Transcript

SUBJECT INDEX

Acentric factor, 233Acrylonitrile-butadiene-styrene copolymer

(ABS), 490, 491, 493Activation energy, 362, 365, 373, 533, 665,

669Additivity rule, 491Adhesive

energy, 52, 53, 130, 135–137, 150,152–155

force, 131, 133, 135Adsorption, 324, 622AFM, see Atomic force microscopeAgglomerate, 140, 141, 450, 536Aggregate, 141, 263, 527, 575,

584, 606, 621, 623,626, 629

size polydispersity, 666Aging

(chemical) of polymers, 162, 358(physical) of glassy polymers, 10, 11,

162, 169, 180, 188, 189, 192,206–214, 262, 265, 266, 270,357–385, 445, 475, 479, 488, 527,560, 587, 591–595

nanocomposites, 383–385, 505–514,527, 560, 561, 587, 591–595

polymer blends, 375–383, 488in confined systems, 206–214of materials, 162, 192, 209, 266rate, 265, 360, 370

Amine-terminated polystyrene (ATPS), 669Amorphous

PET or sPS, 314, 497–500, 501–503phase in polymeric nanocomposites, 512,

514, 515, 528, 533, 534, 539, 544phase in semicrystalline polymers, 195,

214, 242, 400, 460, 474, 477,494–496, 498–505

aging, 188, 358, 368, 369, 384blend, 474, 483–493, 574, 589free volume, 400, 403, 434, 435, 438,

474, 475, 482, 490, 502, 504, 514,675

PVT properties, 556, 561–563, 567,569, 570, 572, 573, 585, 589,591–593, 596

with crystalline trace, 261polymer(s), 311, 621, 634

Polymer Physics: From Suspensions to Nanocomposites and Beyond, Edited by Leszek A. Utracki andAlexander M. JamiesonCopyright © 2010 John Wiley & Sons, Inc.

755

756 SUBJECT INDEX

Amphiphilic molecules, 536, 537Anderson localization, 423Angell (C. Austin), 193, 194, 200, 263, 575Angular correlation of annihilation radiation

(ACAR), 460Anionic, 93, 112, 113, 684Annealing

effect in PALS, 446, 488–490, 494effect on aging, 206, 264, 268, 314,

358–360, 369effect on CPNC, 592, 594of mercaptide-polymer blend(s), 614,

618, 621, 623, 624, 630Annihilate, 424, 432, 475Annihilation

lifetime, 10, 359, 378, 396, 397, 421, 474,488, 493, 508, 514

peak, 493radiation, 460rate distribution, 430

Anti-counterfeiting, 635Antimony mercaptide, 612. See also

Mercaptide(s)Arrhenius (Svante A.) equation, 47, 52, 261,

263, 362, 448, 453, 454, 532, 533,539, 561, 665

Aspect ratio ofellipsoids of rotation, 642–645, 679, 680free volume hole(s), 406, 408, 412layered silicates or clays, 511, 529–531,

559, 560, 578, 583, 594, 643–645,647, 653, 659, 666, 668, 683, 684,689, 692

LCP domains, 661nanotubes and nanowires, 527, 535, 536,

538, 543, 544twinkling polymer aggregate, 261, 263,

560Atomic force microscope (AFM), 130–132,

135–137, 139, 144, 146, 155–157,204, 205

Attapulgite, 646, 692Average hole volume, 405, 406Avogadro (Amedeo C.), 20, 23, 46, 252, 284

Bentonite (BT), 511, 538, 539, 541–543, 646Benzyl alcohol, 193, 194Bimodal distribution, 294, 508, 510Birefringence, 92, 110, 671

Bismuth mercaptide, 619, 620. See alsoMercaptide(s)

Bjerrum (Niels) length, 45Blend

aging, 373, 375–383immiscible, rubber, 137, 138, 145–147,

511mercaptide–polymer, 614, 618, 620, 623,

624, 635miscible, PPE/PS, 254, 255, 376, 377, 488miscible, PVME/PS, 375, 376PALS measurements, 439, 460, 474,

483–493, 514PVT measurements, 249, 252, 264rheology, 653, 668, 669, 679, 687, 688,

694Blob model, 64, 400, 424, 475Block copolymer, 194–196, 533, 661, 685Boltzmann (Ludwig) constant, 236, 267Bond conformation, 292, 298, 299Bondi (Arnold), 230, 239, 441, 450, 492Boyer (Raymond, F.), 9, 261, 262, 560, 561,

575, 584, 674, 675Branched polymers, 41, 43, 65, 79,

100, 670Branching ratio, 44Brillouin (Léon) light scattering, 201, 202Brownian motion, 2, 3, 5, 19, 179, 262, 560,

621, 629, 655, 658–660, 679, 680,681

Bubble inflation, 202, 204, 205Butadiene rubber (BR), 491

Calorimetry, 197, 485, 528, 560Calorimetry, ac, 206Cantilever, 130–139, 144, 149, 150, 155

deflection, 131, 133, 134, 137, 144, 155Capillary flow, 662Carbon

black (CB), 139–144, 686fiber (CF), 506nanotubes (CNT), 131, 526, 535–538,

554, 647, 681Cation-exchange capacity (CEC), 645Cationic, 93–95, 107–113, 115, 659Cavity shape, 394, 402, 405, 407. See also

Potential well; Hole; NanoholesCavity size/diameter, 394, 401, 402, 405,

411, 412, 508–510

SUBJECT INDEX 757

CED, see Cohesive energy, densityCell

model, 7, 10, 215, 234, 235, 237, 238,241–243, 250, 311, 324

potential, 163, 326volume, 231, 234, 235, 240, 244, 324,

326, 327, 338, 339, 347, 352, 505Cellulose acetate, 40, 607Cellulose tris(phenyl carbamate), 69Chain

conformation, 77expansion, 32–34, 60, 78scission, 107, 206, 358

Chemical aging, see Aging (chemical)cis-polyisoprene (CPI), 485Clay-containing polymeric nanocomposite

(CPNC), 527, 528, 554, 556–558,646, 647

PA-6 based, 257–259, 530, 554, 557, 559,560, 563, 567, 570, 577, 578, 580,582, 593, 596, 648–653, 655–662,664–668, 672, 673, 675, 676, 681,689–693

PA-66 based, 257–259, 530, 554, 593PA-12 based, 662PO-based, 576, 578, 581, 582, 654, 655,

657, 658, 668, 670, 684–687,690–693

PS-based, 258, 530, 559, 560, 563, 565,566, 569, 570, 575, 578–592, 594–596, 655, 664, 669, 688, 689, 693

rheology, 557, 639–695thermodynamics, 553–596

CloisiteC10A organoclay, 563, 565,

582, 583, 587, 592, 594, 595,658, 671

C15A organoclay, 653, 671, 672C20A organoclay, 653, 657, 658, 668,

679, 685, 690, 692C25A organoclay, 653, 685, 689C30B organoclay, 383, 653, 662, 663,

685, 690C6A organoclay (discontinued), 668

Cluster aggregation, 626nucleation, 611

CNT, see Carbon, nanotubesCobalt mercaptide, 618. See also

Mercaptide(s)

Coefficient of thermal expansion, 194, 439,440

Cohesive energy, 451, 493density (CED), 228, 245, 246, 248, 251,

555Cold-crystallized, 496–499Colloidal suspension, 652, 653, 677Color filter, 611, 634, 635Combinatory entropy, 163Compatibilization, 668, 686Compliance, 204, 207, 370Compressibility, 229, 233, 249, 266, 285,

324, 328, 340–342, 570, 572, 574,575

at critical point, 229coefficient or parameter, κ, 241, 246, 247,

328, 332, 333, 344, 351, 555,567–569, 579, 585, 589, 595, 596

factor, 328, 340, 342, 352fractional coefficient of free volume, κocc,

456fractional coefficient of occupied volume,

κocc, 440, 442, 454of nanoholes, 436–438, 441, 442

specific free volume, 436–438,441–442, 456

VDW eos, 233Concentrated suspensions, 678Concentration, 40, 193, 261, 267, 268, 292,

348, 350, 451, 506, 554, 575, 587,629, 631

dependence, 18, 45, 47, 55, 59, 65,66, 71, 73, 75, 78, 79, 484, 485,590, 595

effect in polymer blends, 368, 377, 378,381, 483–490

effect in polymer nanocomposites, melts,558–560, 562–565, 571–573,575–585, 641–645, 647, 648, 652,653, 658–685, 689

glass, 560–562, 564–567, 571,585–595, 658, 659, 683–685, 688,689

semi-crystalline, 567, 568, 570,572, 578–585, 596, 687–685,689–694

effect on aging, 368, 377, 378, 381drag reduction, 96, 100–109, 111–113,

182

758 SUBJECT INDEX

Concentration (Continued )electroactivity, 535–538, 540–544, 623,

624L-J interactions, 255, 256, 258, 259,

558–570, 578–585solution viscosity, 7–9, 18–21, 23, 25,

28, 55–79, 90, 93, 94fluctuations, 474, 488gradient, 325in polyelectrolyte solutions, 45–49, 71–79of curing agent, 148, 149

