151

A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Embed Size (px)

DESCRIPTION

My presentation from 8th May 2012, at a workshop on Plant-Microbe Interactions, held at the Turin Botanical Gardens, University of Turin. The talk expands on concepts from this paper: Pritchard L, Birch P (2011) A systems biology perspective on plant-microbe interactions: Biochemical and structural targets of pathogen effectors. Plant Science 180: 584–603. doi:10.1016/j.plantsci.2010.12.008.

Citation preview

Page 1: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin
Page 2: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin
Page 3: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  Systems  Biology  Perspec2ve  on  Plant-­‐Pathogen  Interac2ons  

Leighton  Pritchard  

Page 4: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  Con2nuum  l Pathogenicity  is  a  loaded  term:  

l  o4en  reflects  human  interest  in  the  system  

l  disease  on  crop  plants  could  be  coincidental  to  ‘wild  type’  interac<ons  

l A  con<nuum  of  interac<on  modes,  including  symbiosis  and  pathogenicity  

l The  loca<on  of  the  system  on  this  con<nuum  may  depend  on  context  

l  e.g.  Pectobacterium  atrosep/cum:potato  

no  impact   host  death  

Page 5: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  basic  observa2on  Pathogen  Host  

Biological  cells  (and  organisms)  can  be  represented    as  networks  

Page 6: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Biological  networks  l Common  way  to  represent  structure  

l  Several  biological  subsystems  are  networks  

l Universal  representa<on  l  All  biological  systems  have  parts  that  can  be  represented  

as  networks  

l Networks  (a.k.a.  graphs)  are  mathema<cally  well-­‐understood:  Graph  Theory  

l  Many  tools  exist,  relevant  to  biology  

Page 7: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Biological  networks  l Common  way  to  represent  structure  

l  Several  biological  subsystems  are  networks  

l Universal  representa<on  l  All  biological  systems  have  parts  that  can  be  represented  

as  networks  

l Networks  (a.k.a.  graphs)  are  mathema<cally  well-­‐understood:  Graph  Theory  

l  Many  tools  exist,  relevant  to  biology  

Page 8: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Biological  networks  l Metabolic  networks  (e.g.  KEGG)  

(generic)  Michal  (Ed.),  Biochemical  Pathways,  John  Wiley  and  Sons,  New  York,  1999.    

Page 9: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Biological  networks  l Regulatory/signalling  networks  

(mouse)  (Drosophila)  

Page 10: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Biological  networks  l Protein-­‐protein  interac<on  networks  

(Arabidopsis/H.arabidopsidis/P.syringae)  (yeast)  

Page 11: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Biological  networks  l Common  way  to  represent  structure  

l  Several  biological  subsystems  are  networks  

l Universal  representa<on  l  All  biological  systems  have  parts  that  can  be  represented  

as  networks  

l Networks  (a.k.a.  graphs)  are  mathema<cally  well-­‐understood:  Graph  Theory  

l  Many  tools  exist,  relevant  to  biology  

Page 12: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

What  is  a  network?  l Networks  have  nodes  (a.k.a.  ver<ces)  

l  Nodes  typically  represent  ‘things’:  

� proteins,  chemical  compounds,  people,  towns,  junc<ons…  

l Nodes  are  connected  by  edges  (a.k.a.  arcs)  l  Edges  typically  indicate  some  rela<onship  between  nodes  

� physical  interac<on,  substrate:product,  friends  on  Facebook  

l  Edges  may  be  directed  (from  one  node  to  another)  or  undirected  (no  or  ambiguous  direc<on)  

� chemical  conversion:  directed;  interac<on:  undirected  

n1   n2  

Page 13: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

What  is  a  network?  l Networks  have  nodes  (a.k.a.  ver<ces)  

l  Nodes  typically  represent  ‘things’:  

� proteins,  chemical  compounds,  people,  towns,  junc<ons…  

l Nodes  are  connected  by  edges  (a.k.a.  arcs)  l  Edges  typically  indicate  some  rela<onship  between  nodes  

� physical  interac<on,  substrate:product,  friends  on  Facebook  

l  Edges  may  be  directed  (from  one  node  to  another)  or  undirected  (no  or  ambiguous  direc<on)  

� chemical  conversion:  directed;  interac<on:  undirected  

n1   n2  

Page 14: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

What  is  a  network?  l Networks  have  nodes  (a.k.a.  ver<ces)  

l  Nodes  typically  represent  ‘things’:  

� proteins,  chemical  compounds,  people,  towns,  junc<ons…  

l Nodes  are  connected  by  edges  (a.k.a.  arcs)  l  Edges  typically  indicate  some  rela<onship  between  nodes  

� physical  interac<on,  substrate:product,  friends  on  Facebook  

l  Edges  may  be  directed  (from  one  node  to  another)  or  undirected  (no  or  ambiguous  direc<on)  

� chemical  conversion:  directed;  interac<on:  undirected  

n1   n2   n1   n2   n1   n2  

n1   n2  

Page 15: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Many  things  are  networks  l My  Facebook  friends  network:  

l  Nodes:  people  

l  Edges:  friendships  between  people  

l Useful  concepts  for  biology:  l  ‘friend  of  a  friend’;  ‘six  degrees  of  separa<on’;  clusters  of  friends    

Solange Mateo Montalcini

Maeve Price

Peter Cock

Catherine Tackley

Gavin Cowie

Steffi Keir

Yvonne McAvoy

Jennifer White

Rachel Clewes

Juan Morales

Karen Faulds

David Ian Ellis

Laura Banasiak

Andrea Semião

Daniel Tackley

Andrew Lipscombe

Bleddyn Hughes

Sue Stovell

Laura Didymus

Hywel GriffithsCharles Twist

Christian Payne

Helen Johnson

Phil Parsonage

Colin McGill

Allan N. Gunn

Will AllwoodKatherine Hollywood

Judith Robertson

Andrew Murdoch

David Broadhurst

Lydia Castelli

Miles Armstrong

Paul Keir

Fiona White Gagg

Lizzie Wilberforce

Joanne Fitchet

Laura Baxter

Alison Gilhespie

Jorunn Bos

James Gagg

Andy Smith

Clare Baxter

Susan Somerville

Neil Bhaduri

Joanna Jones

Colleen Gagg

Susan Quinn McGhee

Al Macmillan

Norman StewartKevin Knox

Susan BreenMichael Barrow

Phil Dennison

Andrew McKenzie

Matthew Blackburn

Christelle Robert

Tim Arrowsmith

Emma Robertson

Jane Ballany

Chris Thorpe

Andrew Dalke

Sonia Humphris

Juan Morales

Eleanor Gilroy

Chris McDonald

Natalie Homer

Anna Åsman

Ruth Polwart

Tim Morley

Kenny Duncan

Iddo Friedberg

Remco Stam

Ramesh Vetukuri

Louise Matheson

Simon Easterman

Philip Law

Craig Shaddy Shadbolt

Simon Garrett

Agata Kaczmarek

Simon Pendlebury

Rays JiangChristiane AusJena

Pedro Mendes

Iris Stone

Ingo Hein

Adriana Ravagnani

Eduard Venter

Charles Gordon

David CookeJonathan Gagg

Roger Jarvis

Ross McMahon

Stefan Engelhardt

Edgar Huitema

Thomas PritchardTracy Canham

Sophien Kamoun

Florietta JupeAmbreen Owen

Hazel McLellan

Page 16: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Many  things  are  networks  l My  Facebook  friends  network:  

