Transcript

June22,2017

1

SoilCarbonAccounting–theAustralianexample

JeffBaldock1andRachelBurgess2

1) CSIROAgricultureandFood,LockedBag2,GlenOsmond,SA5064,Australia

([email protected])

2) AustralianDepartmentoftheEnvironmentandEnergy,Canberra,ACT2601,

Australia([email protected])

TheAustraliangovernmenthasestablishedtheEmissionsReductionFund(ERF)toencourage

theadoptionofmanagementstrategiesthatresultineitherthereductionofgreenhousegas

emissionsorthesequestrationofatmosphericCO2-C.TheERFisenactedthroughtheCarbon

Credits(CarbonFarmingInitiative)Act2011(CFI).UndertheEmissionsReductionFund,

businesses,farmersandcommunitygroupscanearncarboncreditsbyundertakingprojectsto

reduceemissionsorsequestercarbon.Theseprojectsmustbeinaccordancewithapproved

methods.MethodssetouttherulesfortheFund.Theydefinewhichactivitiesareeligibleand

howabatementistobemeasured,verifiedandreported. Arangeofmethodshavebeen

approvedforallsectorsoftheeconomyincludingflaringmethanegasatlandfills,increasingsoil

carbon,upgradingequipmenttoimproveenergyefficiencyandregeneratingnativevegetation.

AllmethodsmustcomplywithOffsetsIntegrityStandardssetoutinlegislation.Thesestandards

ensureonlygenuineemissionsreductionscanbecreditedandthatmethodsusedwithinthe

Fundare:

• Additional:Abatementisunlikelytooccurintheordinarycourseofevents.

• Measureableandverifiable:Abatementmustbeabletobemeasuredandverified.

• Eligible:EmissionsreductionscreditedmustbeabletobecountedtowardsAustralia’s

climatechangetargetsandnotbeinconsistentwiththecarbonaccountingpractices

usedwithintheAustralianGreenhouseGasInventoryreporting.

• Evidencebase:Methodsmustbesupportedbyclearandconvincingevidence,

statisticallydefensibleandsupportedbyrelevantscientificresultspublishedinpeer-

reviewedliterature.

• Material:Projectabatementandrelatedsignificantemissionsshouldbeaccountedfor.

June22,2017

2

• Conservative:Estimates,assumptionandprojectionsusedinthemethodshouldbe

conservative.

Onceapprovedandimplemented,themethodscanbeusedtogenerateAustralianCarbon

CreditUnits(ACCUs).OneACCUequatestoanemissionavoidanceorsequestrationofone

tonneofcarbondioxideequivalent(CO2-e)andcanbesoldtotheAustraliangovernmentorina

secondarymarkettogenerateincome.ToensureanyACCUspurchasedbytheAustralian

governmentarenotoffsetbysignificantincreasesabovebusiness–as-usuallevelsinemissions

elsewhereintheeconomy,theERFalsodevelopedasafeguardingmechanism.Underthe

safeguardmechanism,facilitieswithdirectemissionsinexcessof100,000tCO2-eperyearare

requiredtokeeptheirnetemissionsatorbelowabaselineleveldefinedbytheAustralianClean

EnergyRegulator(CER).SuchfacilitiescansurrenderACCUstheyhavegeneratedorpurchased

fromothers(excludingACCUspurchasedbytheAustraliangovernment)tooffsetemissionsover

theestablishedbaselinevalues.

Itisarequirementforasuccessfulprojectthatanysequesteredcarbonmustremainoutofthe

atmosphereforthedurationofthepermanenceperiodwhich,canbeeitherfor100or25years.

Ifaperiodof25yearsisselected,a20%discountisappliedtothenetabatementinorderto

calculatethenumberofACCUsthataprojectcanbeawarded.