Conductivity, dc, 536–538, 685Configurational

entropy, 193, 215, 301, 363, 561thermodynamics, 228, 264

Confined materials, 192, 211Confinement, 192–198, 200–202, 211, 212,

214, 215, 528, 530, 531, 606, 608,684, 690

Conformationalentropy, 248, 285, 299, 300, 309, 310relaxation time, 50

Conical AFM probe, 134, 150, 152–155Consolati (Giovanni), 393, 403, 405, 406,

408, 411, 413, 439, 443, 481Constant-volume transition, 291Constraint, 193–195, 478Contact density, 401, 424Continuum mechanics, 640, 675, 678Controlled pore glass (CPG), 193–196, 197,

210Cooperatively rearranging region (CRR),

195, 456, 528Copolymer

(block), 194–196, 200, 533, 661, 678, 685(liquid crystal), 303, 304, 307, 308, 312,

313(random), 146, 324–353, 377, 378,

380–383, 434, 435, 445, 460, 484,488, 490, 495, 496, 528, 530, 533,543, 657, 685, 687, 689, 690

for drag reduction, 100, 101in blend(s), 146, 195, 196, 445, 484, 488,

490, 495, 496in nanocomposites (PNC), 528, 530, 533,

543, 657, 661, 678, 685–687, 689,690

in solution, 67, 74, 75synthesis, 6, 10

Corresponding states principle (CSP), 229,232–234, 236, 239, 262, 263, 267

Counterion, 45, 46, 75, 93, 107–111Cowie (John M. G.), 206, 264, 357,

361–363, 365, 366, 371, 372,375–380, 383, 560

and Ferguson (C-F), 363, 366, 374–381CPG, see Controlled pore glassCPNC, see Clay-containing polymeric

nanocompositeCreep, 192, 202, 203, 205, 209, 359, 366,

529compliance, 204, 370, 593, 594, 668retardation, 207, 208

Critical wall shear stress, 107–111, 113Crosslinking, 133, 134, 144–146, 148, 150Crossover transition temperature, Tc, 561,

585CRR, see Cooperatively rearranging regionCrystallinity, 242, 268–270, 301, 400, 460,

491, 494–498, 500–503, 505, 514,660, 689, 690

Crystallization, 193, 268, 303, 308, 309,314, 494, 496, 497, 499–501, 528,555, 567

Curro (John G.), 10, 215, 238, 241, 265,370, 555, 589

Cyanobiphenyls (CB-n or nCB), 49–55,293, 294

Cyclic olefin polymer (COP), 434, 435, 445,446

Cyclic transparent optical polymer(CYTOP), 434, 435, 443, 446

d001, see Interlayer spacing (d001)de Gennes (Pierre-Gilles), 61–63Debye (Peter J. W.), 8, 27, 28, 45, 72, 78Dee and Walsh (D-W) eos, 240, 241Degree(s) of

alignment, 286clay dispersion, 528, 529, 536, 544, 554,

557, 566, 567, 572, 578, 581, 641,648, 653, 657, 663, 668, 672, 676,684–687, 692, 693, 695. See alsoExfoliated PNC

crosslinking, 100crystallinity, 242, 301, 400, 494–497, 501,

503disorder, 244, 383

SUBJECT INDEX 759

dissociation of polyelectrolyte, 45dispersion in polymeric system, 270, 536,

554, 557, 572, 648, 692freedom, 19, 163, 232, 236, 244, 245,

249, 250, 252, 267, 310, 311, 326,327, 337, 351, 426, 478, 557, 579

hydrolysis, 101intermolecular coupling, 376neumatic order, 284polymerization, 30, 47, 49, 53, 235quaternization, 75sulfonation, 530swelling, 24vulcanization, 145

Densified glasses, 173, 177, 179Density, ρ = 1/Vsp, 47, 91, 98, 194, 204,

228, 231, 237, 239, 241, 250, 259,330–346, 351, 352, 358, 441, 445,460, 488, 493–495, 501, 502, 528,529, 555, 563, 574, 578, 582, 624,627–629, 634, 659, 673, 674, 689.See also Volume

fluctuations, 234, 266, 369, 423,435, 460

number of free volume, 403–405, 407,408, 410, 412, 422, 476

of binary contacts, 63, 65, 424of charges, 45, 74, 75, 79, 368of crosslinking, 136, 146of electrons, 394, 400, 401, 428, 474, 621of entanglement, 28, 65. See also

Entangled polymerof holes, 422, 438, 440–445, 447, 457,

475, 477, 480, 482, 496, 498, 501,504, 514

of probability function, 425, 428, 430,433, 438, 504

of solution, 21, 91pressure effect on, 231. See also PVTsegmental, 69, 234

Deoxyribonucleic acid (DNA), 9,26, 105

Diamond-like carbon (DLC), 131Dielectric, 45, 49, 192, 196, 206, 209, 212,

403, 410, 423, 447, 448, 453, 454,457, 526, 529, 531, 538–545, 575,594, 607, 610

loss, 192properties, 526, 538, 542

relaxation spectroscopy, 529, 684response, 196, 206spectroscopy, 206, 209, 212, 264, 359,

369, 376, 384, 410, 529, 594Differential scanning calorimetry (DSC),

309, 494–497, 528, 532, 535, 619,620, 575

and aging, 210, 360, 361, 367, 371, 380,381

and crystallinity, 495, 496, 510and glass transition, 196–198, 432, 452,

485–490, 496, 497, 532, 560, 565,566, 586

and phase transition, 285, 286, 292, 303,485, 492

Diffusion, 27, 28, 72, 371, 446, 459, 488,489, 496, 498, 528, 621, 659, 679,682. See also Interdiffusion

atomic, 629, 630coefficient, 27, 28, 72, 167, 181, 182, 262,

498, 509, 528, 606, 621, 642, 659,679, 682

flux, 182free volume, 213, 265, 364kinetic energy, 114permeability, 214, 447rotational, 68, 70self-, 59spin, 606translational, 32, 33, 38, 43

Diffusivity, 508, 555, 659Diglycidyl ether of bisphenol A (DGEBA),

434, 435, 448, 450, 454, 455, 459,508

Dilatometry, 206, 213, 366, 394, 403, 404DiMarzio and Gibbs, 193. See also Gibbs

and DiMarzioDipolar interaction(s), 374, 375, 381Dissimilar chains, 484, 492Dissipative particle dynamics (DPD), 677Distribution

Boltzmann, 263free volume/hole, 178–180, 184, 359,

364, 368, 369, 385, 421, 461, 475,502, 504, 506

Gaussian, 41, 165, 397, 398, 425, 427,504

of conformers, 289, 290, 294–296,298–300, 310, 314

760 SUBJECT INDEX

Distribution (Continued )of MW, 96, 101, 102, 105, 260, 674of o-Ps lifetimes, 397, 482, 514, 576of particles, 623, 625, 626, 640, 687relaxation, 362, 373, 376, 379, 380

Dlubek (Gunter), 475, 480, 481, 488, 490,494, 495, 499, 501, 503, 510, 515,575, 576

free volume from PALS, 394, 421–461,477

DMA, see Dynamic, mechanical analysisDMTA, see Dynamic, mechanical thermal

analysisDNA, see Deoxyribonucleic acidDoi (Masao), 68, 69, 661, 667, 680Domain size, 529, 650, 651, 666Doolittle (Arthur K.), 57, 215, 237, 259,

262, 265, 371, 372, 441, 447,491, 674

Doppler (Christian) broadening ofannihilation radiation (DBAR), 460,493

Drag, 90–116, 182reduction, 91–97, 100–115

Draining effect, 32, 36, 38, 78DSC, see Differential scanning calorimetryDynamic

heterogeneity, 423, 456–460mechanical analysis, 529, 533, 534,

688–690mechanical properties, 528, 530, 534,

544, 692mechanical spectrometry, 532, 687mechanical thermal analysis, 388, 687,

702moduli, 56, 148, 149, 667, 686, 688, 692shear, 145, 641, 558viscosity, 662–669, 675, 676vulcanization, 145, 146, 147

DynamicsBrownian, 38, 79in confinement, 198–200, 206macromolecular, 18, 20, 38, 53, 56, 59,

64, 197, 204, 261, 264, 268, 368,376, 415, 423, 436, 446, 455–460,488, 527–529, 531, 558, 593, 682,685

of glass formers, 192, 194, 198, 214, 215,453, 574

of materials, 191, 195

of relaxation, 197, 383, 529, 647Rouse, 64, 77

Ehrenfest (Paul) equation, 589Eigenfunctions/eigenvalues, 186Einstein (Albert), 2–5, 10, 23, 25–27, 78, 79,

365Eirich (Friedrich R.), 3–5, 7Elastic modulus, 61, 138, 148, 162, 530,

679Eldrup (Morten), 368, 394, 397–400, 422,

424, 428, 429, 475, 489Electron

affinity, 489spin resonance (ESR), 366, 369spin resonance spectroscopy, 369, 554,

555, 572Electronic absorption spectra, 626Ellipsometry, 201, 202, 211Elongational dilatometer, 211Encompassed clay platelet volume fraction,

581Entangled polymer, 61, 654, 677, 682, 683Enthalpy, 162, 206, 209–211, 312, 358–360,

363–367, 371, 453–455activation, 172, 423, 453, 454, 539configurational, 365in confinement, 211of hole formation, 451ratio, 423, 454relaxation (overshoot), 210, 211,