l  Nodes:  people  

l  Edges:  friendships  between  people  

l Useful  concepts  for  biology:  l  ‘friend  of  a  friend’;  ‘six  degrees  of  separa<on’;  clusters  of  friends    

Solange Mateo Montalcini

Maeve Price

Peter Cock

Catherine Tackley

Gavin Cowie

Steffi Keir

Yvonne McAvoy

Jennifer White

Rachel Clewes

Juan Morales

Karen Faulds

David Ian Ellis

Laura Banasiak

Andrea Semião

Daniel Tackley

Andrew Lipscombe

Bleddyn Hughes

Sue Stovell

Laura Didymus

Hywel GriffithsCharles Twist

Christian Payne

Helen Johnson

Phil Parsonage

Colin McGill

Allan N. Gunn

Will AllwoodKatherine Hollywood

Judith Robertson

Andrew Murdoch

David Broadhurst

Lydia Castelli

Miles Armstrong

Paul Keir

Fiona White Gagg

Lizzie Wilberforce

Joanne Fitchet

Laura Baxter

Alison Gilhespie

Jorunn Bos

James Gagg

Andy Smith

Clare Baxter

Susan Somerville

Neil Bhaduri

Joanna Jones

Colleen Gagg

Susan Quinn McGhee

Al Macmillan

Norman StewartKevin Knox

Susan BreenMichael Barrow

Phil Dennison

Andrew McKenzie

Matthew Blackburn

Christelle Robert

Tim Arrowsmith

Emma Robertson

Jane Ballany

Chris Thorpe

Andrew Dalke

Sonia Humphris

Juan Morales

Eleanor Gilroy

Chris McDonald

Natalie Homer

Anna Åsman

Ruth Polwart

Tim Morley

Kenny Duncan

Iddo Friedberg

Remco Stam

Ramesh Vetukuri

Louise Matheson

Simon Easterman

Philip Law

Craig Shaddy Shadbolt

Simon Garrett

Agata Kaczmarek

Simon Pendlebury

Rays JiangChristiane AusJena

Pedro Mendes

Iris Stone

Ingo Hein

Adriana Ravagnani

Eduard Venter

Charles Gordon

David CookeJonathan Gagg

Roger Jarvis

Ross McMahon

Stefan Engelhardt

Edgar Huitema

Thomas PritchardTracy Canham

Sophien Kamoun

Florietta JupeAmbreen Owen

Hazel McLellan

Page 17: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Many  things  are  networks  l  Google  Maps  

l  Nodes:  road  junc<ons  (and  end  points  in  culs  de  sacs)  

l  Edges:  roads  

l  Structure  view  

l  Flow/traffic  view  

 

l  Useful  concepts  for  biology:  l  Network  ‘flow’  or  ‘flux’;  distance  on  a  network;  shortest  path  

Page 18: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Many  things  are  networks  l  Google  Maps  

l  Nodes:  road  junc<ons  (and  end  points  in  culs  de  sacs)  

l  Edges:  roads  

l  Structure  view  

l  Flow/traffic  view  

 

l  Useful  concepts  for  biology:  l  Network  ‘flow’  or  ‘flux’;  distance  on  a  network;  shortest  path  

Page 19: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Many  things  are  networks  l  Google  Maps  

l  Nodes:  road  junc<ons  (and  end  points  in  culs  de  sacs)  

l  Edges:  roads  

l  Structure  view  

l  Flow/traffic  view  

 

l  Useful  concepts  for  biology:  l  Network  ‘flow’  or  ‘flux’;  distance  on  a  network;  shortest  path  

Page 20: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

l Abstract  truths  about  networks  can  be  true  about  biology  l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological  

network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to  random  damage.  

Page 21: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

l Abstract  truths  about  networks  can  be  true  about  biology  l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological  

network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to  random  damage.  

Page 22: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  

Page 23: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  

Page 24: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

l Abstract  truths  about  networks  can  be  true  about  biology  l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological  

network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to  random  damage.  

Page 25: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

 

Page 26: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

 

n1  

n2  

n3   n4  

n5  

Page 27: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

l Any  network  with  this  structure  has  the  same    behaviour  

l  Behaviour  of  specific  regulatory  network  is  dictated  by  its  structure:  

l  Behaviour  dependent  on  structure  of  system  as  a    whole:  need  to  understand  this  at  a  systems  level  

MacLean  and  Studholme.  A  Boolean  model  of  the  Pseudomonas  syringae  hrp  regulon  predicts  a  <ghtly  regulated  system.  PLoS  ONE  (2010)  vol.  5  (2)  pp.  e9101  doi:10.1371/journal.pone.0009101  

Page 28: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Networks  are  abstract  l Networks  are  collec<ons  of  nodes  and  edges  

l Proper<es  of  the  network  are  the  proper<es  of  that  collec<on  l  What  a  node  or  edge  represents  is  not  important  

l  If  a  network  describes  biology  well…  l  …what  is  true  about  the  network  will  be  true  about  the  biology  

l  (some  networks  describe  biology  be`er  than  others)  

l Abstract  truths  about  networks  can  be  true  about  the  biology  they  represent  

l  If  a  network  of  type  X  is  robust  to  random  damage,  and  a  biological  network  is  of  type  X,  we  can  say  that  the  biological  network  is  robust  to  random  damage.  

Page 29: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l Network  should  be  an  adequate  representa<on  of  biology  

l  Choice  of  representa<on  should  suit  biological  ques<on  

l  e.g.  do  we  represent  chemical  compounds,  or  moie<es?  

Page 30: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l Network  should  be  an  adequate  representa<on  of  biology  

l  Choice  of  representa<on  should  suit  biological  ques<on  

l  e.g.  do  we  represent  chemical  compounds,  or  moie<es?  

