving supersym m etry infrared regularization,which allowsto perform a com putation,

reducingitto a sum overthepoint-likeinstantons,whosecontributionsareparam eterized by random partitions

[5].M oreover,itturnsourthattheregularized volum eofthefour-dim ensionalspacetim ecan bere-interpreted

asa coupling constantin dualtopologicalstring theory [6],providing a new form ofthe gauge/string duality.

This duality predicts a nontrivialrelation between the deform ed prepotentials ofN = 2 supersym m etric

gaugetheoriesand thegeneratingfunctionsoftheG rom ov-W itten classes.Sim ilartothelatter[7],thedeform ed

prepotentials can be expressed in term s of the correlation functions in the theory of two-dim ensionalfree

ferm ions. These correlation functions can be identi�ed with the tau-functions ofintegrable system s,whose

ferm ionic representation isessentially di�erentfrom the conventionalone [8]. W e shallpostpone the detailed

discussion ofthisissueforthefulldeform ed prepotentialsand concentrate,following[1],theirm ain quasiclassical

asym ptotic.

�Based on the talks at ’G eom etry and Integrability in M athem aticalPhysics’,M oscow,M ay 2006;’Q uarks-2006’,R epino,M ay

2006;Twente conference on Lie groups,D ecem ber 2006 and ’Classicaland Q uantum Integrable M odels’,D ubna,January 2007.

1

Page 2: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

2 Prelim inaries

Freeferm ions

Letusintroduce,�rst,them ain de�nitionsand notationsforthetwo-dim ensionaltheory ofasinglefreecom plex

ferm ion the actionR~ �@ on a cylinder. O ne can expand the solutionsto Dirac equation in holom orphic co-

ordinatew 2 C�:

(w)=X

r2Z+ 1

2

r w� r

�dw

w

� 1

2

;

e (w)=X

r2Z+ 1

2

e r wr

�dw

w

� 1

2

;

(2.1)

so thatthe m odesafterquantization satisfy the (anti)com m utationalrelations

f r;e sg = �rs (2.2)

Theferm ionic Fock spaceisconstructed with the help ofthe chargeM vacuum state(a Dirac sea)

jM i= � M + 1

2

� M + 3

2

� M + 5

2

:::=^

r> � M

r (2.3)

with

rjM i= 0;r> � M ; e rjM i= 0; r< � M (2.4)

and these de�nitionscorrespond to the two-pointfunction

h0j~ (z) (w)j0i=

pdzdw

z� w(2.5)

M ore conventional\Japanese" conventions(with the integer-valued ferm ionic operators i, �i,i2 Z,see e.g.

[9])can be gotfrom theseby~ r !

r+1

2

; r ! �

r+1

2

; M = � n (2.6)

Itisalso convenientto use the basisofthe so-called partition states:foreach partition k = (k1 � k2 � :::�

k‘k = 0� 0:::)oneintroducesthe state:

jM ;ki= � M + 1

2� k1

� M + 3

2� k2

:::=^

r> � M

r� ki (2.7)

and de�nesthe U (1)currentas:

J = :e :=X

n2Z

Jnw� n dw

w; Jn =

X

r2Z+ 1

2

:e r r+ n : (2.8)

O bviously

[Jn; r]= � r+ n;

h

Jn;~ r

i

= ~ r� n

[Jn; (w)]= � w n (w);

h

Jn;~ (w)

i

= wn ~ (w)

(2.9)

2

Page 3: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Recallthe bosonization rules:~ = :ei� :; = :e� i� :; J = i@� (2.10)

where

�(z)�(0)� � logz+ ::: (2.11)

and a usefulfact from U (N̂ ) and perm utation’s group theory: the Schur-W eylcorrespondence,which states

that

(C N̂ ) k =M

k;jkj= k

R k R k (2.12)

asSk � U (N̂ )representation.Now letU = diag�u1;:::;uN̂

�bea U (N̂ )m atrix.Then oneeasily getsusing the

W eylcharacterform ula,and the bosonization rules(2.10),that:

TrR kU = hN̂ ;kj:ei

P

n = 1�(un ) :j0i = sk(u1;:::;uN̂ )=

detuki+ N̂ � i

j

detuN̂ � ij

(2.13)

givesthe (ratio ofthe)standard Schurfunctionsforany partition k,a very nice review oftheirpropertiescan

be found in [10].In particular,from thisform ula onederives:

eJ� 1

~ jM i=X

k

m k

~kjM ;ki=

X

k

dim R k

~k k!jM ;ki (2.14)

with

m k =dim R k

k!=Y

i< j

ki� kj + j� i

j� i=

=

‘kY

i= 1

(‘k � i)!

(‘k + ki� i)!

Y

1� i< j� ‘k

ki� kj + j� i

j� i=

Q

1� i< j� ‘k(ki� kj + j� i)

Q ‘ki= 1

(‘k + ki� i)!

(2.15)

being the Plancherelm easure.Itfollowsfrom the factthatforparticularvaluesu1 = :::= uN̂= 1

~N̂

sk

�1

~N̂;:::;

1

~N̂

=N̂ ! 1

m k

~k(2.16)

Instantonsand Nekrasov’scom putation

In the contextofN = 2 supersym m etric gaugetheories,one usually startswith the m icroscopictheory,deter-

m ined bytheultravioletprepotentialFU V ,which can betaken perturbed byarbitrarypowersoftheholom orphic

operators

FU V = 1

2(�0 + t1)Tr�

2 +X

k> 0

tkTr�k+ 1

k+ 1� 1

2�0Tr�

2 + Trt(�) (2.17)

and quadraticF U V = 1

2��0 Tr��

2.Then oneintegratesoutthefastm odes,i.e.theperturbative uctuationswith

m om enta abovecertain scale� aswellasthenon-perturbativem odes,e.g.instantons(and uctuationsaround

them )ofallsizessm allerthen �� 1.Theresulting e�ectivetheory hasa derivativeexpansion in thepowers @2

�2 .

The leading term sin the expansion are alldeterm ined,thanksto the N = 2 supersym m etry,by the e�ective

prepotentialF (�).As� islowered alltheway down to zero,wearriveattheinfrared prepotenialF U V ! FIR .

The supersym m etry considerations suggest that the renorm alization ows ofF and �F proceed m ore or less

3

Page 4: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

independently from each other. Thusone can sim plify the problem by taking the lim it,��0 ! i1 ,while FU V

kept �xed. In this lim it the path integralis dom inated by the gauge instantons. The setup of[5]allows to

evaluate theircontribution,aswellasthe contribution ofthe uctuationsaround the instantons,exactly.The

priceonepaysistheintroduction ofextra param etersinto theproblem ,som esortoftheinfrared cuto�,which

wedenoteby ~� 2,sinceitappearsto bea param eteroftheloop expansion in dualtopologicalstring theory [6].

In particular,for the so-called noncom m utative U (1) theory,or the theory on a single D3 brane in the

background,which preservesonly sixteen supercharges(so thatthe theory on the brane hasonly eightsuper-

charges)1,theinstanton partition function Z(a;~;t),t= (t1;t2;:::),can beshown to begiven by thesum over

the Young diagram s,i.e.overthe partitions[5,6,11]:

Z(a;t;~)=X

k

m2k

(� ~2)jkjexp

1

~2

X

k> 0

tkchk+ 1(a;k;~)

k + 1(2.18)

where m k isthe Plancherelm easure (2.15),and the Chern polynom ialschk+ 1(a;k;~)can be introduced,e.g.

via�

e~ u2 � e

� ~ u2

� 1X

i= 1

eu(a+ ~(

1

2� i+ ki)) =

1X

l= 0

ul

l!chl(a;k;~) (2.19)

If the theory has the gauge group U (N ), e.g. it is realized on the stack of N fractionalD3 branes, the

corresponding partition function isgiven by the generalization of(2.18):

Z(~a;t;~)= Zpert(~a;t;~)

X

~k

m (~a;~k;~)

�2(� 1)j

~kjexp1

~2

X

k> 0

tkchk+ 1(~a;~k;~)

k+ 1(2.20)

where m (~a;~k;~) is the U (N ) generalization ofPlancherelm easure [11]and Z pert(~a;t;~) is the perturbative

partition function.