358–360, 365–367, 370, 371,375–378, 380–383, 375

Entropy, 284, 289, 290, 293–296, 303,307–310, 313, 315, 325, 326, 358,359, 425, 522, 593. See alsoTransition entropy

configurational, 193, 301, 363, 387, 561conformational, 215, 248, 264, 285, 299,

300gradient, 182in lattice model, 163, 182, 228, 234, 235,

244of confined liquid, 193of mixing, 172of surface, 328, 329, 344, 346, 350–352

EPDM, see Ethylene propylene dieneterpolymer

Epoxy, 256, 383, 506, 508, 511, 529, 536,537, 538, 541, 542, 593, 646

SUBJECT INDEX 761

EPR, see Ethylene-propylene rubberEPR-MA, see Maleated, EPREquation(s) of state (eos), 227–270, 284,

311, 371, 404, 554. See also PVT,theory

forcrystalline polymers, 10, 241–243,

267–269gases, 229–231liquids, 231–235mixtures, 10, 250–259nonequilibrium, 259–267polymer melt, 235–241s-mers and molten polymers, 231–241,

267–269S-S, 10, 245–247, 323–353, 364, 365,

422, 438–447, 450–454, 458, 478–483, 556–560, 573, 595, 596, 674

S-S at nonequilibrium, 264–267S-S for binary systems, 250–264, 576S-S modified, 247–250, 327–334, 404

derivation, 7, 163, 164, 172, 243–245,325–328, 554

scaling L-J parameters, 164, 168,233–237, 253–255, 257–259, 265,267, 268, 351

VDW, 230Equilibrium state, 155, 163, 167, 358, 360,

362, 364, 366, 439, 475ESR, see Electron spin resonance

spectroscopyEthylene propylene diene terpolymer, 145,

493, 686, 687maleated, 687

Ethylene vinyl acetate copolymer, 146, 147,330–339, 342–346, 350, 351, 352,511, 663

Ethylene vinyl alcohol copolymer, 330–349,351, 352

Ethylene-propylene rubber (EPR), 657, 686,687

EVA or EVAc, see Ethylene vinyl acetatecopolymer

EVOH or EVAl, see Ethylene vinyl alcoholcopolymer

Excluded volume, 24, 30, 32–35, 37, 42,56, 61, 62, 70, 72, 78, 229, 230, 307

Exfoliated PNC, 641, 644, 659, 660. Seealso Polymer, polymericnanocomposites

Extensional/elongational viscosity, 93, 94,110, 115

External degree of freedom, 327, 337Eyring (Henry), 5, 234, 235, 326,

373

FEGSEM, see Field emission gun scanningelectron microscopy

Ferry (John D.), 29, 165, 193, 204, 215, 262,447, 664, 675, 683

FF, see Frozen free-volume fractionFiber suspensions, 661Fictive temperature, 207, 210, 360, 362,

384Field emission gun scanning electron

microscopy, 566Finite element calculation, 144First normal stress difference, 94, 649, 660,

681Flexibility ratio, 326, 347, 348, 352Flory (Paul, J.), 42, 52, 172, 244, 284,

289, 302, 307, 311, 313, 324,326, 573

Flory-Orwoll-Vrij (FOV), 237, 238, 241,249, 324, 329

liquid crystals, 284, 289, 302, 307, 311,313

polymer solutions, 27, 29, 52, 172, 244,326, 329, 447, 573

Flory-Fox equation, 31–33, 37, 39, 42,79, 324, 447

Flow curve, 651, 655, 660, 662of suspensions, 662reversal, 654, 659

Fluorescence, 359, 366, 369, 383, 594Fluorescent probe, 212, 369Fluorohectorite (FH), 507, 511, 528. See

also Somasif ME-100Fokker–Planck–Kolmogorov, 11, 181Formation probability, 427, 476Fourier transform infrared spectroscopy,

369, 382, 511Fox (Thomas G.) equation, 42, 79, 484,

486Fraction of occupied sites, 327, 341, 342Fragility of polymers, 447, 575, 576Free radicals, 3, 476Free volume

and glass transition, 434–436, 443–444,486–488

762 SUBJECT INDEX

Free volume (Continued)and molecular motion, 164–168,

307, 314, 408, 409, 446–448,455–459

PALS, 368, 369, 394–416, 421–461,474–515, 575

rheology, 28, 57, 259–262, 447, 448,491, 641, 664, 673–675, 690, 706

surface tension, 324–352concept evolution, 229–235, 240,

243–246, 326excess, 494fractional, 364, 412, 413, 450, 456, 477,

481, 482, 483, 484, 485, 487, 488,491, 492, 497, 499, 505, 509, 514,515

in crystalline polymers, 494–505, 515,567–572

nanocomposites, 256–259, 505–514,528, 554, 555–596

polymer blends, 483–493, 514S-S theory, 162–164, 168, 215,

228–270, 307, 327, 329, 339, 342,404, 405, 410–415, 422, 438–445,447–452, 455, 460, 477–483,555–557

vitreous state (aging), 161–189, 193,209, 211, 213, 262–266, 358, 359,364–366, 371, 372, 374, 375,377–381, 383–385, 475, 562, 565,573, 585–596

pressure dependence, 436–438strain dependence, 481–482, 503–505temperature dependence, 405–415,

431–436, 485–486, 492–493,494–495, 498–499

Freely standing film, 192, 201, 202, 203,204, 206

Frequency shift factor (aT), 664Frisch (Harry L.), 7, 643Frozen free-volume fraction, 31–34, 39,

265, 573, 592, 595FT-IR, see Fourier transform infrared

spectroscopy

Gallery spacings, 506, 508, 583, 648Gas barrier properties, 325, 511, 554, 560,

621, 629, 646, 675Gas transport, 474, 511

Gas-like, 235, 244, 326Gibbs (Julian H.), 252, 348, 362, 363, 383,

456Gibbs and DiMarzio, 193, 215, 362. See

also DiMarzio and GibbsGiesekus (Hanswalter) model, 680Glass

analysis using S-S theory, 9–11, 232, 234,242, 256, 264, 437, 440, 556–562,573–595

properties, 9, 10, 152, 153, 173–180, 188,193, 264–266, 366–371, 440, 446,476–480, 483, 491, 499, 532, 533,539, 555, 561, 562, 574–596, 613,670, 689, 690

transition, 20, 151, 163, 171, 194–196,210, 214, 262–265, 267, 362, 366,375, 437, 458, 459, 474, 479, 485,488, 528, 568, 574, 575, 585, 683

transition temperature, Tg, 28, 57, 59, 240,259–264, 267–270, 333, 408, 439,440, 442–448, 450–453, 455–457,478, 497, 512, 528, 560–562,573–576, 613, 674–676, 683

in blends, 137, 331, 375, 376, 378–380,382, 383, 484–489, 493

in confinement, 192–208, 210–214, 529in nanocomposites, 506, 510, 529–533,

537, 539, 544, 562–570, 573584–595, 621, 684, 685, 687–692

in PALS, 404, 405, 408–410, 413–415,422, 423, 431–436, 447, 457–460,476, 478–486, 488, 493, 495–497,500, 501, 510, 514, 576

in PVT tests, 246, 263, 264, 266, 331in volume relaxation and aging, 162,

164, 165, 168–170, 172–174, 187,358–360, 362, 367, 374–384

Glass-forming liquids, 172, 191, 192, 194,195, 200, 214, 262–264, 373, 447,453, 529, 575

Glassy state or phase, 137, 144, 195aging, 164, 169, 172, 187, 358, 359,

362–364, 384PVT, 228, 242, 262, 265, 266, 270PALS, 409, 431, 436, 438, 441–443, 475,

480, 482, 483, 496, 512nanocomposites, 556, 561, 562, 584, 585,

587, 589, 591, 595

SUBJECT INDEX 763

Gordon-Taylor, 331, 486, 487Grüneisen (Eduard) parameter, 10, 240–242Guth (Eugene), 4, 5

Hairy clay platelets model, 259, 581, 670,694

Hamaker (Hugo C.) constant, 651Hardness, 131, 146, 200Hartmann (Bruce), 240, 480HCP, see Hairy clay platelets modelHDPE, see Polyethylene, high densityHeat capacity, 197, 241, 358, 360, 362, 363,

486, 497, 532transfer, 90, 91

Hectorite (HT), 645, 646. See alsoFluorohectorite

Helical wormlike coil model, 34, 78Helmholtz (Hermann, von) free energy,

163, 234, 235, 240, 245, 439, 556,562

Hencky (Heinrich) strain, 669–672Hertz (Heinrich) model, 138, 148Hertzian contact mechanics, 131, 133–135,

139, 141, 143Hexafluoroisopropylidene bis(phthalic

anhydride-oxydianiline), 429High-resolution TEM, 538, 583Hole, 10, 70, 180, 204, 228, 234, 235, 238,

243, 259, 262, 269, 324, 326, 327,368, 572, 576

density, 405, 422, 438, 440–445, 457,498

expansion, 411, 413, 415, 497fraction, 165, 244, 245, 252, 257, 260,

334, 337, 340, 351, 371, 404–406,422, 437–441, 443, 444, 454, 455,478, 479, 500, 554, 562, 573, 589,590, 593, 674

morphology, 394PALS, 395, 400, 407, 416, 423–425, 427,

430, 434, 446, 447, 449, 450–452,456, 474, 476, 480, 484, 501, 503,510, 515

radius, 394, 401, 422, 428, 429, 434, 437,477, 505

rheology, 664, 676size, 395, 411, 424, 428, 429, 431–433,

435–437, 441, 443, 458, 459, 475,485, 488, 491, 504, 512, 575

theory, 9, 11, 162–164, 172, 244, 249,364, 404, 413, 422, 437, 442, 556,593

volume, 398, 405, 406, 410–412, 422,428, 433, 437, 438, 440–445, 453,459, 460, 475, 477, 483, 495, 498,504, 505, 512