AlistofthevariousmethodsavailabletoindividualsororganisationsundertheERFisaccessible

(www.environment.gov.au/climate-change/emissions-reduction-fund/methods)aswellaslinks

todocumentswithdetailsofhowtheyaretobeimplemented.Amongstthesemethods,two

soilcarbonsequestrationmethodsexist:

• Thefirstmethod,"Sequesteringcarboninsoilsingrazingsystems"isbasedonthedirect

measurementofchangesinsoilorganiccarbonstocksobtainedthroughthecollection

andanalysisofsoilsamplesovertime.

• Thesecondmethod,"Estimatingsequestrationofcarboninsoilusingdefaultvalues"is

basedontheuseofdefaultratesofsoilcarbonchangepredictedusingsimulation

resultsobtainedbyapplyingtheFullCarbonAccountingModel(FullCAM)modelling

systemdevelopedforandusedwithintheAustralianNationalGreenhouseGas

Inventory(RichardsandEvans2004;SkjemstadandSpouncer2003).

June22,2017

3

Commontobothsoilcarbonmethodsarethedefinitionsofaproject,aprojectareaandcarbon

estimationareas(CEAs)(Figure1).Aprojectisdefinedasasetofactivitiesthatareadditionalto

thebusiness-as-usualconditionandareimplementedtoavoidgreenhousegasemissionsor

sequestercarbon.Theprojectareadefinesthespatialextentonwhichanoffsetsprojectis

carriedout.ACEAdefinestheareaoverwhichchangesinsoilcarbonstockswillbemeasured

ormodelledinresponsetotheappliednewmanagementpractices.MultipleCEAsmayexist

withinaprojectarea.TheprojectareaandCEAboundariesdonotneedtoberectangular,nor

dotheyneedtobecontiguous.Anexclusionzoneislandintheprojectareawherethenew

managementpracticesarenotimplementedandmayincludelandthatisnotusedforprimary

productionsuchasaresidentialbuildingandimmediatesurrounds.Accuratedefinitionof

boundariesandtotalareaencompassedwithineachCEAandexclusionzonesarerequired.

Figure1.Schematicrepresentationoftherelationshipbetweenlandtitleboundary,projectareaandcarbonestimationareas.

Method1:Sequesteringcarboninsoilsingrazingsystems

The“Sequesteringcarboninsoilsingrazingsystems”wasthefirstsoilcarbonmethod

developedforuseintheERF.Themethodwasdesignedtoquantifythemagnitudeand

certaintyofsoilcarbonchangewithinCEAsofanysize,andassumedthatnopriorinformation

pertainingtothespatialvariationinsoilcarbonstocksacrosstheCEAwasavailable.Underthis

method,aprojectproponentmeasuresbaselinesoilcarbonstockstoaminimumdepthof30

cm,implementsnewmanagementactivitiesthatwouldnothaveoccurredunderabusiness-as-

usualconditionandmeasuresfuturesoilcarbonstocksatnominatedintervalsthroughtimefor

eachCEAincludedinaproject.Aprojectproponentisapersonororganisationwhoislegally

June22,2017

4

responsiblefortheERFprojectandhasthelegalrighttocarryouttheprojectandreceive

AustralianCarbonCreditUnits(ACCUs)generatedbythatproject.Asummaryofthemain

aspectsofthismethodologyfollows.Moredetailedpresentationsoftherequirements,

guidelinesandcalculationsrelatedtosamplingdesign,soilanalysisandderivationofcarbon

stocksforthismethod,aswellasanExcelbasedcalculatortofacilitatecalculationsofthe

temporalsoilcarbonstockchanges,canbefoundatwww.environment.gov.au/climate-

change/emissions-reduction-fund/methods/sequestering-carbon-in-soils.