Toda chain and tau-functions

Consider,�rst,the well-known form ula forthe tau-function ofToda m olecule (orthe open N-Toda chain with

co-ordinatesqn(t;a)= logZ (t;nja)

Z (t;n� 1ja)[12]),given by allprincipaln-m inors

Z(t;nja)=X

K :i1< :::< in

�K (a)2 exp

X

l;ik

tlH l(aik )= � n� n

�A � D � A

T�

(2.21)

ofthe N � N m atrix,expressed asa m atrix productwith A ij � aj� 1

i ,D ij = �ijexp(zi)Q N

k= 1;k6= ijai� akj

� 1,

where

zi =X

l

tlH l(ai)=X

l

(tlali+ :::)+ z

(0)

i (2.22)

with som eappropriately chosen "initialphases" z(0)

i .Rewriting (2.21)in the form

Z(t;nja)=X

jK j= n

Y

i2K

ezi

Q N

k= 1;k6= ijai� akj

Y

i;j2K ;i6= j

(ai� aj)2

(2.23)

weseethatthesum in (2.21)isin facttaken overthepartitions(k1 � k2 � :::� kn)with the�xed length and

kj = in� j+ 1 + j� n � 1; j= 1;:::;n (2.24)

1This theory can also be realized at a special point on the m oduli space of U (N ) gauge theory with 2N � 2 fundam ental

hyperm ultiplets.

4

Page 5: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Forthe particularsolution ofthe Toda chain with ai ’ i,onegetsfor(2.23)

Z(t;n)=X

jK j= n

Y

i2K

ezi

Q

i;j2K ;i6= j(i� j)2

Q

i2K(i� 1)!(N � i)!

(2.25)

Thisisa singularor"stringy" solution,presenting a collection ofparticles,m oving each with a constantspeed,

proportionalto itsnum ber.In K P/K dV-theory theanalog isu / x=t,a lineargrowing potentialofK ontsevich

m odel[17],which nevertopples.

Com paring (2.25)to (2.21),one�ndsthat

�K (a)2��ai= i

=

� Q

i;j2K(i� j)

Q

i2K(i� 1)!

� 2 Y

i2K

(i� 1)!

(N � i)!= m

2k

��‘k = n

Y

i2K

ez(0)

i (2.26)

In thelim itN ! 1 ,afterparticularchoiceofthe Ham iltonians(2.19)

H l(ai)jai= i !chl+ 1(a;i;~)

l+ 1(2.27)

and renorm alization oftheinitialphasez(0)

i ,passingfrom sum m ation overpartitionswith a �xed length ‘k = n

to a "grand-canonical" ensem ble by a sort ofFourier transform ,one gets Z(t;n) ! Z(a;t;~) the (2.18)

partition function.By (2.14),itbecom esequivalentto the following ferm ioniccorrelator

Z(a;t;~)=X

k

m2k

(� ~2)jkje

1

~2

P

k> 0tk

chk+ 1(a;k )

k+ 1 = hM je�J1~ e

1

~

P

k> 0tk W k+ 1e

J� 1

~ jM i (2.28)

wherethe m utually com m uting m odesofthe W -in�nity generatorscan be de�ned as

W k+ 1 = �~k

k + 1

I

:~

wd

dw+1

2

� k+ 1

wd

dw�1

2

� k+ 1!

:=

=~k

k+ 1

X

r2Z+1

2

�(� r+ 1

2)k+ 1 � (� r� 1

2)k+ 1

�: r ~ r :

(2.29)

Them atrix elem ent(2.28)isa particularnon-standard ferm ionicrepresentation ofthe tau-function,wherethe

Toda tim esare coupled to the W -generators(2.29)instead ofthe m odesofthe U (1)current(2.8),and ithas

been discussed in [7,13].

Ifonly t1 6= 0 the correlatorin (2.28)gives

Z(a = ~M ;t1;0;0;:::)= hM je�J1~ e

1

~

t1L 0eJ� 1

~ jM i= exp

�1

~2

�1

2t1a

2 + et1��

= exp

�FP

1

~2

(2.30)

the partition function oftopologicalstring on P1. Thisisthe only case when sum m ing overpartitionscan be

perform ed straightforwardly,using the Burnsidetheorem

X

k;jkj= k

m2k=

1

k!2

X

k;jkj= k

dim R 2k=

1

k! (2.31)

5

Page 6: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Baker-Akhiezerfunctions

In addition to (2.14),one can consider

~ � r eJ� 1

~ jM + 1;;i=X

k

~CkjM ;ki (2.32)

with (com puted by the W ick theorem and using the propertiesofthe Schurfunctions(2.13))

~Ck = hM ;kj~ � r eJ� 1

~ jM + 1;;i= ~M � jkj� r�

1

2

1Y

i= 1

i� ki+ r� 1

2� M

im k (2.33)

wherethe in�nite productisactually �nite

1Y

i= 1

i� ki+ r� 1

2� M

i=

1

�(r+ 1

2� M )

‘kY

i= 1

i� ki+ r� 1

2� M

i+ r� 1

2� M

(2.34)

Therefore,onegetsforthe Baker-Akhiezerfunctions

~(r)=hM je�

J1~~ � re

1

~

P

k> 0tk W k+ 1e

J� 1

~ jM + 1i

hM je�J1~ e

1

~

P

k> 0tk W k+ 1e

J� 1

~ jM i=

=~M � r�

1

2

Z(a;t;~)e

1

~2

P

k> 0

tk ~k

k+ 1

(r+1

2)k+ 1

� (r�1

2)k+ 1

” X

k

m2k

(� ~2)jkje

1

~2

P

k> 0tk

chk+ 1(a;k ;~ )

k+ 1

1Y

i= 1

i� ki+ r� 1

2� M

i=

= ~M � r�

1

2 exp1

~2

X

k> 0

tk~k

k+ 1

�(r+ 1

2)k+ 1 � (r� 1

2)k+ 1

��eM �

0(r+

1

2)=�(r+

1

2)

�(r+ 1

2)

�Z(a;t� �(r);~)

Z(a;t;~)

(2.35)

with a = M ~ and the shift�(r)= (�1(r);�2(r);:::)generated by

1

~2

X

k> 0

�k(r)xk+ 1

k+ 1= log

��r+ 1

2� x

~

��r+ 1

2

� +x

~

�0(r+ 1

2)

�(r+ 1

2)

(2.36)

In thequasiclassicalasym ptotic~ ! 0,with ~r= z,(2.35)gives

~ (z;a;t;~)� exp1

~

X

k> 0

tkzk � z(logz� 1)+ alogz+ :::

!

(2.37)

(sim ilarform ulasin the contextof�ve-dim ensionalSeiberg-W itten theory [14]wereconsidered in [15]).In the

sam eway onecan de�nethe two-pointfunction

E(r)=hM + 1je�

J1~ � r

~ � re1

~

P

k> 0tk W k+ 1e

J� 1

~ jM + 1i

hM je�J1~ e

1

~

P

k> 0tk W k+ 1e

J� 1

~ jM i�

� exp1

~2

X

k> 0

tk~k

k+ 1

�(r+ 1

2)k+ 1 � (r� 1

2)k+ 1

��e2M �

0(r+

1

2)=�(r+

1

2)

�(r+ 1

2)2

�Z(a;t� 2� �(r);~)

Z(a;t;~)�

�~! 0

expS(z;a;t)

~

(2.38)

6

Page 7: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

with

S(z;a;t)=X

k> 0

tkzk � 2z(logz� 1)+ 2alogz+ ::: (2.39)

The asym ptotics(2.39)playsan essentialrole in the study ofthe quasiclassicalsolution. Form ula (2.38)can

be also interpreted asaverage ofthe r-th Fourierm ode ofthe \sym m etrically splitted" bi-ferm ionic operator

E(�) =Hdw

w

�we� �=2

�~ �we�=2

�, introduced in [7]. The \doubling" of the ferm ions and their sym m etric

splitting along the w-cylinderturn into the doublecovering ofz-planeby the quasiclassicalspectralcurve.