House of cards, 641, 645, 648HRTEM, see High-resolution TEMHuggins (Maurice L.), 5, 8, 24, 60, 71, 172,

244, 248, 326Hyaluronic acid, 39Hydrodynamic

interactions, 4, 19, 23, 27–31, 38, 42, 56,59, 61, 64, 68, 71, 73, 74, 79, 115,492, 493, 640

radius, 28, 32, 34, 38, 43, 74, 79Hydrodynamics, 3, 7, 492, 493

polymer solutions, 18–20, 27–29, 34–39,42, 43, 51, 55–57, 59, 61, 64, 65, 68,70–74, 79

rheology of nanocomposites, 640, 647,655, 676, 679

Hydrogen bonding, 18, 101, 374, 377–380,383–385, 511, 531, 534, 594

Hydrostatic pressure, 193, 195, 680Hydroxyapatite (HAp), 526, 529Hydroxypropylcellulose (HPC), 59, 60Hyperbranched polymer, 511–513Hysteresis loops, 662I3 (PALS 3-rd lifetime intensity), 368,

403–405, 424–427, 430–433,436–438, 460, 474–477, 479–482,484, 485, 487–495, 497–500, 502,503, 507–514, 575

IIR, see Isobutylene-co-isoprene rubberImmiscible, 137, 138, 483, 485, 490, 491,

530, 555, 557, 587, 690blend, 138, 483–485, 490

Indenter, 131Infrared spectroscopy, 511, 535, 611Interaction, adhesive, 132, 137, 148Interaction(s)

coefficient/parameter, 231, 250, 284, 563,572, 680

dipolar, see Dipolar interaction(s)electrostatic, 18, 27, 45–48, 72, 74–77,

79, 113

764 SUBJECT INDEX

Interaction(s) (Continued )energy, 235, 239, 242excluded volume, 33, 34, 53, 56hydrodynamic, see Hydrodynamic,

interactionsinterfacial, 384, 506, 510, 511, 515, 527,

529, 531, 539, 544, 554, 559, 578,621, 672, 680, 683, 684, 692

intermolecular, 47, 65, 68, 79, 234, 235,238, 254, 288, 302, 311, 555, 560,632

interparticle, 25, 642, 661, 678, 682Lennard-Jones, 7, 163, 251, 253, 254,

257–259, 267, 270, 326, 556–558,572–574, 576, 579–584, 595. Seealso Lennard-Jones interaction(s)

nematic, 48, 49, 51, 52, 312, 313, 649quantum, see Quantum interactionssurface, see Surface, interactionthermodynamic, see Thermodynamics,

interaction(s)Intercalated nanocomposites, 506, 511, 530,

645, 653, 655, 657–660, 668, 676,678, 683, 684, 689

Intercalation, 511, 527, 529, 641, 642, 646,657, 668, 669

Interdiffusion, 460, 461, 488, 489Interface, 142, 155, 483, 494, 495, 503, 506,

531, 532, 629, 689Interfacial polarization, 529, 685Interlayer spacing (d001), 257, 258, 528, 559,

565, 567, 572, 578, 582, 641, 644,655, 658, 668–670, 672, 684, 694

Internalmixer, 657, 686pressure, 231, 240, 245, 338, 339, 351

Interphase layer, 489Interrupted stress growth, 655Intersegmental attraction energy, 164Intrinsic viscosity, 8, 20, 23, 26–29, 31,

37–40, 42, 47, 48, 78, 79, 100, 102,642

iPP or PP, see Polypropylene (isotactic, PP)IR, see PolyisopreneIsobutylene-co-isoprene rubber, 148–156Isochoric

aging, 211relaxation time, 453, 454test of Gay-Lussac, 229

Isothermal compressibility, 305, 306, 328,332, 369, 440

Isotropic conductive adhesives, 538

Jamieson (Alexander M.), 1, 10, 17,27, 48, 50, 53–55, 61, 68, 110,473, 488

JKR model, see Johnson-Kendall-RobertsJohnson-Kendall-Roberts, 133–136, 148,

150–153, 155–157

KAHR model, seeKovacs-Aklonis-Hutchinson-Ramosmodel

Kapton, 395, 493Kauzmann temperature, TK, 363, 561Kirkwood-Riseman theory, 29, 31, 34, 59Kohlrausch(Rudolf) exponent, 576Kohlrausch-Williams-Watts (KWW) model,

362, 365, 370, 373Kolmogorov (Andrey N.), 11, 166, 181Kovacs (André J.), 11, 162, 163, 169–172,

175, 184, 207, 211, 213, 362, 366,367, 486, 487, 565, 593

Kovacs-Aklonis-Hutchinson-Ramos model,163, 211

Kratky-Porod (KP) model, 35, 36KWW, see Kohlrausch-Williams-Watts

model

Layered double hydroxide (LDH), 646, 647,659

LCP mesogens, 649LCP, see Liquid crystal, polymerLCs, see Liquid crystalLCST, see Lower critical solution

temperatureLDPE, see Polyethylene, low densityLead zirconate titanate (PZT), 538Lennard-Jones (John), 231, 233–238, 240,

242, 244, 255, 265, 268, 324, 576,579–581, 583

Lennard-Jones interaction(s), 7, 163, 251,253, 254, 257–259, 267, 270, 326,556–558, 572–574, 576, 579–584,595

Leslie (Frank M.) viscosity coefficient, 48Lifetime

free volume distribution, 422–427,429–433, 436–438, 455, 459

SUBJECT INDEX 765

heterogeneous polymeric systems, 488,489, 493, 494, 498, 501–504,506–512, 514

hole morphology, 394, 396–401, 403,405, 407–410, 412–414

spectroscopy, 10, 204, 368, 381, 474–477,481, 482, 575, 576

Linear viscoelastic behavior, 653, 658,672

Liquid crystal, 284–286, 288–294, 297,299–301, 303, 307–309, 312–315

polymer (LCP), 49, 52–55, 79, 648–651,653, 654, 659, 661, 666, 672, 694

Liquidlike, 284, 298, 369, 449, 455, 504,505, 515, 574, 648, 658, 667, 679,689

Loading, 132, 134, 154–157, 256, 258–530,538, 559, 560, 565, 578, 585, 586,594, 595, 647, 653, 655, 658, 659,667–670, 684, 685, 690, 692, 694

Loss modulus, 689, 690tangent, 148, 149, 153

Lower critical solution temperature (LCST),483, 646, 647, 659

LT9.0 = PALS analysis program, 398, 422,423, 425–427, 430, 431, 475

Lyngaae-Jørgensen (Jørgen), 258, 259, 264,557, 581, 647

Lyngaae-Jørgensen and Utracki, 264. Seealso Utracki and Lyngaae-Jørgensen

MAF, see Mobile amorphous fractionMaleated

EPR, 686, 687LDPE, 659polyethylene, 668PP, 645

Mark (Herman), 3–7, 24, 28, 32, 50, 56, 57Marshall and Petrie (P-M), 363Master curve, 334, 340–342, 347, 351, 352,

654, 674Masterbatch, 146Material-point-method simulation (MPM),

677Mathematica, 188Maximum drag reduction asymptote

(MDRA), 91, 94–96, 98, 101MC, see Monte Carlo simulationsMCT, see Mode-coupling theory

MD, see Molecular, dynamicsMean hole, 428, 433, 437, 438, 440–442,

453, 458–460, 477, 483, 495, 505Mean-field approximation, 163Mechanical degradation, 90, 105, 106

properties, 130, 131, 137, 139, 141, 145,192, 257, 358, 359, 370, 488, 493,526, 528, 530, 531, 534–536, 538,539, 544, 646, 677, 687, 691

Meissner-type Rheometrics elongationalrheometer for melts (RME), 670, 671

Meltcompounding, 527, 536, 563, 577, 582,

583, 593, 594, 657, 663, 669, 684,686, 687, 689–693

compressibility, 246, 445, 446, 488, 555,567–569, 570–572

-crystallized, 496–500gas solubility in, 252–254isotropic, 284, 285, 288–290, 294,

298–302, 305, 307, 310–312lattice model, 163,164, 232, 237,238, 240,

241, 268, 270, 404, 476, 479, 480,482, 562, 587, 653

rheology, 62, 64–66, 260, 488, 561,653–683

structure, 261–263, 358, 533, 560, 561,563, 584, 585

temperature dependence, 162, 169, 487,653

thermal expansion, 485, 555, 564,569–570, 594

Melting point, 234, 240, 258, 261, 263, 267,284, 303, 501, 510, 528, 560, 567,592, 596, 609–611, 616, 617, 619,620, 634

depression, 203Mercaptide(s), 612–616, 618–620, 630

-Ag, 612-Bi, 619, 620-Co, 618-Sb, 612-Zn, 618synthesis, 635thermolysis, 612, 614, 619

Microemulsion, 193, 194Microhardness, 494Midha-Nanda-Simha-Jain (MNSJ) theory,

267–270, 596

766 SUBJECT INDEX

Miesowicz (Marian) viscosity, 48, 49, 53, 55Miscibility, 194, 249, 254, 291, 483–485,