Samplingdesign

Themethodusesastratifiedsimplerandomsamplingdesign(Figure2)inwhichaCEAisdivided

intoequalareastrata(n=9forFigure2).Soilsamplesrandomlylocatedwithinthestrataare

combinedtoformcompositesamples.Eachcompositesamplecomprisesonesamplefromeach

stratum.TheCEAisrepeatedlysampledthroughtime(t0,t1,…,tn).Thestratificationand

compositingacrossstrataiscompletedtoreducetheimpactofspatialvariationinsoilcarbon

stockswithintheCEAontheminimumdetectabletemporalchangeinsoilcarbonstock.A

minimumofthreestrataandthreecompositesamplesforaCEAisdefinedforthemethod;

however,itisrecommendedthatthenumberofstrataandcompositesareincreasedtothe

maximumthatcanbeaffordedtoensurethat:

• thecompositesamplesarerepresentativeoftheCEA,

• thevariancebetweencompositesamplescollectedatanyindividualtimeis

reduced,andtherefore

• theabilitytodetecttemporalchangeinsoilcarbonstocksisincreased.

Althoughthestratificationmustremainfixedoncethebaselinesamplinghasbeencompleted,

thenumberofcompositesamplescollectedcanbeincreasedordecreasedinsubsequent

samplingeventstooptimisethedesiredbalancebetweensamplingcostandminimum

detectablechange.

Samplecollection,processingandanalysisofsoils

Thecollectionofsoilsamplesistooccurusingcoringdeviceswithaminimuminternaldiameter

of4cm.TobeconsistentwiththeAustralianNationalinventoryReport(NIR)andIPCC

recommendations(Penmanetal.2003;Richards2001)thecollectionofsoiltoaminimum

June22,2017

5

depthof30cmwasadopted;however,proponentsmaynominatetocollectadditionalsoilto

depths>30cm.Wheresoiltodepths>30cmiscollected,the0-30cmand>30cmsoilsamples

mustbepreparedandanalysedseparatelyandtheirrespectivecarbonstocksreported

separatelytoallowconsistencywithNIRpractices(http://www.environment.gov.au/climate-

change/greenhouse-gas-measurement/publications#national).Processingofcollectedsamples

includesair-drying,weighing,crushing,sieving,mixingandsub-samplingofthecollected

compositesamplesforanalysisoforganiccarbonandwatercontent(Figure3).

Figure2.Samplingdesigndefinedforthe“Sequesteringcarboninsoilsingrazingsystems”ERFmethodologywhereaCEAwasdividedinto9equalareastrataandthreecompositesoilsampleswerecollectedacrossthestrataduringeachtemporalsoilsamplingevent.

Determiningsoilcarbonstock,equivalentmassandequivalentmasssoil

carbonstock

UsingthedataidentifiedinFigure3andthevolumeofsoilsampled,themassofsoilcollected

fromeachlayer(Equation[1])andthestockoforganiccarbonpresentineachlayeroftheCEA

(Equation[2])arecalculated.Anequivalentsoilmasscorrespondingtothe10thdecileofallsoil

massesobtainedduringthebaselinesamplingisdefinedandallcarbonstockvalues(baseline

valuesandthosederivedforsubsequentsamplingevents)areadjustedtoprovidethemassof

carbonassociatedwiththeequivalentmassofsoil(Equation[3]).Theequivalentmass

approachwasadoptedtoaccountforvariationsthatmayoccurinsoilbulkdensityinresponse

tothealteredmanagementpracticesandtoalsoreducetheimpactoferrorthatmayoccur

duringsamplecollection(e.g.collecting30.2cminsteadof30.0cm).Wheretwosoillayersare

June22,2017

6

sampled,thecalculationsbecomemorecomplex,butareallpresentedintheCarbonCredits

(CarbonFarmingInitiative)(SequesteringCarboninSoilsinGrazingSystems)Methodology

Determination2014(www.legislation.gov.au/Details/F2015C00582)

Figure3.Processingrequiredforcollectedsamples.