Page 31: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l Network  should  be  an  adequate  representa<on  of  biology  

l  Choice  of  representa<on  should  suit  biological  ques<on  

l  e.g.  do  we  represent  chemical  compounds,  or  moie<es?  

Page 32: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l What  does  this  diagram  mean?  

l  Are  all  enzymes  expressed  at  same  <me?  

l  Are  all  enzymes  expressed  in  all  <ssues?  

l  Are  all  metabolites  always  available?  

l  30-­‐40%  of  metabolic  ac<vity  has  no  known  gene  associated  with  it  (Chen  and  Vitkup.  Distribu<on  of  orphan  metabolic  ac<vi<es.  Trends  Biotechnol  (2007)  vol.  25  (8)  pp.  343-­‐348  doi:10.1016/j.<btech.2007.06.001)  

Michal  (Ed.),  Biochemical  Pathways,  John  Wiley  and  Sons,  New  York,  1999.    

Page 33: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l What  does  this  diagram  mean?  

l  Are  all  enzymes  expressed  at  same  <me?  

l  Are  all  enzymes  expressed  in  all  <ssues?  

l  Are  all  metabolites  always  available?  

l  30-­‐40%  of  metabolic  ac<vity  has  no  known  gene  associated  with  it  (Chen  and  Vitkup.  Distribu<on  of  orphan  metabolic  ac<vi<es.  Trends  Biotechnol  (2007)  vol.  25  (8)  pp.  343-­‐348  doi:10.1016/j.<btech.2007.06.001)  

Michal  (Ed.),  Biochemical  Pathways,  John  Wiley  and  Sons,  New  York,  1999.    

Page 34: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l Biological  networks  are  dynamic  

l  There  may  be  homeostasis,  but  it’s  dynamic  homeostasis  

l  “The  only  steady-­‐state  is  death”  

l What  kind  of  dynamics?  

l  Kine<c  equa<ons  

l  ODE/Stochas<c  representa<on  of  processes  

� e.g.  enzyme  kine<cs  

E + S ⌦ ES ⌦ EP ! E + P

v =[S]V

max

[S] + [Km]

Page 35: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l Biological  networks  are  dynamic  

l  There  may  be  homeostasis,  but  it’s  dynamic  homeostasis  

l  “The  only  steady-­‐state  is  death”  

l What  kind  of  dynamics?  

l  Kine<c  equa<ons  

l  ODE/Stochas<c  representa<on  of  processes  

� e.g.  enzyme  kine<cs  

E + S ⌦ ES ⌦ EP ! E + P

v =[S]V

max

[S] + [Km]

Page 36: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Choosing  a  representa2on  l Biological  networks  are  dynamic  

l  There  may  be  homeostasis,  but  it’s  dynamic  homeostasis  

l  “The  only  steady-­‐state  is  death”  

l What  kind  of  dynamics?  

l  Boolean  (on/off,  0/1)  

� e.g.  regula<on/signalling  

nodes  

<me  

Page 37: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

A  representa<on  of  host  and  pathogen  as  two  networks  

Page 38: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

PAMP/MAMP  detec<on:  host  immune  receptor  detects  (interacts  with)  non-­‐self  chemical  species  derived  from  microbe/pathogen  

Page 39: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

Effector  ac<on  I:  pathogen-­‐derived  species  (probably  protein)  interacts  with  host  network  component  

Page 40: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

Effector  ac<on  II:  pathogen-­‐derived  species  (probably  protein)  manipulates  (interacts  with)  host  network  process  

Page 41: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

Effector-­‐triggered  resistance  I:  host  immune  receptor  interacts  with  pathogen-­‐derived  effector  

Page 42: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

Effector-­‐triggered  resistance  II:  host  immune  receptor  detects  self-­‐  modifica<on  (induced  by  pathogen  effector)  

Page 43: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

Host-­‐pathogen  interac2on  is  the  coming  together  of  two  networks  into  a  single  network:  different  proper2es  than  either  network  alone  

Page 44: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  Pathogen  Host  

How  does  this  affect  culturability?    Tight  connec2on  correlates  with  obligate  biotrophy,  hence  difficult  to  culture?  

Page 45: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  

Page 46: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  

Pathogen  

Host  

l How  does  host/pathogen  network  respond  to  interac<on?  

l What  is  best  way  to  a`ack  a  network?  

l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?  

l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  

Page 47: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  

Pathogen  

Host  

l How  does  host/pathogen  network  respond  to  interac<on?  

l What  is  best  way  to  a`ack  a  network?  

l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?  

l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  

Page 48: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  

Pathogen  

Host  

l How  does  host/pathogen  network  respond  to  interac<on?  

l What  is  best  way  to  a`ack  a  network?  

l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?  

l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  

Page 49: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Host-­‐pathogen  interac2on  

Pathogen  

Host  

l How  does  host/pathogen  network  respond  to  interac<on?  

l What  is  best  way  to  a`ack  a  network?  

l What  is  best  way  to  defend  against  mul<ple  a`ack  strategies?  

l Are  some  parts  of  a  network  predictably  more  influen<al  than  others?  

Page 50: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Influence  in  networks  l Efficient  a`ackers:    

l  cause  greatest  favourable  host  disrup<on  for  least  effort    

l  should  target  influen<al  points  in  host  network  

l Efficient  defenders:  

l  protect  against  greatest  amount  of  poten<al  change  for  least  effort  

l  protect  against  most  commonly-­‐targeted  points  in  network  

l  should  target  influen<al  points  in  host  network  

l Greatest  benefit  for  least  cost  

l What  are  the  most  influen<al  points  in  a  network?  

Page 51: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Influence  in  networks  l Efficient  a`ackers:    

l  cause  greatest  favourable  host  disrup<on  for  least  effort    

l  should  target  influen<al  points  in  host  network  

l Efficient  defenders:  

l  protect  against  greatest  amount  of  poten<al  change  for  least  effort  

l  protect  against  most  commonly-­‐targeted  points  in  network  

l  should  target  influen<al  points  in  host  network  

l Greatest  benefit  for  least  cost  

l What  are  the  most  influen<al  points  in  a  network?  

Page 52: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Influence  in  networks  l Efficient  a`ackers:    

l  cause  greatest  favourable  host  disrup<on  for  least  effort    

l  should  target  influen<al  points  in  host  network  

l Efficient  defenders:  

l  protect  against  greatest  amount  of  poten<al  change  for  least  effort  

l  protect  against  most  commonly-­‐targeted  points  in  network  

l  should  target  influen<al  points  in  host  network  

l Greatest  benefit  for  least  cost  

l What  are  the  most  influen<al  points  in  a  network?  