491–493, 514, 554, 645, 690Miscible polymer blends, 146, 254, 325,

348, 375, 460, 474, 483–485, 488,491, 493, 514, 653

Mixed, 93, 112, 113, 146, 148, 378, 398,460, 484, 488–490, 508, 607, 616,619

MMT, see MontmorilloniteMNSJ theory, see Midha-Nanda-Simha-Jain

theoryMobile amorphous fraction (MAF),

495–501, 512, 515Mode-coupling theory (MCT), 261, 263,

561, 573, 574, 584Modified cell model (MCM), 240Modulated DSC, 486Modulus

dielectric, 539, 540,dynamic, 56, 148, 149, 530, 531, 537,

658, 664,665, 668, 677, 683, 684,686–693

plateau, 65, 78, 678, 689relaxation, 370tensile/Young, 61, 77, 162, 188, 192, 242,

534, 535, 544aging effect on, 358, 370bulk, 174, 195, 232, 240, 254, 256, 257in nanocomposites, 594, 646, 668, 679,

684–687 689, 690, 692, 693in nanomechanical tests, 130, 131, 133,

135–148, 150, 151, 153–156Molecular

dynamics (MD), 56, 231, 264, 289, 557,558, 593, 675–677, 689, 695

mobility, 139, 259, 385, 495, 533, 544,557, 558, 581, 676, 688

modeling, 429, 430, 561, 573, 584network, 675, 682weight and crystallinity, 494, 495

enthalpy, 423entropy, 290glass transition, 195, 202, 204, 206,

408, 412, 415lattice theory, 232, 235, 236, 239, 244,

249, 253, 265, 479–481, 556, 572,582

rheology, 259, 260, 648, 663, 674, 684,691

solution viscosity, 23, 24, 29–33, 37,39, 41, 43, 46, 47, 50–53, 56–68, 71,73, 74, 78, 79, 90, 92, 94, 96,100–103, 105

specific volume, 413weight distribution (MWD), 101, 260

for entanglement, 20Monte Carlo (MC) simulations, 42–44,

231, 234, 289, 430, 449, 557, 675,682

Montmorillonitegeneral, 645–647, 690–693in

aliphatic polyester, 512, 513elastomers, 684–688epoxy, 383, 508, 511EVAc, 511, 663PA-6, 258, 530, 531, 559, 570, 578,

648, 655–657, 659–662, 664–667,672, 673, 676, 680, 681, 689–691,693

PBT, 658, 668PC, 689PE, 668, 694PLA, 531PMMA, 669, 689PP, 258, 530, 531, 645, 654, 657, 658,

668, 670, 671, 676, 678, 679, 693PS, 258, 560, 563, 565, 566, 568–572,

579–581, 583, 584, 586–588, 590,592, 594, 595, 669, 671, 672, 681,688, 689, 693

Montroll (Elliot), 6Moynihan (Cornelius T.), 210, 358,

360, 383Multiplicity of relaxation times, 187Multiscale modeling, 677Munstedt-type Rheometrics extensional

rheometer (RER), 671

Nanocomposites, 9, 130, 474, 515, 554, 606,607, 640. See also Polymer,polymeric nanocomposites; PNC;CPNC

withcarbon black, 139–145, 684–688carbon nanotubes, 526, 527, 535–538,fluorohectorite, 506, 507, 511, 528,

669, 689, 692hydroxyapatite, 526, 527, 529, 532–534

SUBJECT INDEX 767

layered double hydroxide, 646, 647,659

montmorillonite, 256–259, 265, 267,505–514, 526–532, 554–595,645–648, 652–660, 654–673, 676,678–681, 684–694

nanospheres, 531, 610–635, 648silica, 383–385, 506, 508–510, 531,

645, 646, 648, 685, 689TiO2 nanotubes, 535, 538–545

Nanoholes, 481, 482, 485, 506, 508, 510,512, 514, 515

- number density of, 482, 514Nanoindenter, 131Nanomechanical mapping, 138, 140, 145,

146, 150, 153Nanopalpation, 130, 131, 157Nanoparticles, 196, 214, 526–528, 530–535,

538, 539, 544, 545, 554, 555, 641,645, 648, 675–677, 682, 683,688–690. See also Hydroxyapatite;Hectorite; Layered doublehydroxide; Montmorillonite;Silica

metal, 606, 610, 611, 621, 622, 626, 629,634, 635

metal oxide, 506, 528, 594Nanopores, 211Nanorheological mapping, 148Nanorheology, 130Nanoscale, 130, 191–194, 195, 197, 200,

209–211, 214, 215, 506, 641Nanotribology, 130Nanovoids, 501Narayanaswamy (Onbathiveli S.), 210, 358,

360, 593Natural rubber (NR), 133, 134, 139–141,

144, 150, 511Nematic conformation, 285, 290, 300, 301,

303, 311, 313, 314Newtonian

behavior, 642, 652, 653, 659, 661,680

flow, 94, 97, 99, 114of polymer solutions, 18–80

Ngai (Kia L.), 261, 262, 264, 365, 376,432, 447, 459, 561, 575, 584,674

NMR, see Nuclear magnetic resonanceNon-Arrhenius behavior, 453

Nondraining coil, 24, 29, 31, 34, 36, 38, 78Nonionic, 45, 111NR, see Natural rubberNuclear magnetic resonance (NMR), 9, 110,

139, 141, 287, 289–292, 297, 299,300, 308, 310, 314, 457, 528, 561,629, 689

Occupied volume, 229, 230, 237, 264,405, 436, 439–442, 446, 450, 482,674

Optical polarizability, 302Ore model, 399Organoclay or organo-silicate, 257, 258,

506–508, 554, 556, 560, 563, 565,578, 583–588, 592, 595, 655, 660,662, 668, 670, 671, 684–687,690–692. See also Cloisite

Orientation tensor, 679Orientational order parameter, 289Orientation-dependent interactions, 291ortho-positronium (o-Ps), 368, 575, 394,

424, 474, 498, 502ortho -terphenyl (o-TP), 193, 197, 198,

209–211

P2VP, see Poly(2-vinylpyrrolidone)P4CS, see Poly(4-chlorostyrene)P4MS, see Poly(4-methyl styrene)PA-6, see Polyamide-6PALS, see Positron annihilation lifetime

spectroscopyPAN, see PolyacrylonitrileParachor, 342, 343, 345, 346para-positronium (p-Ps), 394, 397, 401,

424–427, 430, 431, 433, 474, 494,500, 503

Particle shape, 5, 27, 214, 611, 628, 689PBD, see PolybutadienePBMA, see Poly(butyl methacrylate)PC, see Polycarbonate of bisphenol APDMS, see Poly(dimethyl siloxane)PEEK, see Poly(etheretherketone)PEG, see Polyethylene oxide (glycol)PE-MA, see Maleated, polyethylenePEMA, see Poly(ethyl methacrylate)Penetrant, 508Percolation models, 215, 537Perfluoroelastomer, 434Perfluoropolyether, 408–410, 412, 413

768 SUBJECT INDEX

Permeability, 27, 28, 78, 213, 214, 252, 257,496, 498, 506, 508–510, 527, 560,675

PET, see Poly(ethylene terephthalate)PFE, see Perfluoro elastomerPhase transitions, 192, 301, 619, 652Phlogopite mica, 647Photoelectric sensing, 635Physical aging, 10, 11, 162, 180, 188, 189,

206, 208, 209, 214, 264–266, 270,358–385, 475, 479, 488, 527, 555,591–596

rate, 384, 594PIB, see Poly(isobutylene)Pick-off annihilation, 424Piezoelectric coefficient, 543, 544

scanner, 131, 133Plateau modulus, 65, 689Platelet-like, 511, 512PMMA, see Poly(methyl methacrylate)PMP, see Poly(4-methyl-2-pentyne)PMPhS, see Poly(methylphenylsiloxane)PNC, see Polymeric nanocompositesPoisson ratio, 676Polarizability, 284, 302Poly(1-trimethylsilyl-1-propyne), 510Poly(2,6-dimethyl-1,4-phenylene ether),

PPE, 254, 255, 374–377, 379, 488,573, 574

Poly(2-vinylpyrrolidone), P2VP, 75, 377,378, 383, 531, 594

Poly(4-chlorostyrene), P4CS, 374, 375Poly(4-methyl styrene), P4MS, 374, 378Poly(4-methyl-2-pentyne), PMP, 508, 510Poly(butyl methacrylate), PBMA, 435, 452Poly(dimethylsiloxane), PDMS, 32, 92, 100,

134, 136, 148, 149, 154–156, 426,427, 432, 435, 443, 509, 510, 531

Poly(etheretherketone), PEEK, 400, 494Poly(ethyl methacrylate), PEMA, 435, 452Poly(ethylene oxide), PEG, 92, 485, 488,

494Poly(ethylene terephthalate), PET, 314,

431–435, 442, 443, 458, 459,496–500, 512

Poly(ethylene-co-1-octene), PO, 495Poly(ethylene-co-vinyl acetate), EVAc, 511Poly(isobutylene), PIB, 32, 92, 104, 105,

137, 138, 145, 434–438, 442, 443,452, 576

Poly(isobutylene-co-p-methyl styrene), 655Poly(methyl methacrylate), PMMA, 32, 36,

37, 200, 201, 203, 212, 260, 265,376, 377, 382–384, 404, 435, 452,480, 481, 485, 488–490, 492, 528,530, 531, 538, 574, 576, 594, 614,634, 671, 689