( ) ( ) ( )

3

SoilSoil Drybulk layermass density 100thicknessMg/ha Mg/m cm

= ´ ´ [1]

( ) ( ) ( ) ( ) ( )

3

Soilorganic SoilWaterSoilorganic Drybulk Proportionalcarbon layer1 contentcarbonstock density 1 massof 0.10content thickness gravelg/gMgC/ha Mg/mmgC/g cm

é ùæ ö æ öê úç ÷ ç ÷+= ´ ´ ´ ´ - ´ê úç ÷ ç ÷ê ú è øè øê úë û

[2]

( ) ( )

( )

( )

EquivalentsoilmassforthelayersampledEquivalentsoil SoilorganiccarbonMg/hamassorganic stockintheentrie

carbonstock soillayer SoilmassforthelayersampledMgC/ha MgC/ha Mg/ha

= ´ [3]

Quantifyingthetemporalchangesinequivalentmasssoilcarbonstock

Twoapproachesweredevelopedtoquantifythetemporalchangeinequivalentsoilmass

carbonstocks.Afterthebaselineandt1samplingeventsoccurred,aonetailedt-testassuming

unequalvarianceacrosstimeisusedtodefinethecarbonstockchangeassociatedwitha60%

probabilityofexceedance.Sinceitisdifficulttobeconfidentthatthetemporalchangein

June22,2017

7

carbonstockmeasuredbetweentwopointsintimereflectsatruetemporaltrend,thechangein

soilcarbonstockatt1isdiscountedto50%ofthecalculatedchange.Oncethreeormore

temporalmeasurementsofequivalentmasssoilcarbonstocksarecompleted,aregression

approachisusedtodefinetherateofequivalentsoilmasscarbonstockchange(Figure4).In

thisapproach,themagnitudeandstandarderroroftheslopeoftheregressionlineobtainedfor

equivalentsoilmasscarbonstockexpressedasafunctionofthedurationoftheprojectareais

calculated.Thesevaluesareusedtodefinetheslope(annualchangeinequivalentsoilmass

carbonstock)associatedwitha60%probabilityofexceedance,whichisthenmultipliedbythe

numberofyearstheprojecthasbeenrunningandtheareaoftheCEA,todefinetheamountof

carbonsequestrationthathasoccurred.Themethodalsotakesintoaccountanychangesin

emissionsofmethaneornitrousoxideinresponsetothealteredmanagementpracticesand

awardsACCUsonthebasisofthenetgreenhousegasbalance(i.e.CO2-eassociatedwiththe

carbonsequesteredminustheCO2-eassociatedwithanyenhancedemissionofother

greenhousegases).

Figure4.Exampleoftheapproachusedtoquantifyequivalentmasssoilcarbonstockchangeusingtheregressionapproach.(a)ShowstheresultsobtainedfromtemporalmeasurementsofequivalentsoilmasscarbonstockswithinaCEAandthefittedregressionlineanditsassociatedstatistics.(b)Indicateshowthemagnitudeandstandarderroroftheslopeoftheregressionequationdefinedin(a)canbeusedtodefinethecumulativeprobabilityofexceedingaparticularrateofchangeofequivalentsoilmasscarbonstock.

June22,2017

8

Currentdevelopmentswithinthedirectmeasurementmethod

Fromtheonsetofthedevelopmentofthismethoditwasidentifiedthatthesamplingdesign

maynotprovidethemostefficientapproachtoquantifythemagnitudeandcertaintyofcarbon

stockswithinaCEA.However,itwasintendedtoprovideanapproachthatcouldbe

implementeduniversally.TheDepartmentoftheEnvironmentandEnergyisdevelopinganew

ERFmethod,drawingonlessonslearnedfromimplementationoftheexistingmethod.

