Transcript
Page 1: VIPR: An Interactive Tool for Meaningful Visualization of ...mfiterau/papers/2016/IJCAI_2016_VIPR_poster.pdf · VIPR: An Interactive Tool for Meaningful Visualization of High-Dimensional

VIPR:AnInteractiveToolforMeaningfulVisualizationofHigh-DimensionalData

[email protected]@cs.cmu.edu

[email protected]

MOTIVATION

ACCEPTOUTCOME

INVESTIGATEFURTHER

QUERY QUERY

BORDERCONTROL STOCKMARKET VEHICLECHECKS

DIAGNOSTICS CELLANALYSIS DRUGEVALUATION

AutomatedDecisionSupportSystemsOurmethod targets applicaQonswhere ahuman operator is involved in thedecision.Theprocessmustbe:•  Transparent•  ComprehensibleThus, the problem of finding subspaceswheredataisclassifiedwithhighaccuracybutwhich also give operators confidenceinthepredicQons.Informa<veProjec<onEnsemble(IPE)methodologyhasproveneffecQveinfindinginterpretablerenderingsofhigh-dimensionaldatathatrevealhiddenlow-dimensionalstructuresiftheyexist.

Userisincontrolofthechoice:•  InvesQgateFurther–expensive•  AcceptOutcome-assumeresponsibility

INFORMATIVEPROJECTIONENSEMBLESUser-SystemInterac<on:1.  the user provides the

systemaquerypoint;

2.  system finds a query-specificprojec<on

3.  systemdisplaysresultandillustra<on of how thelabelwasobtained

X g(X)

c1(X)

c2(X)

c3(X)

h1(c1(X))

h2(π2(X))

h3(π3(X))

π(X)

CONTEXTCLASSIFIERSPROJECTIONSSELECTORQUERY

optimalnearlyoptimal

Penalty–limits#ofprojections

1234567

DataPoints

ProjectionsLossMatrix(L)

§  Bbinaryselectionmatrix§  Bijis

§  1,ifprojectionjistobeusedtosolvepointiand

§  0,otherwise

10

1234567

DataPoints

ProjectionsSelectionMatrix(B)

IPElearning=findingasetoffewprojecQonsforwhichthelossisclosetotheopQmum.WelimitthenumberofprojecQonsused.

LEARNINGTHEENSEMBLE

cj

THEVIPRINTERFACE EXAMPLES

EXPERIMENTALRESULTS

Dataset k-NNFeatureSelecQon IPE-Min IPE-HC SVM

FeatureSelecQon IPE-Linear IPE-HC

+k-NN(Best) k-NN k-NN

+SVM(Best) SVM SVM

AlertBP 0.7216 76.1 88.6 82.3 75 73.96 77.08 76.04 0.226 0.1253 0.1479 0.1645 0.063 0.1294 0.1391 15.06AlertRR 63.51 85.34 97.8 93.65 88.39 86.8 89.25 88.95 0.0397 0.0557 0.0117 0.0157 0.0408 0.0648 0.0442 0.0531AlertSPO2 88.01 89.55 91.2 90 90.76 90.35 93.02 90.77 0.0104 0.0411 0.0164 0.0328 0.0362 0.0268 0.0255 0.0556Chars74k 31.61 25.34 35.78 35.54 27.07 30.76 35.92 33.72 0.0245 0.0222 0.0305 0.0159 0.0145 0.0217 0.0321 0.0175G50C 87.27 92 94.18 93.45 95.09 94.18 95.64 94.36 0.035 0.023 0.044 0.0466 0.0302 0.0384 0.0294 0.023Leler 95.25 92.61 95.33 95.1 97.07 91.66 97.1 94.86 0.0018 0.0012 0.0017 0.0013 0.0017 0.002 7.00E-04 9.00E-04MNIST 97.21 92.49 97.57 97.48 9.15 90.53 93.96 9.35 0.0037 0.001 4.71E-04 7.17E-04 0.0056 0.0062 0.01 0.0014USPS 95.82 93.5 96.69 97.13 93.91 91.38 9.58 9.55 0.0036 0.0064 0.0052 0.0061 0.086 0.0964 0.057 0.62