Page 53: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Influence  in  networks  l Efficient  a`ackers:    

l  cause  greatest  favourable  host  disrup<on  for  least  effort    

l  should  target  influen<al  points  in  host  network  

l Efficient  defenders:  

l  protect  against  greatest  amount  of  poten<al  change  for  least  effort  

l  protect  against  most  commonly-­‐targeted  points  in  network  

l  should  target  influen<al  points  in  host  network  

l Greatest  benefit  for  least  cost  

l What  are  the  most  influen2al  points  in  a  network?  

l  can  we  predict/iden<fy  them?  

Page 54: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Robustness  in  biological  networks  l Biological  networks  are  typically  robust  and  error-­‐tolerant  

l  (necessary  for  descent  with  modifica<on)  

l  e.g.  only  17%  of  yeast  genes  essen<al  to  cell  viability  in  rich  media  

Winzeler  et  al.  Func<onal  characteriza<on  of  the  S.  cerevisiae  genome  by  gene  dele<on  and  parallel  analysis.  Science  (1999)  vol.  285  (5429)  pp.  901-­‐906  

Page 55: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Robustness  in  biological  networks  l Biological  networks  are  typically  robust  and  error-­‐tolerant  

l  (necessary  for  descent  with  modifica<on)  

l  e.g.  only  17%  of  yeast  genes  essen<al  to  cell  viability  in  rich  media  

Winzeler  et  al.  Func<onal  characteriza<on  of  the  S.  cerevisiae  genome  by  gene  dele<on  and  parallel  analysis.  Science  (1999)  vol.  285  (5429)  pp.  901-­‐906  

Page 56: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Structural  robustness  in  biological  networks  

l Some  network  structures  enhance  robustness  

l  Many  biological  networks  have  converged  to  same  network  structures  

Barabási  and  Oltvai.  Network  biology:  understanding  the  cell's  func<onal  organiza<on.  Nat  Rev  Genet  (2004)  vol.  5  (2)  pp.  101-­‐13  doi:10.1038/nrg1272  Kitano.  Biological  robustness.  Nat  Rev  Genet  (2004)  vol.  5  (11)  pp.  826-­‐37  doi:10.1038/nrg1471  

•  Aa:  random  Erdös-­‐Renyi  graph:  not  robust  to  random  a`ack  (not  common  in  biology)  

•  Ba:  random  ‘scale-­‐free’  network:  robust  to  random  a`ack  (most  biological  networks)  

•  Ca:  hierarchical  network:  robust  to  random  a`ack  (many  signalling  networks)  

Page 57: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Some  network  structures  enhance  robustness  

l  Many  biological  networks  have  converged  to  same  network  structures  

Barabási  and  Oltvai.  Network  biology:  understanding  the  cell's  func<onal  organiza<on.  Nat  Rev  Genet  (2004)  vol.  5  (2)  pp.  101-­‐13  doi:10.1038/nrg1272  Kitano.  Biological  robustness.  Nat  Rev  Genet  (2004)  vol.  5  (11)  pp.  826-­‐37  doi:10.1038/nrg1471  

•  Aa:  random  Erdös-­‐Renyi  graph:  not  robust  to  random  a`ack  (not  common  in  biology)  

•  Ba:  random  ‘scale-­‐free’  network:  robust  to  random  a`ack  (most  biological  networks)  

•  Ca:  hierarchical  network:  robust  to  random  a`ack  (many  signalling  networks)  

Structural  robustness  in  biological  networks  

Page 58: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  bridges/bo`lenecks  l  essen<al  intermediate  nodes  in  a  network  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

•  Pathways  from  detec<on  (e.g.  immune  recep<on)  to  host  response  

•  Signalling  pathways  

•  E.g.  Cladosporum  fulvum  Avr4  suppresses  produc<on  of  chi<n,  a  ‘bridge’  

Page 59: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  bridges/bo`lenecks  l  essen<al  intermediate  nodes  in  a  network  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

MAMP  detec2on  

•  Pathways  from  detec<on  (e.g.  immune  recep<on)  to  host  response  

•  Signalling  pathways  

•  e.g.  Cladosporum  fulvum  Avr4  suppresses  produc<on  of  chi<n,  a  ‘bridge’  

Page 60: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  bridges/bo`lenecks  l  essen<al  intermediate  nodes  in  a  network  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

MAMP  detec2on  

•  Pathways  from  detec<on  (e.g.  immune  recep<on)  to  host  response  

•  Signalling  pathways  

•  E.g.  Cladosporum  fulvum  Avr4  suppresses  produc<on  of  chi<n,  a  ‘bridge’  

chi<n  

chi<nase  

Page 61: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  bridges/bo`lenecks  l  essen<al  intermediate  nodes  in  a  network  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

MAMP  detec2on  

•  Pathways  from  detec<on  (e.g.  immune  recep<on)  to  host  response  

•  Signalling  pathways  

•  E.g.  Cladosporum  fulvum  Avr4  suppresses  produc<on  of  chi<n,  a  ‘bridge’  

chi<n  

chi<nase  

Avr4  

Page 62: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  bridges/bo`lenecks  l  essen<al  intermediate  nodes  in  a  network  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

MAMP  detec2on  

•  Redundancy  and  cross-­‐talk  in  signalling  pathways  protects  against  this  fragility  

•  e.g.  PTI/ETI  cross-­‐talk  

Page 63: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  hubs  l  highly-­‐connected  nodes  

l  characteris<c  of  ‘scale-­‐free’  (and  similar)  networks  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

•  Why  do  hubs  occur?  

•  How  many  hubs  do  we  expect?  

•  How  are  they  related  to  biology?  

Page 64: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Network  hubs  l  highly-­‐connected  nodes  

l  characteris<c  of  ‘scale-­‐free’  (and  similar)  networks  

l  dele<on  or  disrup<on  dissociates  (breaks)  the  network  

Structural  robustness  in  biological  networks  

•  Why  do  hubs  occur?  

•  How  many  hubs  do  we  expect?  

•  How  are  they  related  to  biology?  