Poly(methylphenylsiloxane), PMPhS, 434,435, 452–456, 459

Poly(n-hexyl isocyanate), PnHIC, 67, 69Poly(propyl methacrylate), PPMA, 435,

452Poly(propylene glycol), PPG, 413–415Poly(styrene-co-maleic anhydride), SMA,

435, 484, 488–490Poly(styrene-stat-acrylonitrile), SAN, 330,

331, 333–347, 350–352, 376, 377,484, 491, 492, 576

Poly(tetra-fluoro ethylene), PTFE, 436, 499,501, 506

Polyacrylonitrile (PAN), 342Polyamide - semi-aromatic (PA-11T10),

527with hydroxyapatite, 527, 532–535

Polyamide-6 (PA-6), 490, 491, 554, 557Polyamide-11 (PA-11), 539–541, 543Polyamide-12 (PA-12), 662Polybutadiene (PBD), 43, 485, 558, 684Polycarbonate of bisphenol A (PC), 188,

189, 203, 207, 208, 264, 371, 396,435, 439, 440–442, 445, 446,480–484, 515, 554, 574, 614, 634,689

Polycondensation, 655–667Polyelectrolyte solutions, 45–48, 71–78Polyethylene (PE), 242, 267, 312, 475, 476,

494, 503, 515, 621, 646, 668high density (HDPE), 495, 506, 574low density (LDPE), 659

Polyethylene oxide (PEG), 111, 648Polyisobutylene (PIB), 434Polyisoprene (IR), 43, 65, 66, 485, 684,

685Polymer

alloys, 130, 146, 157, 653blends, 9, 137, 254, 264, 325, 351, 377,

474, 483–501, 514, 614, 687, 688branched or star, 41–44, 65, 66, 79, 460,

494, 511–513, 661, 663, 670composites, 130, 535, 538, 539, 608, 653

SUBJECT INDEX 769

dynamics, 18, 20, 38, 53, 56, 59,62, 64, 68, 70, 77, 79, 200–206,376, 383, 385, 415, 423, 436,449, 453–460, 488, 527–534, 539,554, 558–561, 569, 574, 584, 593,647

entanglement, 20, 28, 56, 57, 59–66, 68,70, 75, 77, 79, 363, 654, 677

hydrodynamic interactions, 28–31, 56, 59,61, 64, 68, 73, 74, 492, 493, 640,647, 655, 676, 679

in theta solvent, 24, 30–33, 36, 37, 41–43,56, 57, 59, 62, 63, 65, 66, 79,100–102, 115

ionic (polyelectrolyte), 45–48, 71, 73, 74,77, 79

liquid crystal (LCP), 48–55, 79, 284–315,648–651, 653, 654, 659, 661, 666,672, 694

matrix, 368, 369, 476, 505, 506, 509, 510,515, 527, 536, 555, 557, 579, 581,606, 610, 613, 614, 620, 625, 629,631, 635, 641, 647, 658, 662, 671,681, 682, 688

molecular structure, 100, 162, 203,284–286, 289, 291, 293, 299, 300,303, 307, 310, 403–404, 408, 410,475, 476, 490, 499, 501, 502, 506,614, 629

polymeric nanocomposites (PNC),130–157, 214, 228, 257, 265, 474,481, 505–515, 527–545, 554, 565,567–569, 571, 572, 576–579, 581,585–595, 607, 610–613, 634, 635,641, 642, 645–695. See alsoNanocomposites and CPNC

processing, 145, 270, 385, 503, 527, 530,535, 536, 538, 572, 594, 659, 691,695

relaxation, 163–189, 358–385, 488, 494,528, 529, 544, 563, 584, 650, 655,659, 660, 666

dielectric, 448, 453, 454, 532, 539, 540,575, 684

dynamic, 168, 453, 454, 544free volume, 164, 165isochoric, 454molecular, 364, 365, 379, 555segmental, 446, 447, 454, 366, 374,

376, 378, 561, 574–576

structural, 358, 364, 366, 368, 423, 446,448–450, 453, 455, 459, 574, 593

volume, 359, 365, 366, 369–372, 384α-relaxation, 359, 365, 423, 447, 450,

456, 457, 539, 591β-relaxation, 384, 448, 534, 594

solution viscosity, 18–80, 90–92, 94–97,99–105, 114, 115

thermodynamics, 9–11, 163–168, 231,232, 235, 351, 358, 359, 362, 364,366, 368, 375, 404, 405, 554–557,560, 562, 563, 587, 591, 640, 641,648, 675, 683

bulk properties, 330–342cell-hole theory, 243–258, 264–266,

324–328interactions, 234, 251, 253, 254,

257–259, 556–558, 576of crystalline substances, 241–243,

276–269of LCP, 288–313of vitreous state, 264–266

thin films, 192, 200–206, 212, 214, 611Flory-Fox equation, 31–33, 37, 39, 42, 79Kirkwood-Riseman theory, 31, 34, 59

Polymers, the beginning, 2–4, 6–9, 235–241Polypropylene (isotactic, PP)

blend, 145, 195maleated, 530, 580, 645, 654, 655, 657,

658, 668–672, 679, 690–692nanocomposite, 529, 530, 577–582, 645,

654, 655, 657, 658, 668–672, 676,678–680, 687, 689–693

PALS data, 398, 413, 435, 475, 476, 506rheology, 260, 654, 655–658, 668–672,

679, 690–692Polystyrene (PS)

aging, 174–176, 178, 179, 188, 374–377,379, 380, 383, 384

in blends, 137, 138, 254, 255, 288,375–377, 379, 382, 483, 484, 488,489

in solutions, 30–32, 36, 37, 43, 44, 62, 69,92, 102–105

nanocomposite, 258, 383, 384, 506, 507,528, 530, 531, 535, 538, 554, 614,617, 618, 620, 621, 623, 624, 627,634

free volume, 557, 559, 560, 563–571,573–592, 594–596

770 SUBJECT INDEX

Polystyrene (PS) (Continued )rheology, 655, 662, 664, 669, 671, 672,

675, 681, 685, 688–690, 692, 693nanospheres, 195, 196PALS data, 405–408, 410, 415, 434, 435,

444, 475, 476, 479–484, 488,489–503, 506, 507

PVT testing, 174–176, 178, 179, 188, 246,247, 265, 266, 303, 330, 333, 335,341, 342

surface tension, 344thin film, 192, 195, 196, 200–206, 211with gas, 252–255, 503

Polysulfide’s, 614Polysulfone (PSF), 203Polytetrafluoroethylene (PTFE), 436, 506Polyurethane elastomer (PU), 511, 685Polyvinyl acetate (PVAc), 101, 202, 205,

330, 333, 335, 344, 621, 624PALS, 452, 479, 576, 614physical aging, 164, 168–171, 173–175,

184, 187, 188, 359, 366, 367, 369,371, 372, 374, 375, 377, 378

Polyvinyl alcohol (PVAl, PVOH), 333, 335,337, 340, 342, 344, 346

Polyvinyl chloride (PVC), 207, 435, 493,646, 686

Polyvinyl methyl ether (PVME), 374–376,378–380, 382, 488

Positron, 10, 368, 381, 394–400, 404, 410,422–427, 429, 431, 432, 436, 460,474–476, 479, 482, 489, 493, 494,497, 503, 514, 554

Positron annihilation lifetime spectroscopy(PALS), 204, 228, 270, 394–397,400, 421, 422, 554

PALS and free volume, 230, 403–408,411, 415, 416, 429, 432, 435, 436,438, 440, 441, 443, 445–447, 452,455–460, 474–506, 508–511, 514,515, 560, 575, 576

PALS and physical aging, 368, 369, 374,377, 378, 380, 381

Positron source, 432, 475, 479, 482, 493,497, 514

thermalization, 400, 425, 474Positronium (Ps), 368, 394, 399, 422, 423,

474–476, 482, 484, 485, 494, 498,502, 575

formation, 399, 400, 403, 424, 425,427, 428, 433, 436, 438, 460,475, 476, 488, 494, 495,498, 501–503, 507, 509, 512,514

Potential well, 400, 401, 428, 429, 474Power-law, 43, 56, 59, 60, 65, 208, 649, 660,

663, 670, 679PP or iPP, see Polypropylene (isotactic)PPE, see Poly(2,6-dimethyl-1,4-phenylene

ether)PPG, see Poly(propylene glycol)PPMA, see Poly(propyl methacrylate)PP-MA, see Polypropylene, maleatedPPO, see Poly(2,6-dimethyl-1,4-phenylene

ether)p-Ps, see para-positroniumPressure dilatometry, 246Pressure gradient, 587Pressure steps, 175, 176, 188Prigogine (Ilya), 7, 9, 234–238, 240, 241,

