70

2015 bioinformatics wim_vancriekinge

Embed Size (px)

Citation preview

Page 1: 2015 bioinformatics wim_vancriekinge
Page 2: 2015 bioinformatics wim_vancriekinge
Page 3: 2015 bioinformatics wim_vancriekinge

FBW22-09-2015

Wim Van Criekinge

Page 4: 2015 bioinformatics wim_vancriekinge

Lab for Bioinformatics and computational genomics

Lab for Bioinformatics and computational genomics

10 “genome hackers” mostly engineers (statistics)

42 scientiststechnicians, geneticists, clinicians

>100 people Hardware/software engineers,

mathematicians, molecular biologists

Page 5: 2015 bioinformatics wim_vancriekinge

What is Bioinformatics ?

• Application of information technology to the storage, management and analysis of biological information (Facilitated by the use of computers)– Sequence analysis?– Molecular modeling (HTX) ?– Phylogeny/evolution?– Ecology and population studies?– Medical informatics?– Image Analysis ?– Statistics ? AI ?– Sterkstroom of zwakstroom ?

Page 6: 2015 bioinformatics wim_vancriekinge

• Medicine (Pharma)– Genome analysis allows the targeting of genetic

diseases– The effect of a disease or of a therapeutic on RNA and

protein levels can be elucidated– Knowledge of protein structure facilitates drug design– Understanding of genomic variation allows the tailoring

of medical treatment to the individual’s genetic make-up

• The same techniques can be applied to crop (Agro) and livestock improvement (Animal Health)

Promises of genomics and bioinformatics

Page 7: 2015 bioinformatics wim_vancriekinge

Bioinformatics: What’s in a name ?

• Begin 1990’s• “Bio-informatics”:

Computing PowerGenbank(Log)

Time (years)

Page 8: 2015 bioinformatics wim_vancriekinge

Bioinformatics: What’s in a name ?

• Begin 1990’s• “Bio-informatics”:

– convergence of explosive growth in biotechnology, paralled by the explosive growth in information technology

• Not new: > 30 years that people use “computers” in biology

• In silico biology, database biology, ...

Page 9: 2015 bioinformatics wim_vancriekinge

Time (years)

Page 10: 2015 bioinformatics wim_vancriekinge
Page 11: 2015 bioinformatics wim_vancriekinge

Happy Birthday …

Page 12: 2015 bioinformatics wim_vancriekinge

PCR + dye termination

Suddenly, a flash of insight caused him to pull the car off the road and stop. He awakened his friend dozing in the passenger seat and excitedly explained to her that he had hit upon a solution - not to his original problem, but to one of even greater significance. Kary Mullis had just conceived of a simple method for producing virtually unlimited copies of a specific DNA sequence in a test tube - the polymerase chain reaction (PCR)

Page 13: 2015 bioinformatics wim_vancriekinge

Math

Informatics

Bioinformatics, a scientific discipline …

Theoretical Biology

Computational Biology

(Molecular)Biology

Computer Science

Bioinformatics

Page 14: 2015 bioinformatics wim_vancriekinge

Math Algorithm Development

Informatics

Interface Design

Bioinformatics, a scientific discipline …

AI, Image Analysisstructure prediction (HTX)

Theoretical Biology

Sequence Analysis

Computational Biology

(Molecular)Biology

Expert Annotation

Computer ScienceNPDatamining

Bioinformatics

Page 15: 2015 bioinformatics wim_vancriekinge

Math Algorithm Development

Informatics

Interface Design

Bioinformatics, a scientific discipline …

AI, Image Analysisstructure prediction (HTX)

Theoretical Biology

Sequence Analysis

Computational Biology

(Molecular)Biology

Expert Annotation

Computer ScienceNPDatamining

BioinformaticsDiscovery Informatics – Computational Genomics

Page 16: 2015 bioinformatics wim_vancriekinge

Doel van de cursus

• Meer dan een inleiding tot ... het is de bedoeling van de cursus een onderliggend inzicht te verschaffen achter de verschillende technieken.

