Transcript
Page 1: PRESENT-DAY STRESS MAGNITUDES AND ROCK …grrebs.ete.inrs.ca/wp-content/uploads/2014/02/Konstantinovskaya_et... · PRESENT-DAY STRESS MAGNITUDES AND ROCK STRENGTHS IN THE ST. LAWRENCE

PRESENT-DAY STRESS MAGNITUDES AND ROCK STRENGTHS IN THE ST. LAWRENCE LOWLANDS : IMPLICATIONS FOR CO2 INJECTION

E. Konstantinovskaya1, M. Malo1, and D.A. Castillo2

1 Institut national de la recherche scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490, de la Couronne, Québec (Québec) G1K 9A9 Canada [email protected] 2 Baker Hughes, Reservoir Development Services, GeoMechanics, 5373 West Alabama Street, Suite 300, Houston, Texas, 77056 USA

Rock strengths in Paleozoic sedimentary units of the Bécancour area, St. Lawrence LowlandsStress orientations and magnitudes in the St. Lawrence Lowlands

Lithofacies - Mineralogy, Acoustic Data, Porosity Static mechanical properties: Rock strength, Elastic Moduli, Poisson’s Ratio, Compressibitity

A071 Impérial Lowlands No 31476,76 - 1476,82 mKBsiltstone Fm Nicolet

A223 Intermont, Bécancour No 1970,70 - 970,80 mKBQz Ca Dol sandstone Fm Beauharnois

A223 Intermont, Bécancour No 1976,90 - 977,00 mKBQz Ca Dol vf sandstone Fm Theresa

A196 SOQUIP Pétrofina, Bécancour No 11142,84 - 1142,94 mKBQz sandstoneFm Cairnside

A196 SOQUIP Pétrofina, Bécancour No 11165,54 - 1165,645 mKBQz-Fsp sandstoneFm Covey Hill

A250 Junex, Bécancour No 8712,72 - 712,77 mKBcalcareous shaleFm Utica

2 cm

2 cm

2 cm

2 cm

A071 1476,8 mKB 5x in plane-polarized light

A250 749,3 mKB 5x in cross-polarized light

A223 970,7 mKB 10x in cross-polarized light

A223 977,0 mKB 10x in cross-polarized light

A196 1142,9 mKB 5x in cross-polarized light

A196 1165,6 mKB 10x in cross-polarized light

TheresaA223976.90 m

BeauharnoisA223970.70 m

Utica ShaleA250712.72 m

CairnsideA1961142.84 m

LorraineA071 1477.57 m

Covey HillA1961165.54 m

Stress-strain curves Elastic modulii

You

ng M

odul

us E

(GP

a)

Poisson's Ratio ν

0

50

100

150

200

250

300

350

-0,015 -0,010 -0,005 0,000 0,005 0,010 0,015

Diff

eren

tial S

tress

(MP

a)

Radial Strain Axial Strain

0

50

100

150

200

250

300

350

-0,015 -0,010 -0,005 0,000 0,005 0,010 0,015

Diff

eren

tial S

tress

(MP

a)

Radial Strain Axial Strain

0

50

100

150

200

250

300

350

-0,015 -0,010 -0,005 0,000 0,005 0,010 0,015

Diff

eren

tial S

tress

(MP

a)

Radial Strain Axial Strain

0

50

100

150

200

250

300

350

-0,015 -0,010 -0,005 0,000 0,005 0,010 0,015

Diff

eren

tial S

tress

(MP

a)

Radial Strain Axial Strain

0

50

100

150

200

250

300

350

-0,015 -0,010 -0,005 0,000 0,005 0,010 0,015

Diff

eren

tial S

tress

(MP

a)

Radial Strain Axial Strain

0

50

100

150

200

250

300

350

-0,015 -0,010 -0,005 0,000 0,005 0,010 0,015

Diff

eren

tial S

tress

(MP

a)

Radial Strain Axial Strain

Strain rate 5x10-6 s-1

Room temperatureLaboratory data: Drained condition

Stratigraphic unit Rock type Sample

No.Depth(mKB)

ConfiningPressure

(MPa)

CompressiveStrength(MPa)

Differential stress (MPa)

StaticYoung'sModulusE (GPa)

StaticPoisson's

Ratio ν

Density (g/cc)