Page 65: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks  l  Robust  because  of  node  degree  distribu<on  

l  Very  few  ‘hubs’;  most  nodes  make  few  connec<ons  

l  Random  dele<on  more  likely  to  remove  node  with  few  connec<ons  

Structural  robustness  in  biological  networks  

Albert  et  al.  Error  and  a`ack  tolerance  of  complex  networks.  Nature  (2000)  vol.  406  (6794)  pp.  378-­‐82  doi:10.1038/35019019  

Page 66: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks  l  Robust  because  of  node  degree  distribu<on  

l  Very  few  ‘hubs’;  most  nodes  make  few  connec<ons  

l  Random  dele<on  more  likely  to  remove  node  with  few  connec<ons  

Structural  robustness  in  biological  networks  

Albert  et  al.  Error  and  a`ack  tolerance  of  complex  networks.  Nature  (2000)  vol.  406  (6794)  pp.  378-­‐82  doi:10.1038/35019019  

Page 67: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks  l  Diagnos<c  ‘degree  distribu<on’  (count  of  connec<ons  to  each  node)  

l  Yeast  protein  interac<on  network  has  power-­‐law  distribu<on  

l  Essen<al  17%  of  genes  correlated  with  highly-­‐connected  nodes  (hubs)  

Structural  robustness  in  biological  networks  

Page 68: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks  l  Diagnos<c  ‘degree  distribu<on’  (count  of  connec<ons  to  each  node)  

l  Yeast  protein  interac<on  network  has  power-­‐law  distribu<on  

l  Essen<al  17%  of  genes  correlated  with  highly-­‐connected  nodes  (hubs)  

Structural  robustness  in  biological  networks  

Page 69: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks  l  Most  studied  biological  networks  are  ‘scale-­‐free’  

l  ‘Scale-­‐free’  property  proposed  to  arise  from  network  evolu<on  

l  ‘older’  nodes  more  likely  to  be  hubs  

l  ‘older’  nodes  more  likely  to  be  func<onally-­‐conserved,  sequence  constrained?  

l  Hubs  are  good  targets  for  network  disrup<on:  what  role  do  they  play  in  pathogen/host  evolu<on?  

Structural  robustness  in  biological  networks  

Page 70: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Power-­‐law  (a.k.a.  ‘scale-­‐free’)  networks  l  Most  studied  biological  networks  are  ‘scale-­‐free’  

l  ‘Scale-­‐free’  property  proposed  to  arise  from  network  evolu<on  

l  ‘older’  nodes  more  likely  to  be  hubs  

l  ‘older’  nodes  more  likely  to  be  func<onally-­‐conserved,  sequence  constrained?  

l  Hubs  are  good  targets  for  network  disrup<on:  what  role  do  they  play  in  pathogen/host  evolu<on?  

Structural  robustness  in  biological  networks  

Page 71: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Bacterial  Type  III  effectors  engage  a  limited  set  of  host  processes  across  host  kingdoms  e.g.:  

l  turnover  by  modula<on  of  ubiqui<na<on    

l  altera<on  of  transcrip<on  

l  altera<on  of  phosphoryla<on    

l Strategies  such  as  the  targe<ng  of  ubiqui<na<on  are  used  by  bacterial  fungal  and  oomycete  pathogens  across  a  range  of  hosts  

Structural  robustness  in  biological  networks  

Page 72: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

l Bacterial  Type  III  effectors  engage  a  limited  set  of  host  processes  across  host  kingdoms  e.g.:  

l  turnover  by  modula<on  of  ubiqui<na<on    

l  altera<on  of  transcrip<on  

l  altera<on  of  phosphoryla<on    

l Strategies  such  as  the  targe<ng  of  ubiqui<na<on  are  used  by  bacterial  fungal  and  oomycete  pathogens  across  a  range  of  hosts  

Structural  robustness  in  biological  networks  

Page 73: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

The  Guard  Hypothesis  l The  Guard  Hypothesis  describes  indirect  R  gene:effector  interac<on  

l  Direct  R  gene:effector  interac<on  could  lead  to  overwhelming  R  gene  load  

l  A.  thaliana  has  ≈200  R  genes  (1%  of  gene  complement)  

l  If  ‘hubs’  are  common  targets  for  pathogens…  

l  …guarding  the  hub  with  one  R  gene  is    more  efficient  than  gene-­‐for-­‐gene    interac<ons  

l  …network  topology  implies  the  Guard    Hypothesis  

l  If  ‘hubs’  are  universal  targets…  l  …network  topology  determines  which    

nodes  are  likely  to  be  involved  in    host-­‐pathogen  interac<on   Dangl  and  Jones.  Plant  pathogens  and  integrated    

defence  responses  to  infec<on.  Nature  (2001)    vol.  411  (6839)  pp.  826-­‐33  doi:10.1038/35081161  

Page 74: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

The  Guard  Hypothesis  l The  Guard  Hypothesis  describes  indirect  R  gene:effector  interac<on  

l  Direct  R  gene:effector  interac<on  could  lead  to  overwhelming  R  gene  load  

l  A.  thaliana  has  ≈200  R  genes  (1%  of  gene  complement)  

l  If  ‘hubs’  are  common  targets  for  pathogens…  

l  …guarding  the  hub  with  one  R  gene  is    more  efficient  than  gene-­‐for-­‐gene    interac<ons  

l  …network  topology  implies  the  Guard    Hypothesis  

l  If  ‘hubs’  are  universal  targets…  l  …network  topology  determines  which    

nodes  are  likely  to  be  involved  in    host-­‐pathogen  interac<on   Dangl  and  Jones.  Plant  pathogens  and  integrated    

defence  responses  to  infec<on.  Nature  (2001)    vol.  411  (6839)  pp.  826-­‐33  doi:10.1038/35081161  

Page 75: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Dangl  and  Jones.  Plant  pathogens  and  integrated    defence  responses  to  infec<on.  Nature  (2001)    vol.  411  (6839)  pp.  826-­‐33  doi:10.1038/35081161  

The  Guard  Hypothesis  l The  Guard  Hypothesis  describes  indirect  R  gene:effector  interac<on  

l  Direct  R  gene:effector  interac<on  could  lead  to  overwhelming  R  gene  load  

l  A.  thaliana  has  ≈200  R  genes  (1%  of  gene  complement)  

l  If  ‘hubs’  are  common  targets  for  pathogens…  

l  …guarding  the  hub  with  one  R  gene  is    more  efficient  than  gene-­‐for-­‐gene    interac<ons  

l  …network  topology  implies  the  Guard    Hypothesis  

l  If  ‘hubs’  are  universal  targets…  l  …network  topology  determines  which    

nodes  are  likely  to  be  involved  in    host-­‐pathogen  interac<on  

Page 76: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Interac2ons  with  hubs  l Host:  Arabidopsis  thaliana  

l Pathogens:  Pseudomonas  syringae,  Hyaloperonospora  arabidopsidis  

l  Independent  effector  evolu<on  

l  Matrix-­‐2-­‐hybrid  (yeast-­‐2-­‐hybrid)  

l  Pathogen  effectors  share  more  common  targets  than  expected  (if  random)  

l  Common  targets  more  highly  connected  (i.e.  are  ‘hubs’)  than  expected  (if  random)  

Mukhtar  MS,  et  al.  (2011)  Independently  evolved  virulence  effectors  converge  onto  hubs  in  a  plant  immune  system  network.  Science  333:  596–601.  doi:10.1126/science.1203659.  