Bosonization

O n a sm allphase space (tk = 0 with k > 1) the tau-function ofP1 m odel(2.30) can be easily com puted

exploiting thefactthatitcan bepresented asa m atrix elem entoftheevolution operatorin harm onicoscillator

forthe initialand �nalcoherentstates.Indeed,afteridentifying L 0 =1

2J20 + J� 1J1 = � 1

2M 2 + 1

~2 �

y�,where

[�;�y]= ~2,on the eigenstateswith J0 � M = a

~,one getsfor(2.28)

Z(a;t1;0;0;:::)= exp

�t1a

2

2~2

h0je� �

~2 e

t1

~2�y�e�y

~2 j0i= exp

�t1a

2

2~2

�X

n� 0

et1n

(� ~2)nn!=

= exp

�1

~2

�1

2t1a

2 + et1�� (2.40)

whereindependentofthechargea part(generated by theworld-sheetinstantonsin P1 topologicalstringm odel)

is just a kernelofthe evolution operator in the holom orphic representation with �xed at the boundaries �in

and �y

out. Thisresultiscertainly exactquasiclassically,here in the \stringy norm alized" Planck constant(~2

instead of~).

Ifthe second tim e t2 isalso switched on,the partition function

Z(M ;t1;t2;0;0;:::)= hM je�J1~ e

t1L 0+ ~t2W 0eJ� 1

~ jM i (2.41)

isno longerdescribed in term sofa singlequasiparticle.Now onegets

L0 ! H 0 =X

n> 0

n�yn�n = �

y� + 2A y

A + ::: (2.42)

the system ofcoupled oscillators [�n;�ym ] = ~

2�nm with the quadratic Ham iltonian, perturbed by special,

preserving the energy due to [H 0;H I]= 0,interaction

W 0 ! H I =p2�(�y)2A + �

2Ay�+ ::: (2.43)

M orestrictly,

Z(M ;t1;t2;0;0;:::)= et(a)

~2 h0je

� �

~2 exp

1

~2(t00(a)H 0 + t2H I)e

�y

~2 j0i (2.44)

with t(a) = t1a2

2+ t2a

3

3,t00(a) � t1 + t2a. Therefore the problem reduces to the com putation ofthe m atrix

elem ents

h0je� �

~2 exp

1

~2(t00(a)H 0 + t2H I)e

�y

~2 j0i=

1X

k= 0

t2k2

(~2)2k(2k)!h�jH 2k

I j�0i= (2.45)

forthe coherentstates

�nj�i= ��n;1j�i (2.46)

7

Page 8: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

...

Figure 1:Prepotential,asa sum ofallconnected tree diagram sin the bosonic cubic �eld theory.Each vertex

isweighted by t2 and each pairofexternallegs{ by et00(a).Thedepicted diagram m scorrespond literally to the

contribution oftruncated \bosonicBCS m odel",with the dashed linesbeing the hAA yi-\propagators".

with � = � 1

~2and �0= 1

~2expt00(a),h�j�0i= exp

�t00(a)

~2

.

Q uasiclassically,the m atrix elem ent(2.45)gives

h0je� �

~2 exp

1

~2(t00(a)H 0 + t2H I)e

�y

~2 j0i �

~! 0exp

�1

~2F(t00;t2)

(2.47)

so thatforthe prepotentiallogZ = � 1

~2 F + O (1)onegetsfrom (2.44),(2.47)

F = t(a)+ F(t00(a);t2) (2.48)

Its nontrivialpart F(t00(a);t2) can be presented as a sum over allconnected tree diagram s (see �g.1) in

the bosonic cubic �eld theory (2.45),which is encoded by appearance ofthe Lam bert function in the exact

quasiclassicalsolution.An interesting issuewould beto solvethistheory exactly,atleastquasiclassically,which

isalready notquite obviouseven forthe \truncated BCS m odel" oftwo coupled oscillators,corresponding to

the �rstterm sin (2.42),(2.43)and diagram sdepicted at�g.1.Thecorresponding classicalsystem

_� = t00� + 2t2�

yA; _�y = � t00�y � 2t2�A

y

_A = 2t00A + t2�2; _A y = � 2t00A y � t2�

y2(2.49)

can be integrated in term sofellipticfunctions,and possesses,in particular,a "kink" solution.W eshallreturn

to a detailed discussion ofthese issueselsewhere.

3 Q uasiclassicalfree energy

Theinstantoniccalculation in N = 2 extended gaugetheory (2.17)givesriseto theSeiberg-W itten prepotential

asa criticalvalueofthe functional2

F =1

2

Z

dxf00(x)

X

k> 0

tkxk+ 1

k + 1�1

2

Z

x1> x2

dx1dx2f00(x1)f

00(x2)F (x1 � x2) (3.50)

extrem ized w.r.t.second derivativeofthe pro�lefunction f00(x)=d2f

dx2with the kernel

F (x)=x2

2

logx �3

2

(3.51)

coincideswith the perturbativeprepotentialofpureN = 2 supersym m etricYang-M illstheory.Form ula (3.50)

m eansthatthequasiclassicalfreeenergy forthepartition functions(2.18)and (2.20)issaturated onto a single

2W e choose here di�erent(by a factor of2)norm alization ofthe tim e variablest com pare to [1]and correct som e m isprints.

8

Page 9: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

\large"partition k� with thepro�lefunction fk�(x)= f(x),whereforeach partition k = k1 � k2 � :::� k‘k �

k‘k + 1 = 0;:::the pro�lefunction isde�ned by

fk(x)= jx � aj+

‘kX

i= 1

(jx � a� ~(ki� i+ 1)j� jx � a� ~(ki� i)j� jx � a� ~(1� i)j+ jx � a+ ~ij) (3.52)

(see[11,1]fordetails).In particular,one can writefor(2.19)

chl(a;k)=1

2

Z

dx f00k(x)xl �

1X

i= 1

�(a+ ~(ki� i+ 1))l� (a+ ~(ki� i))l

�(3.53)

The variationalproblem forthe functional(3.50)should be solved upon norm alization condition forf(x)and

the constraint

a = 1

2

Z

dx xf00(x) (3.54)

which can be in standard way taken into accountby adding itwith the Lagrangem ultiplier

F ! F + aD

a� 1

2

Z

dx xf00(x)

(3.55)

having a sense ofthe k = 0 term in the sum m ation in form ula (3.50). The whole setup of(3.50) is alm ost

identicalto the standard quasiclassics ofthe m atrix m odels,where the Coulom b gas kernelis replaces by a

(m ultivalued!) Seiberg-W itten function (3.51).

The extrem alequation forthe (3.50)gives

X

k> 0

tkxk �

Z

d~xf00(~x)(x � ~x)(logjx � ~xj� 1)= aD

(3.56)

on the supportIwheref00(x)6= 0.G enerally,forthe m icroscopicnon-abelian theory thissupportconsistsofa

setofseveral(disjoint)segm entsalong the realaxisin the com plex plane,where the �lling fractionsare �xed

separately with the help ofseveralLagrangem ultipliers,seebelow.Equation (3.56)m eansthat

S(z)=X

k> 0

tkzk �

Z

dxf00(x)(z� x)(log(z� x)� 1)� a

D(3.57)

isan analyticm ultivalued function on the double-coverofthe z-planewith the following properties:

� The realpartofthe m ultivalued function (3.57)vanishes

S(x)= 1

2(S(x + i0)+ S(x � i0))= 0; x 2 I (3.58)

on the cut,dueto (3.56).