Lorraine Siltstone A071V 1477,57 20,10 242,65 222,55 28,71 0,32 2,65Utica Calcareous shale A250V 712,72 9,70 227,44 217,74 42,06 0,29 2,70Beauharnois QzCaDol sandstone A223V2 970,70 13,29 264,39 251,10 49,28 0,23 2,62Theresa QzCaDol vf sandstone A223V1 976,90 13,20 308,87 295,67 53,97 0,29 2,69Cairnside Qz sandstone A196V1 1142,84 15,55 314,07 298,52 43,69 0,26 2,56Covey Hill QzFsp sandstone A196V2 1165,54 15,86 188,08 172,22 27,56 0,22 2,49

Calculated parameters:

Stratigraphic unit Rock type Sample

No.

Bulk modulus K

(GPa)

Shear modulus G

(GPa)

Compaction modulus M

(GPa)

Lame's constant λ

Vp (km/s)

Vs (km/s) Vp/Vs

Lorraine Siltstone A071V 26,58 10,87 41,08 19,33 3,94 2,03 1,94Utica Calcareous shale A250V 33,38 16,30 55,11 22,51 4,52 2,46 1,84Beauharnois QzCaDol sandstone A223V2 30,88 19,97 57,50 17,57 4,68 2,76 1,70Theresa QzCaDol vf sandstone A223V1 42,84 20,92 70,73 28,89 5,13 2,79 1,84Cairnside Qz sandstone A196V1 29,84 17,39 53,03 18,25 4,55 2,61 1,75Covey Hill QzFsp sandstone A196V2 16,35 11,30 31,42 8,81 3,55 2,13 1,67

E=3K(1-2ν) M=E(1-ν)/((1+ν)(1-2ν)) ρVp2=K+4G/3E=2G(1+ν) λ=Eν/((1+ν)(1-2v)) G=ρVs2

SUMMARY OF TRIAXIAL COMPRESSIVE TESTStested under as-is condition

0,100

You

ng M

odul

us E

(GP

a)

Poi

sson

's ra

tio ν

Porosity (cores A223/A196)

A250V_Utica calc shale

A223V2_Beauharnois QzCaDol ss

A223V1_Theresa QzCaDol vf ss

A196V1_Cairnside Qz ss

A196V2_Covey Hill Qz-Fsp ss

A071V_Lorraine siltstone

E ν

Density and porosity from core analyses

2

3

4

5

6

100 150 200 250 300 350

Vp

(km

/s)

Differential stress σ1-σ3 (MPa)

ut

bh

th

ca

ch

lor

0

1

2

3

4

100 150 200 250 300 350

Vp/

Vs

Differential stress σ1-σ3 (MPa)

Poi

sson

's ra

tio

You

ng M

odul

us (G

Pa)

Bulk Density, g/cc

0

1

2

3

4

100 150 200 250 300 350

Vs

(km

/s)

Differential stress σ1-σ3 (MPa)

ut

bh

th

ca

ch

lor

2,2

2,25

2,3

2,35

2,4

2,45

2,5

2,55

2,6

2,65

2,7

2,2

2,25

2,3

2,35

2,4

2,45

2,5

2,55

2,6

2,65

2,7

0 2 4 6 8 10 12 14 16 18

Bul

k D

ensi

ty, g

/cc

Porosity (cores), %

2,2

2,25

2,3

2,35

2,4

2,45

2,5

2,55

2,6

2,65

2,7

2,2

2,25

2,3

2,35

2,4

2,45

2,5

2,55

2,6

2,65

2,7

0 2 4 6 8 10 12 14 16 18

Gra

in D

ensi

ty, g

/cc

Gra

in D

ensi

ty, g

/cc

Bul

k D

ensi

ty, g

/cc

Porosity (cores), %

2,45

2,5

2,55

2,6

2,65

2,7

2,75

2,8

2,85

2,9

2,95

2,45

2,5

2,55

2,6

2,65

2,7

2,75

2,8

2,85

2,9

2,95

0 2 4 6 8 10 12 14 16 18

Gra

in d

ensi

ty, g

/cc

Bul

k D

ensi

ty, g

/cc

Porosity (cores), %

Bulk and grain densityA223St. Lawrence Lowlands

2.73

3.00

2.00

2.69

mean value

Beekmantown

A196St. Lawrence Lowlands

2.56

3.00 2.49

6.00

Bulk and grain density mean value

Cairnside

A196St. Lawrence Lowlands

2.47

6.00

Bulk and grain density mean value

2.45

7.00

Covey Hill

0

10

20

30

40

50

600,00 0,10 0,20 0,30 0,40

A geomechanical analysis of the St. Lawrence Lowlands sedimentary basin is important to re-liably estimate the maximum sustainable fluid pressures for CO2 injection that will not cause failure of the caprock or reactivate pre-existing faults thereby inducing a breeched CO2 reser-voir.