Thenewmethodwillinclude:

• newsampledesignapproachesthatusepriorspatialinformation(e.g.soilmaps,yield

maps,elevation,etc.)todivideaCEAintospatialstratathatdonothavetobeequalin

sizeandcontainmorehomogenoussoilconditions,

• landmanagementactivitiesassociatedwithcropping,grazingandmixedsystemsand

horticultural,and

• additionalapproachestoquantifyingtheorganiccarboncontentofsoilsincluding

varioussensors(e.g.visible-nearinfraredormid-infraredsensors)

Method2:Estimatingcarbonsequestrationinsoilwithdefault

vales

InthesecondmethodcurrentlyavailableforlandholderstogenerateACCUs,threeprojecttypes

thatcanreceiveACCUshavebeendefined:sustainableintensification,stubbleretentionand

conversiontopastures.Eligiblelandsandassociateddefaultratesofsoilcarbonsequestration

associatedwitheachprojecttypeweredefinedusinganupdatedversionofFullCAMandits

associateddatatablesthatwereusedtoprepareAustralia’s2015submissiontotheUnited

NationsFrameworkConventiononClimateChange(UNFCCC).Thisapproachusedamethod

consistentwiththe2006IPCCGuidelinesforNationalGreenhouseGasInventories(IPCC2006)in

conjunctionwithtechniquesdescribedinthe2013RevisedSupplementaryMethodsandGood

PracticeGuidanceforArisingfromtheKyotoProtocol(IPCC,2014).Amappingtoolisavailable

June22,2017

9

forprojectproponentstocompletethetaskofdefiningwhetherapotentialprojectareaandits

CEAsresidewithineligiblelandsandifsowhatthedefaultratesofsoilcarbonsequestration

are.

Theareathatwasusedforsimulation(totaling34millionhectares)intheFullCAMwas

croplandsasidentifiedintheABARESCatchmentScaleLandUseofAustralia2014(version5)

whichwasprovidedbytheDepartmentofAgricultureatthemappingscaleof1:25000to1:250

000(http://data.daff.gov.au).Foreachofthethreeprojecttypes(sustainableintensification,

conversionfromcontinuouscroppingtocontinuouspastureandstubbleretention)changes

weremadetotheNationalInventorySystemdatabasetoreflectthedefinitionsofthe

simulations..Forexample,sustainableintensificationthefactualsimulationappliedtheyields

containedwithinthe2015database(businessasusual)andthecounter-factualapplieda20%

increaseinbiomass.

Forthefactualandcounter-factualsimulationsthesoilcarbonvalueafter25yearswas

aggregatedwithinanSA2(StatisticalArea–level2definedbytheAustralianBureauof

Statistics).Thedifferenceinsoilcarbonvaluesbetweenthefactualandcounter-factual

simulationswasthendividedbythenumberofhectaressimulatedandthe25yearswithina

givenSA2togenerateanaveragesoilcarbonstockchangeperhectareperyear.Thisvaluewas

thenassignedtotheSA2.

AhistogramoftheresultingsoilcarbonperhectareperyearvalueforeachSA2wasgenerated

todeterminetheJenksNaturalBreaksinthedatatoenableathreeclassregionalisationofthe

sequestrationvalues.Thethreeclassesweredefinedasfollows.

• MarginalBenefit-marginaldifferencebetweenthefactualandcounter-factualscenarioswasobservedonaperhectareperyearbasisafter25yearsattheSA2scale.Theclasswasdefinedattheboundaryofthefirstnaturalbreak(Jenks)inthehistogram.

• SomeBenefit–theclassfallingbetweenthefirstnaturalbreak(Jenks)inthehistogramandthe40thpercentileofthetailofthehistogram

• MoreBenefit–theremainderofthescenarioresults.

TheresultantratesofsoilcarbonsequestrationexpressedintCO2-eha-1y-1foreachclasswithin

eachprojecttypearegiveninTable1.Anexampleofthemapsderivedtodefineeligibilityand

sequestrationratefortheSustainableintensificationprojecttypeisshowninFigure5.

June22,2017

10

Table1.Defaultvaluesforsoilcarbonsequestrationdefinedforeachofthethreeprojecttypes

ProjectTypeSequestrationvalue(tCO2-eha-1year-1)

Marginalbenefit Somebenefit Morebenefit

Sustainableintensification 0.11 0.59 1.65

Stubbleretention 0.07 0.29 0.73

Conversiontopasture 0.22 0.44 0.84

Figure5.Delineationofnon-eligibleandeligiblelandsforSustainableintensificationprojectsandtheareasassociatedwitheachofthethreelevelsofsoilcarbonsequestrationbenefitpredictedusingthesoilcarboncomponentoftheFullCAMsimulationmodel.