� Foritsim aginary partonecan write

1

�Im S(z� i0)= �

Z 1

z

dxf00(x)(z� x)= �

8><

>:

0 ; z > x+

a� z+ f(z); x�< z < x

+

2(a� z); z < x�

(3.59)

9

Page 10: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

� W e seefrom (3.59)thateven the di�erentialdS ism ultivalued.Indeed,onecan easily establish for

� =dS

dz= t

00(z)�

Z

dxf00(x)log(z� x) (3.60)

that

1

�Im �(z� i0)= �

8><

>:

0 ; z > x+

1� f0(z); x

�< z < x

+

2 ; z < x�

(3.61)

However,the di�erential

d� = t000(z)dz+ dz

Zdxf00(x)

z� x(3.62)

is already single-valued on the double coverofthe cut z-plane with the periodsHd� � 4�iZ,so dS is

de�ned m odulo 4�idz,and one can m ake sense ofthe periodsHdS due to

Hdz = 0. Therefore,the

exponentexp(�=2)isalready single-valued on the double coverand equalsto unity on the cut.

� In orderto considerthe asym ptotic of(3.57)in whatfollowswe shallalwayschoose a branch,which is

realalong therealaxis,i.e.takeitatrealx ! + 1 .In particular,allresiduesbelow could beunderstood

in thissense,ascoe�cientsofexpansion ofgenerally m ultivalued di�erentialatx ! + 1 .

� Taking derivativesof(3.56)in x-variable,orintegrating by parts,one can bring itliterally to the form ,

arising in the contextofm atrix m odel. However,forthe purposesofSeiberg-W itten theory one needsa

solution with di�erentanalyticproperties:in m atrix m odelstheresolventG � dS

dzdoesnothavepolesat

the branching pointswheredz = 0 (seee.g.[16]and referencestherein),which isnottruefor(3.57).

Asym ptotically from (3.57)onegets

S(z) =z! 1

� 2z(logz� 1)+X

k> 0

tkzk + logz

Z

dxxf00(x)� a

D � 2

1X

k= 1

1

kzk

Z

dxf00(x)

xk+ 1

k+ 1=

= � 2z(logz� 1)+X

k> 0

tkzk + 2alogz�

@F

@a� 2

1X

k= 1

1

kzk

@F

@tk

(3.63)

where,according to (3.50),(with convention thatres1dz

z= 1)

@F

@tk=

1

2(k+ 1)

Z

dxf00(x)xk+ 1; k > 0 (3.64)

and,due to (3.55)

aD =

@F

@a(3.65)

Thecoe�cientatthe z(logz� 1)term is�xed by norm alization

Z

I

dxf00(x)= f

0(x+ )� f0(x� )= 2 (3.66)

wherex� (in the one-cutcase)can be de�ned astwo solutionsto the equation

f(x� )= jx� � aj (3.67)

10

Page 11: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Using variationalequation (3.56),onecan also writeforthefunctional(3.50)thedouble-integralrepresentation

(cf.with [18])

F =1

2

Z

x1> x2

dx1dx2f00(x1)f

00(x2)F (x1 � x2)+ aaD + �0 (3.68)

expressing it in term s ofthe perturbative kernel(3.51) and extrem alshape f(x),solving (3.56). The (tim e-

dependent)constant�0 arisesin (3.68)dueto constraint(3.66)and appearsto betheconstantpartofthe�rst

prim itiveofthe function (3.57).

4 D ispersionless Toda chain

In thecaseofa singlecutletuspresentthe double coverofthe z-planey2 = (z� x+ )(z� x� )in the form

z = v+ �

w +1

w

(4.69)

with x� = v� 2� and

y2 = (z� v)2 � 4�2 (4.70)

O n thedoublecover(4.69),which isin thecaseofsinglecutjustP1 with twom arkedpointsP� ,with z(P� )= 1 ,

w � 1(P� )= 1 ,form ula (3.57)de�nesa function with a logarithm ic cutand asym ptotic behavior(3.63),odd

undertheinvolution w $ 1

wofthecurve(4.69).In term softheuniform izing variablew onecan globally write

S = � 2

v+ �

w +1

w

��

logw � 2�(log�� 1)

w �1

w

+X

k> 0

tkk(w)+ 2alogw (4.71)

where

k(w)= zk+ � z

k� ; k > 0 (4.72)

are the Laurentpolynom ials,odd underw $ 1

w. The �rstterm in (4.71)com esfrom the Legendre transform

ofthe Seiberg-W itten di�erentiald� � z dw

w.

The canonicalToda chain tim esarede�ned by the coe�cientsatthe singularterm sin (3.63)

t0 = resP+dS = � resP�

dS = 2a (4.73)

and

tk =1

kresP+

z� kdS = �

1

kresP�

z� kdS; k > 0 (4.74)

From the expansion (3.63)italso im m ediately follows,that

@F

@tk=1

2resP+

zkdS = �

1

2resP�

zkdS; k > 0 (4.75)

Form ulas(4.73),(4.74),(4.75)togetherwith (3.65)identify the generating function (3.50)with the logarithm

ofquasiclassicaltau-function,being here,in thecaseofa singlecut,a tau-function ofdispersionlessToda chain

hierarchy.

The consistency condition for(4.75)isensured by the sym m etricity ofsecond derivatives

@2F

@tn@tk=1

2resP+

(zkdn) (4.76)

11

Page 12: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

wherethe tim e derivativesof(3.63)

0 =@S

@a=

z! P�

2logz�@2F

@a2� 2

X

n> 0

@2F

@a@tn

1

nzn

!

k =@S

@tk=

z! P�

zk �

@2F

@a@tk� 2

X

n> 0

@2F

@tk@tn

1

nzn

!

; k > 0

(4.77)

form a basisofm erom orphicfunctionswith polesatthepointsP� ,with z(P� )= 1 .Alltim e-derivativeshere

aretaken atconstantz.

Expansion (4.77)ofthe Ham iltonian functions(4.72)expressesthe second derivativesofF in term softhe

coe�cientsofthe equation ofthe curve(4.69),e.g.

0 =z! 1

2logz� 2log��2v

z�2�2 + v2

z2+ :::

1 =z! 1

z� v�2�2

z�2v�2

z2+ :::

2 =z! 1

z2 � (v2 + 2�2)�

4v�2

z�2�2(�2 + 2v2)

z2+ :::

(4.78)

Com parison ofthe coe�cientsin (4.78)gives,in particular,

@2F

@a2= log�2

;@2F

@a@t1= v (4.79)

and@2F

@t21= �2 = exp

@2F

@a2(4.80)

which becom es the long-wave lim itofthe Toda chain equationsafter an extra derivative with respectto a is

taken@2aD

@t21=

@

@aexp

@aD

@a(4.81)

forthe Toda co-ordinateaD = @F

@a.Substituting expansions(4.78)into (4.76),one getsthe expressionsforthe

so called contactterm s[19]in theU (1)case,which arethepolynom ialsofa singlevariablev with �-dependent

coe�cients.

O necan now �nd the dependence ofthe coe�cientsofthe curve(4.69)on the deform ation param eterst of

them icroscopictheory by requiringdS = 0attheram i�cation points,wheredz = 0.Thiscondition avoidsfrom

arising ofextra singularitiesatthe branch pointsin the variation ofdS w.r.t.m oduliofthe curve.Equation

dz

dlogw= �

w �1

w

= 0 (4.82)

givesw = � 1,wherenow

dS

dlogw

����w = � 1

=X

k> 0

tkdk

dlogw

����w = � 1

+ 2a� 2v� 4�log� = 0 (4.83)

Iftk = 0 fork > 1,solution to (4.83)im m ediately gives

v = a; �2 = et1 (4.84)

12

Page 13: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

and the prepotential

F =1

2aa

D +1

2resP+

(zdS)�a2

2=1

2a2t1 + e

t1 (4.85)

Adding nonvanishing t2,one�nds

v = a�1

2t2L

�� 4t22e

t1+ 2t2a�

log�2 = t1 + 2t2a� L

�� 4t22e

t1+ 2t2a�

(4.86)

wherethe Lam bertfunction L(t)isde�ned by an expansion

L(t)=

1X

n= 1

(� n)n� 1tn

n!= t� t

2 +3

2t3 �

8

3t4 + ::: (4.87)

and satis�esto the functionalequation

L(t)eL(t) = t (4.88)

Hence,forthe prepotentialwith t1;t2 6= 0 onegets

F =1

2

a@F

@a+X

k> 1

(1� k)tk@F

@tk

!