• Naast het gebruik van recepten, wat terug te vinden is in delen van de syllabus laat een inzicht in – de werking van databanken – en de achterliggende algoritmen

• toe – om wisselende interfaces op nieuwe

problemen toe te passen.

Page 17: 2015 bioinformatics wim_vancriekinge

Inhoud Lessen: Bioinformatica

Page 18: 2015 bioinformatics wim_vancriekinge
Page 19: 2015 bioinformatics wim_vancriekinge

Examen

• Theorie – Vier inzichtsvragen over de cursus (inclusief !!)

• Practicum (“open-book”)– Viertal oefeningen die meestal het schrijven

van een programma veronderstellen

• Puntenverdeling 50/50

Page 20: 2015 bioinformatics wim_vancriekinge

Cursus

• Syllabus 25 Euro– Syllabus

• V|Podcasts• Weblems – Screencasts

Page 22: 2015 bioinformatics wim_vancriekinge
Page 23: 2015 bioinformatics wim_vancriekinge

• Timelin: Magaret Dayhoff …

Page 24: 2015 bioinformatics wim_vancriekinge

naturetheHumangenome

Setting the stage …

Page 25: 2015 bioinformatics wim_vancriekinge
Page 26: 2015 bioinformatics wim_vancriekinge
Page 27: 2015 bioinformatics wim_vancriekinge
Page 28: 2015 bioinformatics wim_vancriekinge

Genome Size

DOGS: Database Of Genome Sizes

E. coli = 4.2 x 106

Yeast = 18 x 106

Arabidopsis = 80 x 106 C.elegans = 100 x 106 Drosophila = 180 x 106 Human/Rat/Mouse = 3000 x 106 Lily = 300 000 x 106

With ... : 99.9 %To primates: 99%

Page 29: 2015 bioinformatics wim_vancriekinge
Page 30: 2015 bioinformatics wim_vancriekinge

Biological Research

Adapted from John McPherson, OICR

Page 31: 2015 bioinformatics wim_vancriekinge

And this is just the beginning ….

Next Generation Sequencing is here

Page 32: 2015 bioinformatics wim_vancriekinge

Basics of the “old” technology

• Clone the DNA.• Generate a ladder of labeled (colored) molecules

that are different by 1 nucleotide.• Separate mixture on some matrix.• Detect fluorochrome by laser.• Interpret peaks as string of DNA.• Strings are 500 to 1,000 letters long• 1 machine generates 57,000 nucleotides/run• Assemble all strings into a genome.

Page 33: 2015 bioinformatics wim_vancriekinge

Basics of the “new” technology

• Get DNA.• Attach it to something.• Extend and amplify signal with some color

scheme.• Detect fluorochrome by microscopy.• Interpret series of spots as short strings of DNA.• Strings are 30-300 letters long• Multiple images are interpreted as 0.4 to 1.2

GB/run (1,200,000,000 letters/day). • Map or align strings to one or many genome.

Page 34: 2015 bioinformatics wim_vancriekinge

Next Generation Technologies

• 454–Emulsion PCR–Polymerase–Natural Nucleotides

• 20-100Mb for 5-15k –1% error rate–Homopolymers

Page 35: 2015 bioinformatics wim_vancriekinge
Page 36: 2015 bioinformatics wim_vancriekinge
Page 37: 2015 bioinformatics wim_vancriekinge
Page 38: 2015 bioinformatics wim_vancriekinge
Page 39: 2015 bioinformatics wim_vancriekinge
Page 40: 2015 bioinformatics wim_vancriekinge

One additional insight ...