249, 250, 310, 324, 573Prigogine-Trappeniers-Mathot model, 235,

237Probabilities, 289, 401, 423, 425, 427, 428,

430, 433, 438, 475, 476, 503, 504,512–514

Probability, 11, 105, 165, 166, 168, 180,350, 593, 629, 659

Propylene glycol, 197, 414, 669, 671Ps formation, see Positronium, formationPS, see PolystyrenePSF, see PolysulfonePSMA or SMA, see Poly(styrene-co-maleic

anhydride)PTFE, see Poly(tetrafluoro ethylene)PTM, see Prigogine-Trappeniers-Mathot

modelPTMSP, see Poly(1-trimethylsilyl-1-

propyne)PU, see Polyurethane elastomerPVA or PVAc, see Polyvinyl acetatePVAl, PVOH, see Polyvinyl alcoholPVC, see Polyvinyl chloridePVME, see Polyvinyl methyl etherPVP (PV2P), see Poly(vinylpyrrolidone),PVT

analysis, 9, 10, 291, 314cell theory, 7, 237

SUBJECT INDEX 771

data, 246, 260, 265–268, 303–306, 309,312, 324, 325, 331, 333, 340, 352,437, 439, 443–447, 450, 458, 460,477, 479, 499, 555, 557, 562–594,674

early eos, 228, 231, 234, 237–242hole theory, 10, 163, 164, 245, 249–252,

325–329, 422, 556–560. See alsoEquation of state (S-S)

of glass, 174, 262–267, 560–562of liquid crystals, 285, 286, 291, 300–306,

309, 310, 312, 314of multicomponent systems, 250–259,

270, 324, 325, 340, 352, 499, 506,515, 554–557, 562–567, 576, 578,579, 585–587, 589, 590, 592,594–596, 665, 674

of semicrystalline polymers, 267–269,567–572

Pyroelectric coefficient, 543, 544

Quach and Simha, 10, 174, 232, 265,478, 560, 561, 563, 569,585, 589

Quadrupolar splitting, 287, 289–291, 297,298, 300

Quantum interactions, 242Quantum-size effects, 608, 609

Radiusdistribution, 428, 430, 475of gyration, 20, 24, 29–31,

33, 34, 39, 41, 52, 61, 76, 79,96, 581

Random copolymer, 67, 75, 307, 324, 325,330, 344, 345, 533, 685

Randomization of particle orientation, 653Rate equations, 168, 169, 180Rate of physical aging, 264, 527, 561, 594Rearrangement cell, 165Reduction parameter, 327, 328,

334, 337Rejuvenation, 476, 485Relative modulus, 685, 690–692Relaxation

dynamics, 197, 383, 529enthalpy, 359, 360, 365–367, 370–373,

375–381, 383experiments, 370, 377, 441, 654

modes/processes, 261–263, 266, 358,359, 362, 365, 384, 494, 528, 539,574–576

molecular/segmental, 364, 365, 374,376, 378, 384, 446–448, 453–455,457, 528, 529, 532–534, 539, 540,544, 555, 561, 584, 594, 659,683–685

rate, 165, 172, 187, 385, 529spectrum, 370, 667spin-spin, T2, 139stress, 115, 359, 366, 370–372, 377, 488,

591, 593, 655, 668structural, 263, 364, 368, 423, 424, 432,

446, 448–450, 453, 455, 459, 574,584, 593

time, 65, 77, 110, 165, 187, 210, 261, 363,365, 366, 378, 384, 448, 454, 459,532, 534, 539, 561, 593, 650, 654,655, 660, 663, 666, 667, 679, 680,685

conformational, 29, 49–51, 53distribution, 165, 180, 362, 373, 376,

378–380in glassy region, 168, 169, 174, 175molecular motion, 56, 114, 410, 432,

453–455spin-spin, T2, 139

transition, 261viscoelastic, 360, 370, 663volume, 11, 162–188, 266, 359, 365–366,

369–372, 384, 591Zimm-type, 63

Reptation, 259model, 61–65, 79, 115

RER, see Münstedt-type Rheometricsextensional rheometer

Rheological properties, 91, 92, 94, 137, 654,695

Rigid amorphous fraction (RAF), 195,214, 474, 495, 496, 512, 514, 533,534

RME, see Meissner-type Rheometricselongational rheometer for melts

Robert (Simha), see Simha (Robert)Robertson (Richard E), 10, 11, 161,

162, 165, 167–180, 183, 187–189,266, 359, 364, 384, 422, 437, 439,593

772 SUBJECT INDEX

Room temperature, 137, 148, 149, 151, 153,242, 305, 351, 429, 436, 443, 446,483, 496, 497, 499–501, 503, 537,563, 592, 593, 614, 616–619, 691,692

Rouse (Prince, E.), 29, 56, 63, 64, 73, 77Rubber, 3, 4, 139, 141, 143–148, 151, 153,

195, 431, 441, 442, 491, 493, 560,684, 685, 686

SAN, see Poly(styrene-stat-acrylonitrile)Sanchez and Lacombe eos (S-L), 241, 249Scaling (characteristic) parameters, 164,

237, 255, 268, 439, 478Scanning calorimetry, 366, 432, 485, 528Scan up or down in frequencies, 655Schrodinger (Erwin R. J. A.), 2, 11, 184,

188, 266, 401Scintillators, 395Secondary transitions, 238, 246, 564, 572,

596Segment molecular mass, 337Segmental conformational changes, 164Semicrystalline polymers, 195, 214, 242,

256, 403, 432, 460, 474, 494, 496,512, 514, 555, 570, 572, 592, 596,694

Sentmanat extensional rheometer, 672SER, see Sentmanat extensional rheometerSessile drop method, 342SFA, see Surface, force apparatusShear

induced structure, 94, 110, 113stress, 18, 19, 21, 22, 55, 95, 96, 105, 115,

146, 314, 593, 649, 650, 678, 680,681, 691

-thinning, 649viscosity, 19–22, 48, 62, 65, 66, 70, 78,

79, 94, 98, 113, 259–262, 264, 621,641, 649–651, 656, 657, 660, 675,678, 679, 681, 683

Shift parameters, 168, 169, 174Short fiber suspensions, 679Silanization, 685Silica (colloidal), 383, 384, 493, 506,

508–511, 531, 594, 645, 648, 685,689. See also Nanocomposites, withsilica

fumed (FS), 508, 509

hydrophobic, 510Silver mercaptide, 612. See also

Mercaptide(s)Simha (Robert)

biography, 1–11, 215, 324, 359lattice-hole theory, 162–165, 168, 174,

180, 193, 215, 228, 232, 234, 237,240–248, 250, 252–257, 260–267,307, 311, 324–328, 335, 340, 351,364, 365, 371, 385, 394, 404, 405,422, 437, 439, 440, 477–480, 500,554–558, 577–583

nanocomposites, 506, 512, 558, 559,577–583, 585, 589, 593, 595, 596,641–643, 664, 674, 675

PALS, 480, 500solution viscosity, 56–59, 63, 65, 90, 100suspension viscosity, 18, 25–27vitreous state, 183, 188, 359, 364, 384,

560–565, 569, 573Simha and Somcynsky theory (S-S), 554,

556, 573, 576, 593, 596, 664, 674,676

Simha and Wilson, 262, 404, 405, 478, 479Simha-Somcynsky (S-S), 228, 231, 241,

243–245, 247–254, 256, 257, 259,264–270, 307, 311, 324–328, 334,339, 341, 346, 351, 352, 364, 394,422, 439–445, 447, 449–455, 458,460, 478–483, 506, 515

Simplified procedure, 589SIS, see Shear, induced structureSize effects, 214, 628S-L, see Sanchez and Lacombe eosSMA, see Poly(styrene-co-maleic

anhydride)Small angle X-ray scattering (SAXS), 369Soft materials, 130–132, 136, 137Solidlike, 235, 261, 451, 505, 515, 529, 648,

653, 658, 560, 667, 683, 694behavior, 529, 648, 653, 683

Solubility parameter, 245, 246Solvent quality, 9, 30, 32, 33, 57, 59, 79, 105Somasif ME-100, 669, 689, 692. See also

FluorohectoriteSomcynsky (Thomas), 9, 10, 56, 57, 193,

215, 228, 241, 244, 245, 324, 326,327, 335, 351, 359, 364, 394, 404,405, 422, 437, 439, 500

SUBJECT INDEX 773

Somcynsky and Simha (S-S), 554, 556, 674.See also Simha and Somcynsky

Specific volume, 26, 27, 57, 193, 208, 209,212, 481, 482, 484, 515, 555

and free volume, 403, 405, 406, 408, 410,412, 413, 415, 439, 441, 442, 450,460, 477, 479, 483, 514

crystalline, 267–269, 497, 499–501in eos, 232, 236, 242, 246, 257, 326, 478in glassy state, 162, 163, 168, 359, 366,

369, 562–564in nanocomposites, 555, 562–564, 578,

585, 589, 595of copolymers, 331, 332, 334, 338, 345of LCP, 303, 304partial, 20, 26, 39, 66

Spectrum of decay rates, 169Spherical nanoholes, 483, 514

probe, 133, 134, 150, 155, 156suspensions, 640

Spur (PALS), 399, 400, 404, 423, 424, 474,475, 476, 501, 507

and blob model, 424, 475model, 399, 400

Square-well potential, 186, 187, 235, 237,238, 240, 244

S-S (Simha-Somcynsky), seeSimha-Somcynsky cell-hole theory

Stacks, 528, 558, 559, 567, 578, 580–584,592, 595, 641, 644, 645, 647, 648,653, 654, 657, 659, 664, 668, 670,683, 684

Steady-state shearing, 648, 653, 660, 662,679

Steric repulsion, 314Stress

and dynamics, 18growth behavior, 649, 650, 680overshoot, 54, 94, 649, 653–655,

657–660, 679, 680, 682, 694relaxation, 115, 359, 366, 370, 372, 377,

488, 655, 678–strain curve, 130, 481, 505tensor, 18, 640, 680

Structuralcluster model, 593recovery, 177, 206, 208, 209, 210, 211,

212, 366relaxation, see Relaxation, structural

Struik (Leen C. E.), 195, 207–209, 214, 264,358, 370, 561, 591, 592

Subvolume, 455–459Supercritical CO2 (sCO2), 502Supported films, 200, 202, 214Surface, 7, 130, 136, 153, 155, 157, 196,