+@F

@t1�a2

2=

=1

2aa

D +1

4

X

k> 1

(1� k)tkresP+

�zkdS�+1

2resP+

(zdS)�a2

2=

=tk = 0;k> 2

1

2aa

D +1

2resP+

(zdS)�1

4t2resP+

�z2dS��a2

2

(4.89)

wherefrom the instanton expansion can be com puted (which can be strictly gotasan expansion in param eter

q aftert1 ! t1 +1

2logq)

F = t(a)+ et00(a)+ t

22 e

2t00(a)+

8

3t42 e

3t00(a)+

32

3t62 e

4t00(a)+

+160

3t82 e

5t00(a)+

1536

5t102 e

6t00(a)+ :::= t(a)+ S(a)+

1

4S(a)S00(a)+ :::

(4.90)

with S(a) = expt00(a). Expansion (4.90) directly corresponds to sum m ing over connected tree diagram s in

bosonicm odel,presented at�g.1.

Itisalso easy to com pute the explicitform ofthe extrem alshapefornonvanishing t1;t2,which reads

f0(x)=

2

arcsin

�x � v

2�

+ t2

p4�2 � (x � v)2

v� 2�� x � v+ 2�

(4.91)

wherev = v(t)and �= �(t)aregiven by (4.86),orobey

v� a = 2t2�2; log�2 = t1 + 2t2v (4.92)

Form ula (4.91) is a direct consequence of(3.62) and directly following from (4.71) upon the relations (4.92)

expression

�(w;t1;t2;a)= 2t2y� 2logw + (t1 + 2t2v� log�2)z� v

y+ 2

a� v+ 2t2�2

y=

=(4:92)

2t2�

w �1

w

� 2logw

(4.93)

13

Page 14: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Note,that(4.91)staysthattheVershik-K erov\arcsin law"[20]forthelim itingshapeisdeform ed bytheW igner

sem icircledistribution.

Ifthe �rstthreeToda tim est1;t2;t3 arenonvanishing,instead of(4.91)onegets

f0(x)=

2

arcsin

�x � v

2�

+ (t2 + 3t3v)p4�2 � (x � v)2 +

3

2t3(x � v)

p4�2 � (x � v)2

v� 2�� x � v+ 2�

(4.94)

wherev and � arenow subjected to

v� a = 2(t2 + 3t3v)�2

log�2 = t1 + 2t2v+ 3t3(v2 + 2�2)

(4.95)

G enerally we obtain forthe lim itshape

f0(x)=

2

arcsin

�x � v

2�

+X

k> 1

tkQ k(x)p4�2 � (x � v)2

!

v� 2�� x � v+ 2�

(4.96)

where v and � obey som e sort of hodograph equations v � a = P v(v;�;t), log�2 = P� (v;�;t) for som e

polynom ialsPv and P�,whoseexpansion in Toda tim estcan beeasily reconstructed from thepresented above

form ulasofgeneralsolution.

5 Extended non-abelian theory

In thecaseofU (N )gaugetheory onehasto considersolution with N cutsfIig,i= 1:::;N ,which arisesafter

adding to the functional(3.50)N constraintswith the Lagrangem ultipliers

F ! F +

NX

i= 1

aDi

ai�1

2

Z

Ii

dx xf00(x)

(5.97)

i.e.solution to the integralequation

X

k> 0

tkxk �

Z

d~xf00(~x)(x � ~x)(logjx � ~xj� 1)= aDi ; x 2 Ii; i= 1;:::;N (5.98)

Now itcan be expressed in term softhe Abelian integralson the doublecover

y2 =

NY

i= 1

(z� x+i)(z� x

�i) (5.99)

which isa hyperelliptic curveofgenusg = N � 1.De�ne,asbefore:

S(z)= t0(z)�

Z

dxf00(x)(z� x)(log(z� x)� 1)� a

D (5.100)

where the integralistaken overthe whole supportI= [Ni= 1Ii,aD = 1

N

P N

j= 1aDj ,and consideritsdi�erential,

or

�(z)=dS

dz=X

k> 0

ktkzk� 1 �

Z

dxf00(x)log(z� x) (5.101)

14

Page 15: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

satisfying

�(x + i0)+ �(x � i0)= 0; x 2 I i; i= 1;:::;N (5.102)

on each cut,and norm alized to

�(x +N)= 0;

�(x �j � i0)= �(x +

j� 1 � i0)= � 2�i(N � j+ 1); j= 2;:::;N

�(x �1 )= � 2�iN

(5.103)

Vanishing m icroscopictim es

Consider,�rst,alltk = 0 fork 6= 1,and de�ne � 2N = et1. Now � = dS

dzis an Abelian integralon the curve

(5.99)with the asym ptotic

� =P ! P�

� 2N logz� 2N log�+ O (z� 1) (5.104)

whosejum psareinteger-valued dueto (5.103),orHd� � 4�iZ.Itm eansthatthehyperellipticcurve(5.99)can

be seen also asan algebraicRiem ann surfaceforthe function w = exp(� �=2),satisfying quadraticequation

�N

w +1

w

= PN (z)=

NY

i= 1

(z� vi) (5.105)

since for the two branchesw+ = w and w� = 1

wone im m ediately �nds thattheir productw + � w� and sum

w+ + w� arepolynom ialsofz ofgiven powers(zero and N correspondingly).

Equivalently,theendsofthecutsin (5.99)arerestricted by N constraintsin such a way,thatthisequation

can be rewritten as

y2 = PN (z)

2 � 4�2N (5.106)

i.e.fx�i g arerootsofPN (z)� 2�N = 0,and

y = �N

w �1

w

(5.107)

Thegenerating di�erential(5.101)isnow

dS = � 2logwdz = � d(2zlogw)+ 2zdw

w(5.108)

just the Legendre transform ofthe Seiberg-W itten di�erentiald� � z dw

won the curve (5.105),(5.106). It

periods

ai =1

2�i

I

A i

zdw

w(5.109)

coincidewith the Seiberg-W itten integralsand the only nontrivialresiduesatin�nity give

resP+

�z� 1dS�= � resP�

�z� 1dS�= log�2N

resP+(dS)= � resP�

(dS)= 2

NX

j= 1

vj(5.110)

15

Page 16: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Thedi�erential(5.108)satis�esthe condition

�dS ��w

wdz =

�P (z)

ydz =

P

Nj= 1

vj= 0

holom orphic (5.111)

wherethevariation istaken atconstantco-ordinatez and constantscalefactor�.Thus,theintegrablesystem

on \sm allphasespace" issolved forthe scale�2N = et1 and the m odulivj,j= 1;:::;N ofvacua oftheU (N )

gauge theory,satisfying the equationP N

j= 1vj = a and the transcendentalequations for the Seiberg-W itten

periods(5.122).

Nonvanishing m icroscopictim es

W hen we switch on \adiabatically" the highertim es (2.17)with k > 1,the num berofcutsin (5.98)rem ains

intact,and the di�erential(5.101)can be stillde�ned on hyperelliptic curve (5.99). However,now the role of

bipoledi�erential dw

wofthe third kind isplayed by

d� = dz

X

k> 1

k(k� 1)tkzk� 2 �

Zdxf00(x)

z� x

!