The maximum horizontal stress (SHmax) orientations are determined from borehole breakout orientations inferred from four-arm dipmeter caliper data and characterize the Paleozoic sedi-mentary succession of the St. Lawrence Lowlands at depths from 250 m to 4 km. The ave-rage SHmax orientation is estimated N59˚E ± 20˚, varying along the Appalachian front from N69.9˚E±17.5˚ in the Saint-Flavien area to N62.8˚E±4.0˚ in the Bécancour-Notre Dame area and to N35.2˚E±5.6˚ in the Saint-Simon area. Our results are compatible with the regional NE-SW SHmax orientation pattern generally observed in eastern North America.

The stresses/pressure gradients estimated in the Paleozoic succession are: Shmin 20.5±3 kPa/m, Sv 25.6 kPa/m, SHmax 40±7.5 kPa/m, pore pressure Pp 9.8 kPa/m. These results indi-cate a strike-slip stress regime Shmin<Sv<SHmax in the St. Lawrence Lowlands (depths < 4 km). The maximum sustainable Pp under the actual horizontal/vertical stress ratios that would not cause the opening of vertical tensile fractures during CO2 operations is estimated as ~18.5-20 MPa for the depth of 1 km.

The coarse-grained poor-sorted fluvial-deltaic quartz-feldspar sandstones of the Covey Hill Formation are characterised by the lowest bulk density and the highest porosity and permea-bility and have the lowest values of static Young modulus, Poisson’s ratio and compressive strength in comparison to other sandstone reservoir units in the Bécancour area.

The calcareous Utica shale of regional seal is more brittle and has higher Young modulus and lower Poisson’s ratio than the Lorraine shale. The values of Young modulus and differential stress observed at failure point during the triaxial tests demonstrate negative correlation with matrix porosity in tested core samples. Calculated Vp and Vs values have a positive correla-tion with differential stress.

550000

550000

600000

600000

650000

650000

700000

700000

750000

750000

5050

000

5050

000

5100

000

5100

000

5150

000

5150

000

5200

000

5200

000

CO2 Emissions 2009 (t)0

< 1000

10 000 - 50 000

50 000 - 100 000

100 000 - 500 000

500 000 - 1 000 000

1 000 000 - 1 300 000

> 1 300 000

OR

DO

VIC

IAN

444

461

479

455

446

468

472

542

488

AGE (Ma)

LOW

ER

MID

DLE

UP

PE

RK

ATIA

NS

AN

DB

.D

AR

RIW

.H

R.

DA

PIN

.FL

OIA

NTR

EM

AD

OC

PC

ChzBR

Lr

Utica ShaleTrentonBlack River

Chazy

Beekmantown

Potsdam

Grenvillian basement

Lorraine

SAUK-TIPPECANOEDISCORDANCE

Ste Rosalie

Queenston

sha

ly

limes

tone

turb

i-di

tes

molasse

dolomite anddol. sandstone

sandstone

CA

MB

RIA

N

Covey Hill

Cairnside

Theresa

Beauharnois

Pts

Bm

Tr

saline aquifers

__b_

reservoir caprock

Potsdam Covey Hill

NWSE

900

1100

700

1300

500

1500

Ele

vatio

n, m

0.1 s

LorraineUtica

Basement

Yamaska Fault

SÉQUESTRATION GÉOLOGIQUE DU CO2CHAIRE DE RECHERCHE

INRSUniversité d’avant garde

The present study is supported by the Ministère du Développement Durable, de l’Environnement et des Parcs du Québec. We are grateful to the Reservoir Development Services group within Baker Hughes Inc. for supporting this stress analysis. Special thanks are due to F. Brunner, L. Dean, R. Mireault and FEKETE Associates Inc. (Calgary) for the pore pressure evaluations from DST analyses; O. Heidbach, N. Pinet and R. Lefebvre for technical advices and discussions; M Rheault and G.Matton for providing the regional topo-graphic map, R. Thériault for the geological digital maps; B. St-Pierre for helping with caliper data integration; and Y. Duchaine for collecting caliper data. Seismic Micro-Techno-logy kindly provided the seismic interpretation software used in this study.resent study.