213, 346, 461, 508, 512, 528, 529,564, 576, 614, 626

effect, 198, 199, 214elasticity, 131energy, 328, 329, 343, 346, 352, 528, 608,

628, 634, 641, 647entropy, 328, 352force apparatus (SFA), 259, 557, 641interaction, 198, 201layer, 197, 211, 212, 325, 344–346, 348,

352mobility, 204nanofiller, 641, 642, 645tension, 5, 204, 228, 270, 324, 325, 328,

329, 334, 342–352, 509topography, 131, 137

Surfactant, 26, 90–96, 98, 99, 106–116, 506,511, 648

Suspensions, 4, 5, 7, 642, 643, 645,653, 661, 664, 670, 678, 680,683, 684

SWP, see Square-well potential

Tait (Peter G.), 231, 232, 247, 563Talc, 686Tapping mode (AFM), 130, 136, 144, 145Teflon AF1600, 429, 434, 435Teflon AF2400, 443TEM, see Transmission electron

microscopyTemperature dependence, 57, 203, 244, 352,

475, 497, 512, 561Arrhenius, 263, 362crystalline defects, 249hole size, 422, 427, 431–436, 458modulus, 683of derivatives, 305, 347, 569of polymer conformational relaxation

time, 51, 53orientation, 288phase boundary, 309steps, 170, 175, 176, 188surface tension, 344

774 SUBJECT INDEX

Temperature dependence (Continued )viscoelastic, 148, 149volume/free volume, 247, 269, 331, 332,

477, 487, 488, 500, 501, 506, 587Tensile

deformation, 481, 503, 515modulus, 242, 530, 534, 668, 683–685,

689–691, 693strain, 482, 515strength, 535, 648, 675–677, 684

Tension, 5, 192, 194, 195, 198, 324, 325,329, 342, 345, 346, 509, 593, 632

Tetraglycidyldiaminodiphenylmethane(TGDDM), 508

Tetramethyl bisphenol A polycarbonate(TMPC), 483

TFT, see Twinkling fractal theoryTg, see Glass, transition temperatureThermal

agitation, 172, 179decomposition, 506, 572, 612, 613, 617,

618, 621, 626, 630, 635, 642, 653degradation, 9, 206, 613, 618–620, 648expansion, 9, 179, 352, 368, 432, 434,

439–443, 481, 495, 501, 512expansion coefficient (α), 324, 351–353

definition, 241, 305, 328, 555in filled systems, 254in LCP, 306of copolymers, 332–334of free volume (holes), 412, 433, 441,

485, 487, 495, 499of nanocomposites, 527, 569–572, 576,

594, 595expansion of nanoholes, 432, 434,

439–442, 458–459fractional free volume, 487specific free volume, 439–442

expansivity, 174, 447, 495, 512, 515fluctuations, 165, 446, 449, 458pressure coefficient, 285, 306recycling, 479

Thermochromism, 635Thermodynamics, 9, 10, 163, 225–390, 560,

629, 675. See also Polymer,thermodynamics

interaction(s), 24, 33, 36, 37, 60, 100,101, 229, 263, 484, 557, 640, 648,651, 683

Thermogravimetric analysis, 619Thermoplastic elastomer vulcanizate, 145,

146urethane (TPU), 685

Thermo-stimulated current (TSC),528, 541

Thin films, 201, 204, 206, 212, 214, 403,461, 539, 544, 594, 611

Thiolates, 612, 613Thirring (Hans), 3, 4Threadlike micelles (TLM), 94, 108, 110,

112, 113TLM, see Threadlike micellesTNM, see Tobacco mosaic virusTobacco mosaic virus (TNM), 26, 210, 211Toluene, 30–33, 36, 37, 67, 69, 101–103,

193, 198, 199, 511Topographic image, 130, 136, 137, 150Torsion pendulum, 690TPE-V, see Thermoplastic elastomer

vulcanizateTransient region (T), 565Transition entropy, 294–296, 310

probability, 166Transmission electron microscopy (TEM),

91, 94, 108, 112, 130, 146, 538, 559,566, 578, 583, 610, 611, 622, 623,656, 687. See also High-resolutionTEM

Tri-glycidyl p-aminophenol (TGAP),508

Turbulence intensities, 115Twinkling fractal theory (TFT),

261, 263, 560, 561, 575,584

Twin-screw extruder (TSE), 657Twist viscosity, 50, 55Two-dimensional, 137

mapping, 131Two-parameter binominal size distribution,

165

Ube 1015C2, 557, 650, 661, 665, 667, 681UCST, see Upper critical solution

temperatureUltramicrotome, 623Ultrathin (polymer) film, 192, 200, 203–206,

211, 212Unloading, 134, 135, 151, 155, 503, 538

SUBJECT INDEX 775

Upper critical solution temperature (UCST),483

Utracki (Leszek), 7–9, 227, 266–268, 327and Lyngaae-Jørgensen, 258, 259, 642,

645, 648, 655, 664, 666and Simha, 9, 56–59, 63, 65, 165, 237,

245, 246, 248, 255, 257, 260, 311,404, 422, 437, 439, 477, 506, 512,555, 558, 565, 573, 577, 578,581–583, 664, 674, 675

cohesive energy density (CED), 246eos (S-S), 165, 237, 245–248, 252, 255,

257, 260, 311, 404, 422, 437, 439,477, 483, 573

eos for binary systems, 252melt flow, 237, 260–262, 448, 576–595,

640–650, 653, 655–657, 659, 660,662, 664–667, 670–676

nanocomposites, 256–259, 506, 512, 527,530, 554, 557–561, 563, 567, 572,576–595, 640–650, 653, 655–657,659, 660, 662, 670–672, 675, 676,684, 688, 693

polymer blends, 254–256polymer solution(s), 56–59, 63, 65, 80PVT, 238, 243, 246, 563–572Tg and vitreous state, 262–268, 560–562,

565, 567, 585–595, 684, 688, 693

van der Waals (Johannes D.), 109, 112, 131,229, 232, 311, 312, 325, 327, 338,340, 351, 436, 439, 440, 443, 450,492, 651

interactions, 651potential analysis, 312volume, 436, 439, 450

Variable range hopping, 537VDW, see van der WaalsVFTH, see Vogel-Fulcher-Tammann-Hesse

equation or temperatureViscoelastic, 92, 94, 115, 145, 148,

153–157, 206, 370, 376, 385, 534,647, 648, 658, 666, 667, 669, 672,680–683, 687, 694

behavior, 29, 59, 262, 664, 669, 683properties, 214, 508, 527, 653, 677, 685,

689, 690, 692, 693relaxation, 360

Viscoelasticity, 93, 94, 110, 112, 115, 148,506, 575, 664, 683, 686

Viscosity measurements, 20–22, 27, 30, 32,39, 43, 46, 47, 55, 63, 79, 104, 109,111, 115, 204, 674

dynamic, see Dynamic, viscosityextensional, see Extensional/elongational

viscosityintrinsic, 8, 23–55, 79, 100, 102, 111,

640, 642, 643, 647, 677, 678Leslie, 53–55Miesowicz, 48–53Newtonian, see Newtonian, flowof blends, 146, 254, 491, 492of LCP in nematic solvent, 48–55of nanocomposites, 645of polyelectrolyte solutions, 45–48, 71–78of polymer solutions, 3, 4, 7–9, 17–80,

90, 93–106of suspension, 2, 4, 5, 7, 18, 25–28,

647–653overshoot, 657, 677, 678relative, 8, 21, 111, 640, 642, 647, 675,

677, 678shear, see Shear, viscositytheory, 31, 33–41, 49–55, 57, 64,

68, 71, 73, 78, 237, 447, 448, 491,492, 561, 650, 651, 659, 661,663, 667

zero-shear, see Zero-shear viscosityVitreous state, 10, 228, 230, 264, 358, 360,

384, 533, 555, 556, 562, 563, 570,589, 596

Vitrification temperature, see Glass,transition temperature

Vogel-Fulcher-Tammann-Hesse equation ortemperature, 261, 262, 447, 448,454, 458, 533, 539, 561, 584

Volumecorrection, 310, 448-dependent Helmholtz energy, 163fluctuations, 266, 457recovery, 168, 173, 175, 176, 207, 422

Wall shear stress, 91, 96, 98, 105Water-soluble polymers, 92WAXS, see Wide-angle x-ray scatteringWide-angle x-ray scattering, 503, 505, 511,

515

776 SUBJECT INDEX

Williams–Landel–Ferry equation, 155, 165,169, 188, 262, 265, 266, 447, 665,675

WLF, see Williams–Landel–Ferry equationWormlike coil model, 34, 36, 38, 39, 41, 51,

70, 78, 79, 106, 115

Xanthan, 67, 69, 100, 104X-ray diffraction (XRD), 559, 565–567,

582, 610, 611, 616, 626, 641, 648,655, 668

XRD, see X-ray diffraction

Yieldpoint, 503, 505, 515

strain, 481, 493stress, 189, 493, 647, 649, 652,

657, 668, 670, 671, 679,694

Young modulus, 687, 693

Zeolite, 692Zero-shear viscosity, 62, 66, 259, 260,

324, 560, 640, 663, 668, 673,680

Zimm (Bruno H.), 29, 41, 42, 63,64

Zinc mercaptide, 618. See alsoMercaptide(s)

Zwitterionic, 93, 96, 113, 114


Recommended