=

=X

k> 1

k(k � 1)tkdk� 1 � 2N d0 � 4�i

N � 1X

j= 1

d!j

(5.112)

whered!i,i= 1;:::;N � 1arecanonicalholom orphicdi�erentialsnorm alized to theA-cycles,surrounding�rst

N � 1 cuts.The di�erentialsd k in (5.112)are�xed by theirasym ptoticatz ! 1

dk =z! 1

8<

:

kzk� 1

dz+ O (z� 2); k > 0

dz

z+ O (z� 2); k = 0

(5.113)

and vanishing A-periods I

A i

dk = 0; k � 0; 8 i= 1;:::;N � 1 (5.114)

Thenonvanishing periodsofd� are�xed by

I

A j

d� = � 2�i

Z

Ij

f00(x)dx = � 2�i

�f0(x+j )� f

0(x�j )�= � 4�i (5.115)

which justi�esthatgenerating di�erentialdS isstillde�ned m odulo 4�idz.Theonly im portantdi�erencewith

thepreviouscaseisthatintegrality oftheperiodsHd� � 4�iZ,which wasreform ulated in term sofan algebraic

equation (5.105)forthe theory on \sm allphase space",rem ainsnow a transcendentalequation,which cannot

be resolved explicitly.

Nevertheless,on thecurve(5.99)any odd underhyperellipticinvolution di�erentialcan bealwayspresented

as

d� =s(z)dz

y(5.116)

where s(z)isa polynom ialofpowerN + K � 2 in caseofnonvanishing m icroscopictim est1;:::;tK up to the

K -th order.ItshigherK coe�cientsare�xed by leading asym ptotic(t 2;:::;tK )and the residueatin�nity

resP�d� = � 2N (5.117)

16

Page 17: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

and therestN � 1 coe�cientscan bedeterm ined from (5.115).This�xescom pletely thedi�erentiald� on the

curve(5.99)which stillrem ain to be dependentupon 2N (yetarbitrary)branch pointsfx�j g.

The generating di�erentialdS can be now de�ned in term softhe Abelian integral�(z)

dS = �dz = dz

Z z

z0

d� (5.118)

The dependence upon 2N + 1 param eters (the positions ofthe branch points in (5.99) together with z0) is

constrained by additionalto (5.115)vanishing ofthe B -periods

I

B j

d� = 0; j= 1;:::;N � 1 (5.119)

Integralrepresentation (5.101)suggestsa naturalnorm alization (5.103),i.e.

z0 = x+

N; �(z0)= �(x

+

N)= 0 (5.120)

where x+Nis the largestam ong realram i�cation points fx�j g. These conditions lead to the following form of

expansion of�(z)in the vicinity ofram i�cation points

�(z) =z! x

j

�(x �j )+ �

�j

q

z� x�j + :::

��j =

2s(x�j )

Q 0

k

q

(x�j � x+

k)(x�j � x

k)

; j= 1;:::;N

(5.121)

wherethe constants�(x �j)aregiven by (5.103).

The restN + 1 param etersareeaten by the periods

aj =1

2

Z

Ij

dxxf00(x)= �

1

4�i

I

A j

zd� =1

4�i

I

A j

dS; j= 1;:::;N � 1 (5.122)

togetherwith the residues

a = 1

2

Z

I

dxxf00(x)= � 1

2resP+

(zd�) (5.123)

and the "freeterm " orscaling factor

t1 = resP+

�z� 1�dz

�(5.124)

Recallonce m ore,thatan essentialdi�erence with the caseofvanishing tim esisthatfortk 6= 0,the exponent

exp(�)acquiresan essentialsingularityatthepointsP � ,and theconstraints(5.115),(5.119)cannotberesolved

algebraically.Theform oftheexpansion (5.121)ensuresthatvariation ofthegenerating di�erentialatconstant

z w.r.t.m oduliofthe curve(5.99)

�(dS)= � (�dz)=

=z! x

j

� s(x�j)�x�

j

Q 0

k

q

(x�j� x

+

k)(x�

j� x

k)

dzq

z� x�j

+ :::’ holom orphic(5.125)

isindeed holom orphic.

The Lagrangem ultipliers

aDi =

@F

@ai(5.126)

17

Page 18: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

can be com puted by a standard trick.Considerequation (5.98)fori6= j and �x there x-variablesto be atthe

endsofcorresponding cuts.Then

aDi � a

Dj = Re

Z x�

i

x+

j

dS =1

2

I

B ij

dS (5.127)

or@F

@ai=1

2

I

B i

dS; i= 1;:::;N � 1 (5.128)

Forthe tim e-derivativesofprepotentialonecan write

@F

@tk=1

2resP+

�zkdS�= �

1

2(k+ 1)resP+

�zk+ 1

d��

(5.129)

6 Q uasiclassicalhierarchy and explicit results

From the expansion (5.101) in the case ofU (N ) extended theory it stillfollows that the �rst derivatives of

quasiclassicaltau-function F aregiven by (3.64)and (4.75),whileforthesecond derivativesonegets(4.76),or

@2F

@tn@tm= 1

2resP+

(zm dn)=1

2resP+ P+

(z(P )nz(P 0)m W (P;P 0)) (6.130)

where we have introduced the bi-di�erentialW (P;P 0) = dP dP 0 logE (P;P 0),with E (P;P 0) being the prim e

form ,see [21]forthe de�nitions. In the inverse co-ordinatesz = z(P )and z0= z(P 0)nearthe pointP + with

z(P + )= 1 ithasexpansion

W (z;z0)=dzdz0

(z� z0)2+ :::=

X

k> 0

dz

zk+ 1dk(z

0)+ ::: (6.131)

Thebi-di�erentialW (P;P 0)can be related with the Szeg�o kernel[21]

Se(P;P0)S� e(P;P

0)= W (P;P 0)+ d!i(P )d!j(P0)

@

@Tijlog�e(0jT) (6.132)

which,foran even characteristicse� � e,hasan explicitexpression on hyperelliptic curve(5.99)

Se(z;z0)=

Ue(z)+ Ue(z0)

2pUe(z)Ue(z

0)

pdzdz0

z� z0(6.133)

with

Ue(z)=

vuut

NY

j= 1

z� xe+

j

z� xe�

j

(6.134)

Here xe�

j

is partition ofthe ram i�cation points of(5.99) into two sets,corresponding to a characteristic e.

For exam ple, on a sm allphase space, when (5.99) turns into the Seiberg-W itten curve (5.105), there is a

distinguished partition e= E ,corresponding to an even characteristicswith

UE (z)=

s

P (z)� 2�N

P (z)+ 2�N(6.135)

18

Page 19: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

Substituting (6.132),(6.133)into (6.130)gives

@2F

@tn@tm= 1

2resP+ P+

�z(P )m z(P 0)nSe(P;P

0)2��

� 1

2resP+

(znd!i)� resP+(zm d!j)

@

@Tijlog�e(0jT)=

= P(e)nm (xe�

j

)� 2@2F

@ai@tn

@2F

@aj@tm

@

@Tijlog�e(0jT)

(6.136)

whereforthe "contactpolynom ials" one getsfrom (6.133)

P(e)nm (xe�

j

)=1

4resP+ P+

�zkz0n

(z� z0)2

1+Ue(z)

2Ue(z0)+

Ue(z0)

2Ue(z)

dzdz0

(6.137)

Ifcalculated in the vicinity ofthe sm allphase space and for the particular choice ofcharacteristic (6.135),

residues(6.137)vanish forn;m < N ,and onegetsexactly the conjectured in [19]form ula

@2F

@tn@tm= �

1

2

@un+ 1

@ai

@um + 1

@aj

@

@Tijlog �E (0jT); n;m < N (6.138)

with

un = 2@F

@tn� 1=

1

nresP+

zn P

0N dz

y

=1

n

NX

l= 1

vnl =

1

nhTr�ni (6.139)

Equation (6.138) is a particular case ofthe generalized dispersionless Hirota relations for the Toda lattice,

derived in [18].