Dataset #Features #Samples #ClassesAlertBP 147 96 2AlertRR 147 362 2AlertSPO2 147 259 2Chars74k 85 3410 62G50C 50 550 2Leler 16 16000 26MNIST 784 60000 10USPS 256 11000 10

Method Classifier SelecQon OpQmizaQonIPE-Mink-NN k-NN Minloss Two-stageIPE-Hk-NN k-NN

Hyperrectangle Greedy

IPE-LinearSVM SVM

MulQclassSVM Two-stage

IPE-HSVM SVMHyperrectangle Greedy

CLINICALALERTADJUDICATION

CEREBRALPALSYPROGRESSION

HeartRate<40or>140RespiratoryRate<8or>36

SystolicBloodPressure<80or>200DiastolicBloodPressure>110

SPO2<85%

window preceding alert alert duration

Alertssomearear(facts,nottruealerts

MaximumRespiratoryRate

Med

ianRe

spira

toryRate

ArtifactsRealalertsNewalert

NewalertcanbeconfidentlyadjudicatedwiththeinformaQveprojecQon.

Alertevents

Eventslabeledbycommilee

Selectedforexpertreview

ReviewbasedonInformaQveProjecQons

Chart-basedreview

AutomaQcAdjudicaQon

AdjudicaQonModel

CalibraQon

PaQentsaremonitoredvianon-invasivevitalsignmonitors.AlertsissuedwhenaVSexceedspredefinedthresholds.ManyalertsarearQfacts,duetothreshold-basedissuance.ArQfactscausealarmfaQgue.MachineLearninghasprovenusefulinclassifyingclinicaldata.TrainingdatarequireslaboriousexpertannotaQon.

ObjecQve:ReduceexpertannotaQoneffortthroughsemi-automaQcadjudicaQonofVSalertsasrealorarQfacts,whilemaintaininghighaccuracy.

CPPaQents

SurgicalIntervenQon

Nosurgery

Selectedbydoctors,notatrandom GDI+

Noguaranteeofsuccess

GaitDeviaQonIndex

GDI-

GDI+

GDI-

Mosthavephysicaltherapy

PaQentdoesnotalwaysworsen

Subject Information

Predict 𝞓GDI (Gait Deviation Index) following surgery High 𝞓GDI

Low 𝞓GDI

Stronger patients improve

High initial GDI can’t be improved

Preoperative GDI

Str

engt

h sc

ore

WeaimtopredicttheimprovementinGaitDeviaQonIndex(ΔGDI)following•  Surgery,forthetreatmentgroup•  AlternaQvetreatmentforthecontrol

group(forinstance,physicaltherapy)FeaturesusedinpredicQon:age,BMI,jointangles,motorcontrol,strength,walkingefficiency(oxygencost),iniQalGDIWeshowasubsetofpreliminaryresultsforPropensityScoregroup3(PS3)

Theseverityofthedisease,intermsofGaitDevia<onIndex,isthestrongestpredictorofoutcome

01

23 0 2 4 6 8

0

5

10

15

20

25

30

35

O2cost pctSMCO2cost pre

age

20 40 60 80 100−50

0

5050

60

70

80

90

100

KneeFlex maxFlexion

AnkleDorsi IC

GD

I pre

0

50

100

−20

0

20

400

0.2

0.4

0.6

0.8

AnteversionAnkleDors Kn90

Agg

rega

teSp

asSc

ore

pre

−30.1

−25

−19.8

−14.7

−9.57

−4.43

0.704

5.84

11

16.1

21.2

Predict 𝞓GDI for the controls

VisualtoolkitforInformaQveProjecQonRecovery(VIPR)1.Analysistoolforthefollowingtasks:regression,classificaQon,clustering2.User-specifiedparameters•  Featurestobeused•  Numberofsubmodels•  Dimensionalityofsubspaces•  Hypothesisclass•  Hold-outsetevaluaQon3.ManipulaQonsoftrainedmodels•  Add/removefeatures/samples•  Comparemodels•  ObservepredicQonontestsamples•  Providefeedbackonlabels

Recommended