Page 77: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Interac2ons  with  hubs  l Host:  Arabidopsis  thaliana  

l Pathogens:  Pseudomonas  syringae,  Hyaloperonospora  arabidopsidis  

l  Independent  effector  evolu<on  

l  Matrix-­‐2-­‐hybrid  (yeast-­‐2-­‐hybrid)  

l  Pathogen  effectors  share  more  common  targets  than  expected  (if  random)  

l  Common  targets  more  highly  connected  (i.e.  are  ‘hubs’)  than  expected  (if  random)  

Mukhtar  MS,  et  al.  (2011)  Independently  evolved  virulence  effectors  converge  onto  hubs  in  a  plant  immune  system  network.  Science  333:  596–601.  doi:10.1126/science.1203659.  

Page 78: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Interac2ons  with  hubs  l Host:  Arabidopsis  thaliana  

l Pathogens:  Pseudomonas  syringae,  Hyaloperonospora  arabidopsidis  

l  Independent  effector  evolu<on  

l  Matrix-­‐2-­‐hybrid  (yeast-­‐2-­‐hybrid)  

l  Pathogen  effectors  share  more  common  targets  than  expected  (if  random)  

l  Common  targets  more  highly  connected  (i.e.  are  ‘hubs’)  than  expected  (if  random)  

Mukhtar  MS,  et  al.  (2011)  Independently  evolved  virulence  effectors  converge  onto  hubs  in  a  plant  immune  system  network.  Science  333:  596–601.  doi:10.1126/science.1203659.  

Page 79: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Modules  in  networks  l Mo<fs  are  small  subnetworks  

l  Many  have  specific  dynamic  and  logic  behaviour:  

� Accelerate/slow  response  

� Enforce  sequen<al  responses  

� Lock  signal  on  or  off  

� Filter  out  noise  in  signals  

� Generate  pulse  in  response  to    signal  

� Generate  oscilla<ons  

�  Integrate  and  process  mul<ple    signals  

Shoval  and  Alon.  SnapShot:  network  mo<fs.  Cell  (2010)  vol.  143  (2)  pp.  326-­‐e1  doi:10.1016/j.cell.2010.09.050  

Page 80: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Modules  in  networks  l Mo<fs  are  small  subnetworks  

l  Many  have  specific  dynamic  and  logic  behaviour:  

� Accelerate/slow  response  

� Enforce  sequen<al  responses  

� Lock  signal  on  or  off  

� Filter  out  noise  in  signals  

� Generate  pulse  in  response  to    signal  

� Generate  oscilla<ons  

�  Integrate  and  process  mul<ple    signals  

Shoval  and  Alon.  SnapShot:  network  mo<fs.  Cell  (2010)  vol.  143  (2)  pp.  326-­‐e1  doi:10.1016/j.cell.2010.09.050  

Page 81: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Modules  in  networks  l Mo<fs  are  small  subnetworks  

l  Many  have  specific  dynamic  and  logic  behaviour:  

� Generate  pulse  in  response  to    signal  

� Generate  oscilla<ons  

Shoval  and  Alon.  SnapShot:  network  mo<fs.  Cell  (2010)  vol.  143  (2)  pp.  326-­‐e1  doi:10.1016/j.cell.2010.09.050  

Page 82: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Modules  in  networks  l Bow-­‐<e  structure  

l Many  inputs  →  restricted  set  of  intermediates  →  many  outputs  

Page 83: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Modules  in  networks  l Bow-­‐<e  structure  

l Many  inputs  →  restricted  set  of  intermediates  →  many  outputs  

l  e.g.  complex  nutrients  →  metabolic  intermediates  →  complex  compounds  

Page 84: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Modules  in  networks  l Open  ques<ons:  

l  Do  a`ackers  preferen<ally  target  (or  introduce)  par<cular  mo<fs?  

l  Do  a`ackers  preferen<ally  target  the  ‘knots’  of  bow-­‐<e  structures?  

Page 85: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Influence  in  networks  l Network  structure  (topology)  is  not  everything  

l Network  topology  is  determined  by  dynamic  processes  

n1  

n2  

n3   n4  

n5  

n1  

n2  

n3   n4  

n5  

n1  

n2  

n3   n4  

n5  

Idealised  topology     Expression  pa`ern  1   Expression  pa`ern  2  

Page 86: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Influence  in  networks  l Network  structure  (topology)  is  not  everything  

l Dynamic  processes  are  overlaid  on  topology  

n1  

n2  

n3   n4  

n5  

n1  

n2  

n3   n4  

n5  

Idealised  topology     Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Page 87: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Some  processes  more  influen<al  because  of  dynamic  (kine<c)  considera<ons  

l  ODE  representa<on  of  biochemical  network  

l  Used  to  understand  biochemical    pathways  

l  Used  in  ra<onal  drug  design:  target/priori<se  elements  with  large  control  coefficients  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Kacser  and  Burns.  The  molecular  basis  of  dominance.  Gene/cs  (1981)  vol.  97  (3-­‐4)  pp.  639-­‐66  Kacser  and  Burns.  The  control  of  flux.  Biochem  Soc  Trans  (1995)  vol.  23  (2)  pp.  341-­‐66  Westerhoff  and  Kell.  What  biotechnologists  knew  all  along  ...?.  J  Theor  Biol  (1996)  vol.  182  (3)  pp.  411-­‐420  Sato  et  al.  Network  Modeling  Reveals  Prevalent  Nega<ve  Regulatory  Rela<onships  between  Signaling  Sectors  in  Arabidopsis  Immune  Signaling.  PLoS  Pathog  (2010)  vol.  6  (7)  pp.  E1001011  doi:10.1371/journal.ppat.1001011  

Page 88: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Some  processes  more  influen<al  because  of  dynamic  (kine<c)  considera<ons  

l  ODE  representa<on  of  biochemical  network  

l  Used  to  understand  biochemical    pathways  

l  Used  in  ra<onal  drug  design:  target/priori<se  elements  with  large  control  coefficients  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Kacser  and  Burns.  The  molecular  basis  of  dominance.  Gene/cs  (1981)  vol.  97  (3-­‐4)  pp.  639-­‐66  Kacser  and  Burns.  The  control  of  flux.  Biochem  Soc  Trans  (1995)  vol.  23  (2)  pp.  341-­‐66  Westerhoff  and  Kell.  What  biotechnologists  knew  all  along  ...?.  J  Theor  Biol  (1996)  vol.  182  (3)  pp.  411-­‐420  Sato  et  al.  Network  Modeling  Reveals  Prevalent  Nega<ve  Regulatory  Rela<onships  between  Signaling  Sectors  in  Arabidopsis  Immune  Signaling.  PLoS  Pathog  (2010)  vol.  6  (7)  pp.  E1001011  doi:10.1371/journal.ppat.1001011  