Letuspointout,thatthisderivation oftherenorm alization group equation (6.138)in [1]isalm ostidentical

to developed previously in [22]foranotherversion ofextended Seiberg-W itten theory,which can bede�ned by

generating di�erential

d~S =X

k> 0

Tkd~k =X

k> 0

TkP (z)k=N

+

dw

w(6.140)

directly on the Seiberg-W itten curve(5.105)(whose form rem ained intactby higher owsfTkg,in contrastto

thequasiclassicalhierarchy,determ ined by (5.118)),and allderivativesweretaken atconstantw.Forexam ple,

ifN = 1 and only T0,T1 do notvanish with d~1 = d1 = (z� v)dww,onegets

@

@T1(z� v)=

@�

@T1

w +1

w

(6.141)

and@d~S

@T1= d1 + T1

@�

@T1

w +1

w

�dw

w=

1+T1

@�

@T1

d1 (6.142)

which m eans,in particular,thatthe scale factor� � T 1 linearly dependson the �rsttim e,in contrastto the

exponentialdependence in form ula (4.84).Indeed,taking derivativesof(4.71)atconstantz,instead of(6.141)

onegets

@v

@t1+@�

@t1

w +1

w

+ �

w �1

w

�@logw

@t1= 0 (6.143)

and therefore

@S

@t1=

@

@t1

t11 + 2alogw � 2zlogw � 2�(log�� 1)

w �1

w

��

= �

w �1

w

+

+@�

@t1(t1 � 2log�)

w �1

w

+@logw

@t1

(t1 � 2log�)�

w +1

w

+ 2a� 2v

� (6.144)

19

Page 20: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

i.e.form ulas(4.72),(4.77)areprovided directly by (4.84).

The choice ofextension (6.140) in [22]was m otivated rather by technicalreasons: preserving the form

ofthe Seiberg-W itten curve (5.105)with deform ing only the generating di�erential,m oreoverthat the latter

rem ained single-valued even in the deform ed theory. W e see,however,that the old choice is not consistent

with the m icroscopicinstanton theory (2.17),(2.18),(2.20),basically since the appropriateco-ordinateforthe

quasiclassicalhierarchy isz,com ing from the scalar�eld � ofthe vectorm ultipletofN = 2 supersym m etric

gauge theory. However,the corresponding quasiclassicalhierarchy isde�ned even m ore im plicitly,due to the

highly transcendentalingredientHd� � 4�iZ forthe second kind (notforthe third kind)Abelian di�erential,

and oneneedsto apply speciale�ortsto extractexplicitresults.

Instanton expansion in the extended theory

Theinstantonicexpansion F =P

k� 0Fk in the non-Abelian theory startswith the perturbativeprepotential

F0 =

NX

j= 1

t(aj)+X

i6= j

F (ai� aj) (6.145)

de�ned entirely in term softhefunctions(2.17)and (3.51).Itistotally characterized by degeneratedi�erential

(5.116)

d�0 = t000(z)dz� 2

dPN (z)

PN (z)= t

000(z)dz� 2

NX

j= 1

dz

z� vj(6.146)

(which does not depend on higher tim es), and the coe�cients ofthe polynom ialP N (z) in (5.105),(6.146)

coincidewith the perturbativevaluesofthe Seiberg-W itten periods

ai = � 1

2resvizd�0 = vi (6.147)

Theperturbativegenerating di�erentialisdS0 = �0dz,with

�0 = t00(z)� 2

NX

j= 1

log(z� vj) (6.148)

and satis�es@dS0

@aj= 2

dz

z� vj; j= 1;:::;N

@dS0

@tk= kz

k� 1dz; k > 0

(6.149)

whatgivesriseto

S0(z)= t0(z)� 2

NX

j= 1

(z� vj)(log(x � vj)� 1) (6.150)

Equations

aDj =

@F0

@aj= 2S0(aj) (6.151)

com pletely determ ine (6.145),since on thisstageone m akesno di�erencebetween vj and aj.

20

Page 21: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

M oreover,vanishing ofthe B -periods(5.119)ofthe di�erential(6.146)

Z x�

j

x+

i

d�0 = 0 (6.152)

where x�j= aj �

pqSj + O (q2) are positions ofthe branching points ofthe curve (5.99) in the vicinity of

perturbativerationalcurve,im m ediately givesthe deviations

Si �et

00(ai)

Q

j6= i(ai� aj)

2; i= 1;:::;N (6.153)

wherethe num ericcoe�cientis�xed from com parison with theSeiberg-W itten curve(5.106)on a sm allphase

space.Theinstantonicexpansion,sim ilarly to thatoftheU (1)theory (4.90),can bedeveloped in term softhe

functions(6.153)and theirderivatives.Forexam ple,in [1]wehavechecked,that

F1 =X

l

Sl (6.154)

for U (2) gauge group and the only nonvanishing t1,t2,using instantonic expansions ofthe equations (5.99),

(5.116)and (5.129).

Ellipticuniform ization forthe U (2)theory

In thecaseofU (1)theory theproblem wassolved explicitly by construction ofthefunction (4.71)duetoexplicit

uniform ization oftherationalcurve(4.69)in term sof\global"spectralparam eterw.Thisishardly possiblefor

genericnon-Abelian theory with the hyperelliptic curve (5.99)ofgenusg = N � 1,butin the nextto rational

casewith N = 2

y2 =

Y

i= 1;2

(z� x+i )�

4Y

i= 1

(z� xi)� R(z) (6.155)

itisan elliptic curve,and thereforecan be uniform ized using,forexam ple,the W eierstrassfunctions

z = z0 +R 0(x0)=4

}(�)� R00(x0)=24= z0 +

}0(�0)

}(�)� }(�0)=

= z0 + �(� � �0)� �(� + �0)+ 2�(�0)

dz

d�= �

}0(�0)}0(�)

(}(�)� }(�0))2= y

(6.156)

whereitwasconvenientto take

z0 = x4

R0(z0)= x43x42x41 = 4}0(�0)

R00(z0)= 2(x41x42 + x41x43 + x42x43)= 24}(�0)

(6.157)

TheAbelian integralfor�(z)can benow perform ed in term softheellipticfunctions.Takeagain forsim plicity

alltk = 0,ifk > 2.Then forthe di�erential(5.116)one has

d� =2t2z

2 + s1z+ s0

ydz =

z! 1�

2t2dz� 4dz

z� 2a

dz

z2+ :::

(6.158)

21

Page 22: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

and,aswasprom issed before,thisasym ptotic�xesthe coe�cients

s1 = � 4� t2

4X

i= 1

xi

s0 = � 2a+ 2

4X

i= 1

xi�t2

4

4X

i= 1

x2i +

t2

2

X

i< j

xixj

(6.159)

and com pletely determ ineshere the di�erential(6.158)in term softhe curve (6.155). Forthe elliptic integral

in (5.118)onecan now write

� =

Z z

z0

d� = 2t2 (�(� + �0)+ �(� � �0))+ �1 log�(�0 � �)

�(�0 + �)+ �2� (6.160)

Theconstants�1;2 areeasily recovered from com parison ofthe expansion of

d�

d�= � 2t2 (}(� � �0)+ }(� + �0))+ �1 (�(� � �0)� �(� + �0))+ �2 (6.161)

at� ! � �0 with (6.158)upon (6.156).Thejum psofa m ultivalued Abelian integral(6.160)on theellipticcurve

(6.155),are furtherconstrained to integersby (5.115)and (5.119),which can be now rewritten in the form of

transcendentalconstraintsforthe param etersofthe W eierstrassfunctions.

7 C onclusion

W e have discussed in these notes the m ain properties ofthe quasiclassicalhierarchy,underlying the Seiberg-

W itten theory,which wasderived in [1]directly from the m icroscopic setup and instanton counting. M ostof

the progress was achieved due to existence ofthe \oversim pli�ed" U (1) exam ple,naively com pletely trivial

from the pointofview ofthe Seiberg-W itten theory. However,even in thiscase the partition function ofthe

deform ed instantonic theory becom esa nontrivialfunction on the large phase space,being the tau-function of

dispersionlessToda chain,and providing a directlink to the theory ofthe G rom ov-W itten classes. The dual

Seiberg-W itten period (\the m onopole m ass")satis�esthe long wave lim itofthe equation ofm otion in Toda

chain,as a function of\W -boson m ass" and the (logarithm of) the scale factor. M uch less transparentnon-

Abelian quasiclassicalsolution isneverthelessconstructed using standard m achinery on highergenusRiem ann

surfaces.Itisalso essential,thatswitching on highertim esdeform the Seiberg-W itten curve.