ThelandareatobeincludedinaprojectmustbestratifiedintooneormoreCEAs,andasingle

projecttypeandassociatedmanagementactivitymustbespecifiedforeachCEA.Itispossible

June22,2017

11

toallocatedifferentprojecttypestodifferentCEAswithinasingleproject.Delineationofthe

projectandCEAboundariesaswellasprojecttypesandmanagementactivitiestobeapplied,

mustaccompanytherequestforprojectapprovalsoanassessmentofeligibilitycanbe

completed.

Eachprojecttypehasspecificconditionsandactivitiesthatmustbesatisfiedandimplemented,

respectively,forasequestrationprojecttobeapprovedandACCUsawarded.Theconditions

andactivitiesareoutlinedindetailinaseriesofdocumentsthatcanbefoundonthewebsite

describingthismethod(www.environment.gov.au/climate-change/emissions-reduction-

fund/methods/sequestration-carbon-modelled-abatement-estimates).Inthenextsectionsa

summaryofsomeofthemainpointsassociatedwitheachprojecttypeisprovided;however,

projectproponentsneedtoconsulttheofficialdocumentstogainafullunderstandingof

methodrequirements.

Sustainableintensification

Sustainableintensificationprojectscanbeappliedtocropping,pastureandmixedagricultural

systems,andmustincludetheapplicationofanytwoofthefollowingfouractivities:nutrient

management,introducingirrigation,managingsoilacidityorpasturerenovation.Ifcarriedout

oncroppinglands,itisaprerequisiteofthisprojecttypethatallresidues(stubble)mustbe

retainedwithintheCEA.

Nutrientmanagement

NutrientmanagementmustdemonstratethatthelandwithintheCEAhasamaterialdeficiency

(achieves<70%ofwaterlimitedyieldpotential)anditwaslikelytohavebeendeficientin

nutrientsinatleastfourofthefiveyearsofthebaselineemissionperiod.Themethodrequires

soiltestingtoidentifynutrientdeficiencies,provisionofwrittenadvicefromaqualifiedperson

(formaltraininginsoilhealthandplantnutrition)astohowtorectifynutrientdeficiencies,

constructionofanutrientbudgetandprojectnutrientmanagementplan,whichmustbe

reviewedandrevisedasnecessaryeverythreeyears.

June22,2017

12

Managingacidity

ThisactivitycanbeappliedtolandswithanaveragepH<5.5inthesurface0-10cmsoillayeror

<4.8insubsoils(depths>10cm).Alimeapplicationsstrategydefiningrate,source,timingand

placementmustbedevelopedwithaqualifiedpersonandbeofasufficientmagnitudetobring

theaveragesoilpHtoavalueof5.5-6.0withinfiveyearswithaminimumapplicationrateof1.0

Mgha-1inthefirstyearoftheproject.RetestingofsoilpHmustoccuratleastonceeveryfive

yearsandadditionallimemustbeappliedifrequiredtomaintainthesoilpHintheCEAwithin

therangeof5.5-6.0.