Interpreted seismic line in the Becancour area

Diff

eren

tial s

tress

σ1-σ3

(MP

a)

Porosity (cores A223/A196)

150

200

250

300

3500,00 0,02 0,04 0,06 0,08 0,10

0,10

0,15

0,20

0,25

0,30

0,35

0,40

20

30

40

50

60

0,000 0,020 0,040 0,060 0,080

0,10

0,15

0,20

0,25

0,30

0,35

0,40

20

30

40

50

60

2,450 2,500 2,550 2,600 2,650 2,700 2,750

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Dep

th, m

Stress and Pressure, MPa

A181 Shmin A181 SHmax

A185 Shmin A185 SHmax

A214 Shmin A214 SHmax

A215 Shmin A215 SHmax

A196 Shmin A196 SHmax

LOT Sv

Ph 12,13 kPa/m Ph 10 kPa/m

Fresh water pressure gradient

10 kPa/m

Pore pressure gradient

12,13 kPa/m

Sv gradient 25,6 kPa/m

Bécancour molasse

Lorraine shale

Utica shale upper Trenton to lower Utica shaly limestone Trenton/Black River limestone

Chazy sandy limestone

Black River limestone

Bauharnois dolomite

Theresa dolomitic sandstone

Cairnside Qz sandstone

Covey Hill Qz-Fsp sandstone

Etchemin River mélange

Les Fonds slate

Grenvillian basement

La Citadelle shaly limestone

Sillery schist

Bourret / Quebec City schist

borehole breakout

4000

0

500

1000

1500

2000

2500

3000

3500

Dep

th, m

Well stratigraphy

A181A196 A185 A214A215

SHmax gradient 40,04 ± 7.5 kPa/m

Shmin gradient 20,5 ± 3 kPa/m

Shmin, MPaS

Hm

ax, M

Pa

Sv = 72.2 MPa

Shmin = 56.77 MPa

SH

max

92-1

12 M

Pa

-20

180

160

140

120

100

80

60

40

180160140120100806040

200180

160140

120

100

80

60

40

0-10

RF

NF

SS

T 0 (MPa)

UCS, MPa

= [(µ2 + 1)1/2 + µ]2σ1 - Pp

σ3 - Pp

NF: Shmin = (Sv – Pp)/3.1 + Pp

SS: SHmax = 3.1Shmin – 2.1Pp RF: SHmax = 3.1Sv – 2.1Pp

S Hmax = S hm

in

Eastern Canada St. Flavien areaBécancour - Notre Dame areaSt. Simon area

n=3

after Plumb and Cox (1987)

n=13 n=2 n=7

N69.9˚E±17.5˚N62.8˚E±4.0˚N35.2˚E±5.6˚

present study

n=12

N59.7˚E±20.3˚N50.9˚E±10.3˚

Summary diagrams for directions of present-day SHmax (*) from borehole breakouts

(*) Number weighted Azimuths

St. Lawrence Lowlands St. Lawrence Lowlands

after Faure et al. (1996)

0

1

2 N

E

S

W0

1

2 N

E

S

W0

1

2

3

4 N

E

S

W0

1

2 N

E

S

W0

1 N

E

S

W

Late Cretaceous-Early Tertiarys1 paleostress

n = 80

N64.3˚E±11.8˚

13579

11N

E

S

W

Saint-BarnabéFault

Logan’s Line

AstonFaultChambly-Fortierville Syncline

A070 A158 A025 A071 A229 A185

TWT,

s 1

2

0 0, km

Chaudière Nappe

Yamaska fault

GRENVILLIAN BASEMENT10 km

625000

625000

650000

650000

675000

675000

700000

700000

725000

725000

750000

750000

775000

775000

800000

800000

5050

000

5050

000

5075

000

5075

000

5100

000

5100

000

5125

000

5125

000

5150

000

5150

000

5175

000

5175

000

St Cath

bert

Fault

St Pro

sper

Fau

lt

DF JCF

Aston Fault

Logan’s Line

Yamaska Fault

GRENVILLIAN BASEMENT

ST LAWRENCE PLATFORM

Normal faults in the Grenvillian basement under the sedimentary cover

Normal faults in the Grenvillan basement at surface

Frontal thrust faults of the Appalachian belt at surface

Stratigraphic contact, base of the St Lawrence Platform

borehole breakouts (2008 WSM)

borehole breakouts (present study)