Page 41: 2015 bioinformatics wim_vancriekinge

Read Length is Not As Important For Resequencing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 10 12 14 16 18 20

Length of K-mer Reads (bp)

% o

f Pai

red

K-m

ers

with

Uni

quel

y As

sign

able

Loc

atio

n

E.COLI

HUMAN

Jay Shendure

Page 42: 2015 bioinformatics wim_vancriekinge

Two Short Read Techologies

• Illumina GA

• ABI SOLID

Page 43: 2015 bioinformatics wim_vancriekinge

Technology Overview: Solexa/Illumina Sequencing

Page 44: 2015 bioinformatics wim_vancriekinge
Page 45: 2015 bioinformatics wim_vancriekinge
Page 46: 2015 bioinformatics wim_vancriekinge
Page 47: 2015 bioinformatics wim_vancriekinge
Page 48: 2015 bioinformatics wim_vancriekinge
Page 49: 2015 bioinformatics wim_vancriekinge

ABI Solid

Dressman 2003

Page 50: 2015 bioinformatics wim_vancriekinge

ABI SOLID

Page 51: 2015 bioinformatics wim_vancriekinge

ABI SOLID

Page 52: 2015 bioinformatics wim_vancriekinge
Page 53: 2015 bioinformatics wim_vancriekinge
Page 54: 2015 bioinformatics wim_vancriekinge
Page 55: 2015 bioinformatics wim_vancriekinge

Paired End Reads are Important!

Repetitive DNAUnique DNA

Single read maps to multiple positions

Paired read maps uniquely

Read 1 Read 2

Known Distance

Page 56: 2015 bioinformatics wim_vancriekinge

Next next generation sequencingThird generation sequencing

Now sequencing

Page 57: 2015 bioinformatics wim_vancriekinge

Complete genomics

Page 58: 2015 bioinformatics wim_vancriekinge

Complete genomics

Page 59: 2015 bioinformatics wim_vancriekinge

Pacific Biosciences: A Third Generation Sequencing Technology

Eid et al 2008

Page 60: 2015 bioinformatics wim_vancriekinge

Pacific Biosciences: A Third Generation Sequencing Technology

Page 61: 2015 bioinformatics wim_vancriekinge

Nanopore Sequencing

Page 62: 2015 bioinformatics wim_vancriekinge

The genome fits as an e-mail attachment

Page 63: 2015 bioinformatics wim_vancriekinge

107 106 105 104 103 102 101 1108109

Full genome bp

GENETIC

Whole-genomesequencing

Enrichment seq(Exome) PCREnrichment

Targeted Panels

Instrument and Assay providers

CLIA Lab service providers

Page 64: 2015 bioinformatics wim_vancriekinge
Page 65: 2015 bioinformatics wim_vancriekinge
Page 66: 2015 bioinformatics wim_vancriekinge
Page 67: 2015 bioinformatics wim_vancriekinge

NXT GNT DXS• GNT

– Dedicated Team & Network– Operational: Location– Professionalized

• DXS– Content engine– Product 1 established– Pipeline for n+1

• NXT– Workflow management– Bioinformatics– Epigenetics

Page 68: 2015 bioinformatics wim_vancriekinge

NCBI (educational resources)

Page 69: 2015 bioinformatics wim_vancriekinge

Weblems

• What ?– Web-based problemes (over de huidige les

en/of voorbereiding op volgende les)• When ?

– Einde van elke les• How ?

– Oplossingen online via screencasts– Practicum– Voorbedereiding op het practicum examen ...

Niet alle problemen vereisen noodzakelijk programmacode ...

Page 70: 2015 bioinformatics wim_vancriekinge

Weblems

W1.1: To which phyla do the following species belong (a) starfish (b) ginko tree (c) scorpion

W1.2: What are the common names for the following species (a) Orycterophus afer (b) Beta vulagaris (c) macrocystis pyrifera

W1.3: What species has the smallest known genome ? And is genome size related to number of genes ?

W1.4: What are the 5 latest genomes published ? How complete is “coverage” ?

W1.5: For approximately 10% of europeans, the painkiller codeine is ineffective because the patients lack the enzyme that converts codeine into the active molecule, morphine. What is the most common mutation that causes this condition ?