Page 89: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Key  points:  l  Rela<ve  change  in  pathway  flux  in  response  to  a  change  

in  [enzyme]  is  the  flux  control  coefficient  

l  Rela<ve  change  in  [metabolite]  in  response  to  a  change  in  [enzyme]  is  the  concentra2on  control  coefficient  

l  Control  coefficient  =  0  ⇒  no  influence  

l  Control  coefficient  =  1  ⇒  strong  posi<ve  influence  

l  Control  coefficient  =  -­‐1  ⇒  strong  nega<ve  influence  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Page 90: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Key  points:  l  Rela<ve  change  in  pathway  flux  in  response  to  a  change  

in  [enzyme]  is  the  flux  control  coefficient  

l  Rela<ve  change  in  [metabolite]  in  response  to  a  change  in  [enzyme]  is  the  concentra2on  control  coefficient  

l  Control  coefficient  =  0  ⇒  no  influence  

l  Control  coefficient  =  1  ⇒  strong  posi<ve  influence  

l  Control  coefficient  =  -­‐1  ⇒  strong  nega<ve  influence  

l We    might  expect  aWackers  to  target  network    elements  with  large  control  coefficients  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Page 91: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Key  points:  l  Control  coefficients  dependent  on  rest  of  network:  

calculated  at  same  <me  

l  Control  coefficients  are  a  system-­‐level  property  (can’t  be  determined  in  isola<on)  

l  It  is  unusual  for  any  single  element  to  have  complete  control  over  any  part  of  the  network  

l  (Nearly)  no  rate-­‐limi<ng  steps  

l  Any  part  of  the  network  is  typically  under  control  of  mul<ple  other  network  elements  

l  Distributed/democra<c  control  is  the  norm  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  D.  Fell,  Understanding  the  Control  of  Metabolism,  first  ed.,  Portland  Press,  1997.    

Page 92: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Key  points:  l  Control  coefficients  dependent  on  rest  of  network:  

calculated  at  same  <me  

l  Control  coefficients  are  a  system-­‐level  property  (can’t  be  determined  in  isola<on)  

l  It  is  unusual  for  any  single  element  to  have  complete  control  over  any  part  of  the  network  

l  (Nearly)  no  rate-­‐limi<ng  steps  

l  Any  part  of  the  network  is  typically  under  control  of  mul<ple  other  network  elements  

l  Distributed/democra<c  control  is  the  norm  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  D.  Fell,  Understanding  the  Control  of  Metabolism,  first  ed.,  Portland  Press,  1997.    

Page 93: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Metabolic  Control  Analysis  (MCA)  

l Key  points:  l  Control  coefficients  dependent  on  rest  of  network:  

calculated  at  same  <me  

l  Control  coefficients  are  a  system-­‐level  property  (can’t  be  determined  in  isola<on)  

l  It  is  unusual  for  any  single  element  to  have  complete  control  over  any  part  of  the  network  

l  (Nearly)  no  rate-­‐limi<ng  steps  

l  Any  part  of  the  network  is  typically  under  control  of  mul<ple  other  network  elements  

l  Distributed/democra2c  control  is  the  norm  

n1  

n2  

n3   n4  

n5  

Reac<on  kine<cs  dictate  rela<ve  flux  

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

v =[S]V

max

[S] + [Km]

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  D.  Fell,  Understanding  the  Control  of  Metabolism,  first  ed.,  Portland  Press,  1997.    

Page 94: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Yeast  glycolysis  

l Most  enzyme  kine<c  parameters  known  

l Fit  to  known  fluxes,  then  parameter-­‐scan  (>8000  dis<nct  simula<ons)  

l Three  regimes  of  control  found:  

l  Main  regime:  only  significant  control  by  hexose  transport  (HXT)  and  hexokinase  (HK)  

l  Minor  regime:  HXT,  HK  and  alcohol  dehydrogenase  (ADH)  

l  Biologically  inaccessible  regime:  [GLCi]  ≈  300mM    phosphofructokinase  (PFK)  control  

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  

Page 95: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Yeast  glycolysis  

l Most  enzyme  kine<c  parameters  known  

l Fit  to  known  fluxes,  then  parameter-­‐scan  (>8000  dis<nct  simula<ons)  

l Three  regimes  of  control  found:  

l  Main  regime:  only  significant  control  by  hexose  transport  (HXT)  and  hexokinase  (HK)  

l  Minor  regime:  HXT,  HK  and  alcohol  dehydrogenase  (ADH)  

l  Biologically  inaccessible  regime:  [GLCi]  ≈  300mM    phosphofructokinase  (PFK)  control  

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  

Page 96: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Yeast  glycolysis  

l Most  enzyme  kine<c  parameters  known  

l Fit  to  known  fluxes,  then  parameter-­‐scan  (>8000  dis<nct  simula<ons)  

l Three  regimes  of  control  found:  

l  Main  regime:  only  significant  control  by  hexose  transport  (HXT)  and  hexokinase  (HK)  

l  Minor  regime:  HXT,  HK  and  alcohol  dehydrogenase  (ADH)  

l  Biologically  inaccessible  regime:  [GLCi]  ≈  300mM    under  phosphofructokinase  (PFK)  control  

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  

Page 97: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Metabolic  Control  Analysis  (MCA)  l Yeast  glycolysis  

l HXT  dominates  pathway  control  

l External  [hexose]  is  a  signal,  as  HXT  is  sensi<ve  to  it.    