Quality:ABC

all depths

SH direction inferred from :

M2002

M2002

3

2

1

APPALACHIAN THRUST-AND-FOLD

BELT

A214

A185

A169A177A180A183A202

A181

A215A221A225A227A228

A196

A189

P

P

P

P

P

P

PPP

P

P

P

P

P

P

P σ1 the Late Cretaceous-Early Tertiary paleo-stress, after Faure et al. (1996)

The average SHmax orientation is estimated N59˚E ± 20˚, varying along the Appalachian front from N69.9˚E±17.5˚ in the St. Flavien area to N62.8˚E±4.0˚ in the Becancour-Notre Dame area and to N35.2˚E±5.6˚ in the St-Simon area.

The magnitudes of vertical stress (Sv) are evaluated by integration of density log data in regional wells and correspond to average Sv gradient 25.6 kPa/m. The magnitudes of minimum horizontal stress (Shmin) are estimated from leak-off test data and correspond to Shmin gradient 20.5±3 kPa/m. The SHmax magnitudes are constrained by modeling wellbore failure in stress polygon plots taking into account the values of Shmin, Sv, rock strengths and

other parameters measured for a given depth. The estimated gradient of SHmax is 40±7.5 kPa/m.

The obtained stresses magnitudes are compatible with the strike-slip stress regime Shmin<Sv<SHmax that likely characterizes prevailing in-situ stresses in the Paleozoic succession of the St. Lawrence Lowlands at depths from 250 m to 4 km.

The pore pressures estimated from DST data indicate an average Pp gradient 9.8 kPa/m in the St. Lawrence Lowlands, with locally higher values of 12.17-15.4 kPa/m in the Becancour area.

The maximum sustainable pore pressure that would not cause the opening of vertical tensile fractures during CO2 operations could be preliminarily evaluated as 18.5-20 MPa for depths of 1 km.

The near-vertical NE-SW faults striking at 30˚ to SHmax and the W-E vertical natural fractures observed in the St. Lawrence Lowlands could be reactivated as shear fractures under the in-situ stresses (NE-SW SHmax) if fluid pressures exceeded the critical threshold Pc.Further refinement of the geomechanical model of the St. Lawrence Lowlands area is required to estimate the maximum sustainable injection pressure Pc that would be necessary for shear reactivation of the optimally oriented faults.

The saline aquifers of the Covey Hill Formation represent the most favourable unit for CO2 storage displaying the highest thickness of reservoir rocks, high ef-fective porosity, the lowest bulk density and matrix permeability. After triaxial test data, the Covey Hill sandstones have the lowest values of static Young modulus, Poisson’s ratio and compressive strength in comparison to other sandstone reservoir units in the Bécancour area.

Method:

focal mechanismbreakoutsdrill. induced frac.borehole slotterovercoringhydro. fracturesgeol. indicators

Regime:

NF SS TF U

Quality:

ABC

(2008) World Stress Map

270˚

270˚

280˚

280˚

290˚

290˚

300˚

300˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

60˚ 60˚

CanadaU.S.

ATLANTICOCEAN

St. Lawrence River

ACKNOWLEDGEMENTS

CONCLUSIONS

ABSTRACT

Shear failure in triaxial test σ1>σ2=σ3

σa

σ r = σ3

σa = σ1

τ σn

shear fracture

bedding parallel fracture

5 cm

σ2

σ1

σ3

SS

45˚

Polygon of SHmax estimation constrained by wellbore failure for well A185 SOQUIP et al. Notre-Dame du Bon Conseil No. 1

Breakout interval at depth (TVD) 2701 mAzimuth SHmax N62˚E, Pp 27 MPa, Biot coefficient 0.9, Poisson’s ratio 0.3; Wellbore azimuth N326˚W, wellbore deviation 17˚, breakout width 60˚; Differential mud pressure 0.93 MPa, sliding friction 0.7, internal friction 0.6; T0 and UCS denote tensile and uniaxial compressive strengths, respectively; NF, SS and RF indicate segments with normal faulting, strike slip faulting and reverse faulting stress conditions, respectively.