The m ain issue now is what is going beyond the quasiclassicallim it. Could at least the \sim ple" U (1)

problem be solved exactly in allordersofstring coupling in m ore orlessexplicitform ? Itisalso necessary to

stress,thatthefreeferm ion (orboson)m atrix elem entsup to now wereconsidered asform alseriesin thehigher

tim es,exceptfort1 � log�. Theirknowledge asexactfunctionsatleastoft2 could provide usan interesting

inform ation aboutphysically di�erent\phases" ofthem odel.Anotherinteresting and yetunsolved problem for

the extended theory isswitching on the m atterby extrapolating the higher owsto tk �1

k

P N f

A = 1m

� k

A,what

correspondshypothetically to thetheory with N f fundam entalhyperm ultipletswith correspondingm asses.W e

hopeto return to these problem selsewhere.

Acknowledgem ents

Iam gratefulto A.Alexandrov,H.Braden,B.Dubrovin,I.K richever,A.Losev,V.Losyakov,A.M ironov,

A.M orozov and,especially,to N.Nekrasov and S.K harchev forthe very usefuldiscussions.

22

Page 23: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

The work was partially supported by FederalNuclear Energy Agency,the RFBR grant 05-02-17451,the

grantforsupportofScienti�cSchools4401.2006.2,INTAS grant05-1000008-7865,theprojectANR-05-BLAN-

0029-01,theNW O -RFBR program 047.017.2004.015,theRussian-Italian RFBR program 06-01-92059-CE,and

by the Dynasty foundation.

R eferences

[1]A.M arshakov and N.Nekrasov,\Extended Seiberg-W itten theory and integrablehierarchy," JHEP 0701

(2007)104 [arXiv:hep-th/0612019].

[2]I.K richever,\The tau-function ofthe universalW hitham hierarchy,m atrix m odels and topological�eld

theories",Com m un.Pure.Appl.M ath.47 (1992)437 [arXiv:hep-th/9205110].

[3]N.Seiberg and E.W itten,\Electric -m agnetic duality,m onopole condensation,and con�nem entin N= 2

supersym m etricYang-M illstheory," Nucl.Phys.B 426,19 (1994)[arXiv:hep-th/9407087].

[4]A.G orsky,I.K richever,A.M arshakov,A.M ironov and A.M orozov,\Integrability and Seiberg-W itten

exactsolution," Phys.Lett.B 355,466 (1995)[arXiv:hep-th/9505035].

[5]N.A.Nekrasov,\Seiberg-W itten prepotentialfrom instanton counting,"Adv.Theor.M ath.Phys.7 (2004)

831 [arXiv:hep-th/0206161].

[6]A.S.Losev,A.M arshakov and N.Nekrasov,\Sm allinstantons,little strings and free ferm ions," in Ian

K ogan m em orialvolum e,M .Shifm an,A.Vainshtein and J.W heater(eds.)From �elds to strings: circum -

navigating theoreticalphysics,581-621 [arXiv:hep-th/0302191].

[7]A.O kounkov and R.Pandharipande,\G rom ov-W itten theory,Hurwitz theory,and com pleted cycles",

arXiv:m ath.AG /0204305;\TheequivariantG rom ov-W itten theory ofP1",arXiv:m ath.AG /0207233.

[8]K .Ueno and K .Takasaki,Adv.Studiesin PureM ath.4 (1984)1.

[9]M .Jim bo and T.M iwa,\Solitons and in�nite-dim ensionalLie algebras",Publ.RIM S K yoto Univ.,19

(1983)943.

[10]G .O lshanski,Introduction to algebraic com binatorics(in Russian),see http://www.m ccm e.ru/ium /s04/

algcom b.htm l

[11]N.Nekrasov and A.O kounkov,\Seiberg-W itten theory and random partitions," arXiv:hep-th/0306238.

[12]M .Toda,Theory ofNonlinear Lattices,(Springer-Verlag,New York 1989)

[13]A.O rlov,arXiv:nlin/0305001

E.Bettelheim ,A.Abanov and P.W iegm ann,arXiv:nlin.SI/0605006

[14]N.Nekrasov,\Five dim ensionalgauge theories and relativistic integrable system s," Nucl.Phys.B 531

(1998)323 [arXiv:hep-th/9609219];

A.E.Lawrenceand N.Nekrasov,\Instanton sum sand �ve-dim ensionalgaugetheories," Nucl.Phys.B 513

(1998)239 [arXiv:hep-th/9706025];

H.W .Braden, A.M arshakov,A.M ironov and A.M orozov,\Seiberg-W itten theory for a non-trivial

com pacti�cation from �ve to four dim ensions," Phys.Lett.B 448 (1999) 195 [arXiv:hep-th/9812078];

\TheRuijsenaars-Schneiderm odelin thecontextofSeiberg-W itten theory," Nucl.Phys.B 558 (1999)371

[arXiv:hep-th/9902205].

23

Page 24: OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheoryinspirehep.net/record/753567/files/arXiv:0706.2857.pdf · OnM icroscopicOriginofIntegrabilityinSeiberg-W ittenTheory

[15]T. M aeda, T. Nakatsu, K . Takasaki and T. Tam akoshi, Nucl. Phys. B 715 (2005) 275 [arXiv:hep-

th/0412329].

[16]A.M arshakov,\M atrix m odels,com plex geom etry and integrable system s.I," Theor.M ath.Phys.147

(2006)583 [Teor.M at.Fiz.147 (2006)163][arXiv:hep-th/0601212].

[17]M .K ontsevich,\Intersection theory on them odulispaceofcurvesand the m atrix Airy function",Com m .

M ath.Phys.147 (1992)1;

S.K harchev,A.M arshakov,A.M ironov,A.M orozov and A.Zabrodin,\Towardsuni�ed theory of2-d

gravity," Nucl.Phys.B 380 (1992)181 [arXiv:hep-th/9201013].

[18]I.K ostov,I.K richever,M .M ineev-W einstein,P.W iegm ann and A.Zabrodin,\Tau-function foranalytic

curves," arXiv:hep-th/0005259;

A.M arshakov,P.W iegm ann,A.Zabrodin,\IntegrablestructureoftheDirichletboundary problem in two

dim ensions," Com m un.M ath.Phys.227 (2002)131 [arXiv:hep-th/0109048].

I.K richever,A.M arshakov,A.Zabrodin, \Integrable structure of the Dirichlet boundary problem in

m ultiply-connected dom ains," Com m un.M ath.Phys.259 (2005)1 [arXiv:hep-th/0309010].

[19]A.S.Losev,N.Nekrasov and S.Shatashvili,\Issuesin topologicalgaugetheory," Nucl.Phys.B 534 (1998)

549 [arXiv:hep-th/9711108];

[20]B.F.Logan and L.A.Shepp,\A variationalproblem forrandom Young tableaux",Advancesin M ath.26

(1977),no.2,206;

S.V.K erov and A.M .Vershik,\Asym ptoticsofthe Plancherelm easure ofthe sym m etric group and the

lim iting shape ofthe Young diagram s",DAN SSSR,233,1024(1977),(in Russian).

S.V.K erov,\Random Young tableaux",Teor.veroyat.iee prim eneniya,3,627 (1986),(in Russian).

A.M .Vershik,\Hook form ulaeand related identities",Zapiskisem .LO M I,172,3 (1989)(in Russian).

[21]J.Fay,Theta-functionson Riem ann surfaces,Lect.NotesM ath.,Vol.352,Springer,New York,1973

[22]A.G orsky,A.M arshakov,A.M ironov and A.M orozov,\RG equationsfrom W hitham hierarchy",Nucl.

Phys.B 527 (1998)690-716 [arXiv:hep-th/9802007].

24


Recommended