Irrigation

InthetypicallywaterlimitedagriculturalproductionenvironmentsofAustralia,applicationof

additionalwaterthroughirrigationhasahighpotentialtoenhanceplantgrowthandtheinput

ofcarbontosoils.Soilcarbondecompositionrateswouldalsobeexpectedtoincrease,butonly

duringtheplantperiodofactiveplantgrowth.Thesoilcarbonsequestrationvaluesappliedin

themethodwerederivedfrommodellingastheneteffectoftheincreasedplantinputsand

decompositionlosses.Inthismethod,proponentsarerequiredtodemonstratethatthewater

usedisadditionaltothatusedpriortocommencingtheprojectandhasbeensourcedfrom

eithernewentitlementsorimprovedefficiencies.Insomeinstances,ifaproponentsources

waterbysecuringnewlyacquiredwaterfromanin-streamwaterorgroundwateraccess

entitlementsapotentialcarbonleakageriskarises.Thisisinresponsetoareallocationofwater

fromoneareasoflandtoanotherwherecarbonmayhavebeensequesteredontheprevious

landduetotheallocationofwater.Asthemagnitudeofthecarbonleakageriskisdifficultto

quantifyandthelikelihoodofoccurrencecanvaryconsiderablyonthecatchmentinwhichthe

projectisoperatingthenetsoilcarbonsequestrationratedefinedbythemodellingexerciseis

discountedby50%.

Pasturerenovation

Thepasturerenovationactivityonlyappliestolandsthathavebeenunderpastureforatleast

12monthspriortoinitiatingarenovationeventandmustthenstayunderpastureproduction

forthedurationofthepermanenceperiod.Itisarequirementthattheprojectproponentcan

demonstratetherenovationeventoccurred(e.g.throughfinancialrecords).Forpasture

June22,2017

13

renovationtoincreasesoilcarbonstocks,thepasturemustsuccessfullyre-establishfollowing

renovation.Asuccessfulrenovationeventisconsideredasonewhere>70%soilcoveris

achievedwithin12monthsoftherenovationevent.Renovatedpasturesthatmeetthis

requirementwillbeeligibletoreceiveACCUs,whilethosethatdonotwillbeconsideredtohave

failedandwillnotbeeligibletoreceiveACCUs.

Retentionofcropresidues

Thisprojecttypecanonlybeappliedtolandundercropswhereatleast30%ofcropsurface

residues(stubbles)wereremovedthroughburning,bailingorgrazingineachofthe5most

recentyearsthatcropsweregrownpriortotheprojectbeinginitiated.Projectproponentscan

applyforanexceptionfromthisconditionforuptooneyear,withinthefiveyearbaseline

period,ifcropfailureoccurredanditwasnotpossibleorviabletoremovethestubbleundera

businessasusualscenario.TobeeligibleforACCUs,allburning,balingorgrazingofcrop

stubblesmustceasewithintheCEAforfouroutofeveryfiveyears,whichisconsistentwiththe

approachtakeninthemodellingexerciseusedtodefinethedefaultvalues.

Conversiontocontinuouspasture

Theconversiontocontinuouspastureprojecttyperecognisesthatsoilcarbonlevelsaretypically

higherunderpasturethancropmanagementpractices.Thistypeofactivitycanonlybe

undertakenwhereaproponentcandemonstratethatthelandwithaCEAwascontinuously

croppedandnotunderpastureatanypointwithinthefiveyearbaselineemissionsperiodprior

toinitiatingtheconversionandtheproject.Theestablishmentofthenewpasturemustachieve

aground-coverof>70%within12monthsandthelandmustremainunderpastureforthe

durationofthepermanenceperiod.

Calculatingtheamountofcarbonsequesteredwithinaproject

Providedaprojectmeetsallitsreportingobligationsandremainseligible,theamountofcarbon

sequesteredisdefinedbymultiplyingthedurationoverwhichtheprojecthasrunbythe

respectiverateofcarbonsequestration(includingdiscounts)providedinTable1.