The SHmax orientations and regional fault patterns in the St. Lawrence Lowlands

The normal faults in the Grenvillian basement are projected from the seismic map of Thériault et al. (2005). The thrust faults are shown after Clark (1964a; 1964b), Globensky (1987), Konstantinovskaya et al. (2009). The interpreted seismic line M2002 is after Castonguay et al. (2006). Abbreviations: DF, Deschambault Fault; JCF, Jacques Cartier Fault; NF, Neuville Fault; SBF, Saint-Barnabé Fault; BT, backthrust of the triangle zone. 1, St. Flavien, 2, Notre Dame - Becancour, 3, St. Simon areas.

BT

A222

Present-day maximum horizontal stress SHmax orientations in eastern Canada and the U.S.

after Heidbach et al. (2008)

CO2 Emissions in the St. Lawrence Lowlands (2009)

Sedimentary succession of the St. Lawrence Platform

after Lavoie (1994)

Determination of :- prevailing stresses (orientations and magnitudes)- fault geometries- rock strengths (reservoir and caprock)

To estimate maximum sustainable pore pressures necessary for the opening of vertical tensile frac-tures and for the shear reactivation of pre-existing optimally oriented faults and fractures

0

40

80

120

160

200

240

280

0 320

She

ar s

tress

τ, M

Pa

Normal Stress σn, MPaσ1 σ1 σ1σ1σ3

Beauharnois quartz carbonate dolomitic sandstoneTheresa quartz carbonate dolomitic vf sandstone

Cairnside quartz sandstoneCovey Hill quartz-feldspar sandstone

Lorraine siltstone

A223 A196

A071 Utica calcareous shale A250

µ = 0.6

µ = 1

40-40 80 120 160 200 240 280 520360 400 440 480

µi = 0.75

µi = 0.52

µi = 0.89

τ = S0 + µiσn

µi is from GR log data0.6 < µ < 1.0

S0

N W

1 169 SOQUIP et al. St Flavien 1 (Cedre) 1974 46˚29' 25" 71˚ 36' 19"2 177 SOQUIP et al. St Flavien 2 1976 46˚30' 38" 71˚ 32' 48"3 180 SOQUIP et al. St Flavien 4 1977 46˚29' 43" 71˚ 34' 01"4 181 SOQUIP et al. St Helene 1 1977 45˚44' 12" 72˚ 46' 24"5 183 SOQUIP et al. St Flavien 6 1977 46˚30' 57" 71˚ 34' 47"6 185 SOQUIP et al. Notre-Dame du Bon Conseil No. 1 1978 46˚00' 41" 72˚ 20' 20"7 189 SOQUIP et al. St Tomas d'Aquin 1 1978 45˚41' 54" 72˚ 59' 05"8 195 SOQUIP et al. St Louis Blandford 1 1980 46˚16' 38" 72˚ 02' 14"9 196 SOQUIP Petrofina Bécancour 1 1981 46˚21' 60" 72˚ 24' 42"

10 202 SOQUIP Lemaire et al. Joly 3 1985 46˚28'50" 71˚37' 40"11 214 BVI et al. St Simon 1 1992 45˚41' 33" 72˚ 48' 42"12 215 SOQUIP et al. St Flavien 8 1992 46˚30' 20" 71˚ 34' 58"13 221 SOQUIP et al. St Flavien 9 1993 46˚31' 16" 71˚ 35' 08"14 222 BVI et al. St Wenceslas 1 1993 46˚10' 55" 72˚ 19' 12"15 225 SOQUIP et al. St Flavien 10 1994 46˚30' 21" 71˚ 34' 56"16 227 SOQUIP et al. St Flavien 12 1995 46˚30' 22" 71˚ 34' 52"17 228 SOQUIP et al. St Flavien 13 1996 46˚30' 44" 71˚ 34' 06"

NN Well No. Name Year Location N WNN Well No. Name Year Location

Name and location of vertical wells analysed in present study

Variations of pore pressures and stresses with depth determined from the stress magnitude ana-lysis in the St. Lawrence Lowlands are compatible with the strike-slip stress regime Shmin<Sv<SHmax.

The present-day NE-SW SHmax stress orientations in eastern North America (Fig. 1) are regionally consistent across the area. The average SHmax stress orientation of N54˚E ± 7˚ is inferred from borehole breakouts as deep as 2 km in eastern Canada and the U.S. (Plumb and Cox, 1987).

Variations of pore pressures and stresses with depth determined from the stress magnitude analysis in the St. Lawrence Lowlands

Recommended