June22,2017

14

Calculatingnetabatementforbothcarbonsequestration

methods

Implementingasoilcarbonsequestrationprojectusingeitherofthemethodsdescribedmay

alteremissionsofmethane(CH4)and/ornitrousoxide(N2O)(Table2).ChangesinCH4andN2O

emissionsmustbetakenintoaccountinadditiontotheamountofcarbonsequesteredtoderive

thetotalnetabatementprovidedbyaproject.Foreachofthemanagementactivitieseligible

underthetwomethods,thenetabatementiscalculatedbyconsideringeachofthegases

identifiedinTable2.Itisimportanttonotethatcalculationofstocksoremissionsassociated

withboththebaselineandprojectactivitiesarerequiredanditisthedifferencebetweenthese

thatisusedtodefinethenetabatementwhenundertakingtheproject.Forexample,where

croppinglandsareconvertedtopastureandgrazedbyruminantlivestock,the

measured/modelledchangeinsoilcarbonstockmustbeamendedtoaccountfor:

1. AnyreductionsinN2Oassociatedwiththecropresidues,

2. AnychangesinN2OandCO2associatedwithchangesintheratesoffertiliser

application,and

3. AnyCH4andN2Oemissionsderivedfromthelivestock.

Therequiredcalculationsareprovidedinthemethodreferencematerialsonthewebsites

providedearlierinthisdocument.

June22,2017

15

Table2.Greenhousegasesrequiredtobeincludedinnetabatementcalculationsforthevariouspotentialagriculturalmanagementactivitiesthatcanbeimplementedincarbonsequestrationprojects.

Carbonpooloremissionsource

Greenhousegas

Include/exclude Justificationandprocessforinclusion

Soilorganiccarbon

CO2 Include(containedwithinthedefaultsequestrationvalues)

Thisistheprimaryemissionsinkassociatewithsoilcarbonsequestrationprojects.

Livestock N2OCH4

Include Emissionsassociatedwithentericfermentation,dungandurinechangewithincreasesordecreasesinstockingrates.Impactsoffeedqualityareexcluded.NGGIemissionfactorsaretobeused.

Syntheticfertiliser

CO2N2O

Include ApplicationofsyntheticnitrogenfertilisersresultinemissionsofN2O,andinthecaseofureaalsoCO2.NGGIemissionfactorsaretobeused.

Non-syntheticorganicbasedfertilisers

CO2N2OCH4

Exclude Nonsyntheticfertilisersarederivedfromwastestreams.NoadditionalemissionsarerequiredtobeaccountedforsinceemissionsfromwithinaCEAtowhichtheyhavebeenappliedwouldbenogreaterthanwouldhaveoccurredhadthematerialsnotbeenapplied.

Agriculturallime

CO2 Include ApplicationofagriculturelimehasthepotentialtoemitCO2ascarbonatesreactwiththesoiltoneutraliseacidity.NGGIemissionfactorsaretobeused.

Irrigationenergy

CO2N2OCH4

Include Irrigatingpreviouslynon-irrigatedareasmayinvolveanincreaseinemissionsduetotheconsumptionofdieselfuelorelectricityandmustbeaccountedfor.NGGIemissionfactorsaretobeused.

Residues-decomposition

N2O Include RetentionofresiduesfromcorpswillresultintheemissionofN2Owhentheydecompose.NGGIemissionfactorsaretobeused.

Residues-burning

CO2N2OCH4

ExcludeCO2IncludeN2OandCH4

AnychangesinthequantityofresiduecarbonnotgoingtoCO2willbereflectedinthesequesteredcarbonwithinthesoil.NetchangesinN2OandCH4emissionsduetotheremovalofburninginprogressingfromthebaselinetoprojectconditionsneedtobeaccountedfor.NIRemissionfactorsaretobeused.

June22,2017

16

References

Penman J, Gytarsky M, et al. (2003) Good Practice Guidance for Land use, Land-use change and Forestry.

Richards G (2001) The FullCam carbon accounting model: development, calibration and implementation for the National Carbon Accounting System. National Carbon Accounting System Technical Report No. 28.

Richards G, Evans D (2004) Development of a carbon accounting model (FullCAM v1.0) for the Australian continent. Australian Forestry 67, 277-283.

Skjemstad JO, Spouncer L (2003) Integrated soils modelling for the national carbon accounting system. Estimating changes in soil carbon resulting from changes in land use. National Carbon Accounting System Technical Report No. 36.


Recommended