Pritchard  and  Kell.  Schemes  of  flux  control  in  a  model  of  Saccharomyces  cerevisiae  glycolysis.  Eur  J  Biochem  (2002)  vol.  269  (16)  pp.  3894-­‐904  

Page 98: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l MCA  implies  distributed  control  of  networks  

l Network  topology  also  implies  distributed  control    (minimal  interven<on  sets:  MIS)  

l What  does  this  imply  for  host-­‐pathogen  interac<ons?  

l  Several  points  in  network  are  influen<al  

� Can  be  predicted  with  sufficient  informa<on  about  system  

l  A  pathway/network  element  may  be  under    distributed  control  

� May  need  to  hit  several  parts  of  the  network  to  produce  change  

� Single  effectors  unlikely  to  be  sufficient  

Page 99: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l MCA  implies  distributed  control  of  networks  

l Network  topology  also  implies  distributed  control    (minimal  interven<on  sets:  MIS)  

l What  does  this  imply  for  host-­‐pathogen  interac<ons?  

l  Several  points  in  network  are  influen<al  

� Can  be  predicted  with  sufficient  informa<on  about  system  

l  A  pathway/network  element  may  be  under    distributed  control  

� May  need  to  hit  several  parts  of  the  network  to  produce  change  

� Single  effectors  unlikely  to  be  sufficient  

Page 100: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l MCA  implies  distributed  control  of  networks  

l Network  topology  also  implies  distributed  control    (minimal  interven<on  sets:  MIS)  

l What  does  this  imply  for  host-­‐pathogen  interac<ons?  

l  Several  points  in  network  are  influen<al  

� Can  be  predicted  with  sufficient  informa<on  about  system  

l  A  pathway/network  element  may  be  under    distributed  control  

� May  need  to  hit  several  parts  of  the  network  to  produce  change  

� Single  effectors  unlikely  to  be  sufficient  

Page 101: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l MCA  implies  distributed  control  of  networks  

l Network  topology  also  implies  distributed  control  

l What  does  this  imply  for  host-­‐pathogen  interac<ons?  

l  Several  points  in  network  are  influen<al  

l  A  pathway/network  element  may  be  under    distributed  control  

� Pathogens  may  require  ‘sets’  of  effectors  

�  Implies  ‘Redundant  Effector  Groups’  and    func2onal  redundancy?  

Kvitko  et  al.  Dele<ons  in  the  repertoire  of  Pseudomonas  syringae  pv.  tomato  DC3000  type  III  secre<on  effector  genes  reveal  func<onal  overlap  among  effectors.  PLoS  Pathog  (2009)  vol.  5  (4)  pp.  E1000388  doi:10.1371/journal.ppat.1000388  

Page 102: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l MCA  implies  distributed  control  of  networks  

l Network  topology  also  implies  distributed  control  

l What  does  this  imply  for  host-­‐pathogen  interac<ons?  

l  Context-­‐dependence  of  effector  func<on:  

� H.arabidopsidis  ATR13  suppresses  callose  deposi<on  

� P.  syringae  HopM1  suppresses  callose  deposi<on  

� ATR13  complements  callose  deposi<on,  but  does  not  fully  restore  virulence  in  HopM1  mutant  (EDV)  

K.H.  Sohn,  R.  Lei,  A.  Nemri,  J.D.G.  Jones,  The  downy  mildew  effector  proteins  ATR1  and  ATR13  promote  disease  suscep<bility  in  Arabidopsis  thaliana,  Plant  Cell  19  (2007)  4077–4090.  

Page 103: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l We  can  consider  ‘system’  as  defining  a  landscape,  permi~ng  types  of  control  

l Autocra<c  control:  l  Flat  landscape  

l  Can  move  any  network  element  to  any  ‘state’  

l Democra<c  control:  

l  Rugged  landscape  (constrained  by  rest  of  network)  

l  Network  elements  restricted  to  ‘valleys’  in  the  landscape  

Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)  vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  

Page 104: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l We  can  consider  ‘system’  as  defining  a  landscape,  permi~ng  types  of  control  

l Autocra<c  control:  l  Flat  landscape  

l  Can  move  any  network  element  to  any  ‘state’  

l Democra<c  control:  

l  Rugged  landscape  (constrained  by  rest  of  network)  

l  Network  elements  restricted  to  ‘valleys’  in  the  landscape  

Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)  vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  

Page 105: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l We  can  consider  ‘system’  as  defining  a  landscape,  permi~ng  types  of  control  

l Autocra<c  control:  l  Flat  landscape  

l  Can  move  any  network  element  to  any  ‘state’  

l Democra<c  control:  

l  Rugged  landscape  (constrained  by  rest  of  network)  

l  Network  elements  restricted  to  ‘valleys’  in  the  landscape  

Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)  vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  

Page 106: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Distributed  Control  l We  can  consider  ‘system’  as  defining  a  landscape,  permi~ng  types  of  control  

l Autocra<c  control:  l  Flat  landscape  

l  Can  move  any  network  element  to  any  ‘state’  

l Democra<c  control:  

l  Rugged  landscape  (constrained  by  rest  of  network)  

l  Network  elements  restricted  to  ‘valleys’  in  the  landscape  

l Pathogens  introduce  new  elements  that  change  the  landscape:  effectors  

Bar-­‐Yam  et  al.  Systems  biology.  A`ractors  and  democra<c  dynamics.  Science  (2009)  vol.  323  (5917)  pp.  1016-­‐7  doi:10.1126/science.1163225  

Page 107: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

Hein  et  al.  The  zig-­‐zag-­‐zig  in  oomycete-­‐plant  interac<ons.  Mol  Plant  Pathol  (2009)  vol.  10  (4)  pp.  547-­‐62  doi:10.1111/j.1364-­‐3703.2009.00547.x  

Jones  and  Dangl.  The  plant  immune  system.  Nature  (2006)  vol.  444  (7117)  pp.  323-­‐9  doi:10.1038/nature05286  

Page 108: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

l Has  some  problems:  

l  scope  (only  host  immune  system,  not  rest  of  interac<on  with  pathogen)  

l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct  and  well-­‐ordered?)  

l  <mescale  (evolu<onary,  or  during  interac<on?)  

l  size  scale  (organism  or  cell  level)  

l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  

Page 109: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

l Has  some  problems:  

l  scope  (only  host  immune  system,  not  rest  of  interac<on  with  pathogen)  

l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct  and  well-­‐ordered?)  

l  <mescale  (evolu<onary,  or  during  interac<on?)  

l  size  scale  (organism  or  cell  level)  

l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  

Page 110: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

l Has  some  problems:  

l  scope  (only  host  immune  system,  not  rest  of  interac<on  with  pathogen)  

l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct  and  well-­‐ordered?)  

l  <mescale  (evolu<onary,  or  during  interac<on?)  

l  size  scale  (organism  or  cell  level)  

l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  

Page 111: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

l Has  some  problems:  

l  scope  (only  host  immune  system,  not  rest  of  interac<on  with  pathogen)  

l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct  and  well-­‐ordered?)  

l  <mescale  (evolu<onary,  or  during  interac<on?)  

l  size  scale  (organism  or  cell  level)  

l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  

Page 112: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

l Has  some  problems:  

l  scope  (only  host  immune  system,  not  rest  of  interac<on  with  pathogen)  

l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct  and  well-­‐ordered?)  

l  <mescale  (evolu<onary,  or  during  interac<on?)  

l  size  scale  (organism  or  cell  level)  

l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  

Page 113: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Prevailing  model:  zig-­‐zag(-­‐zig…)  

l Has  some  problems:  

l  scope  (only  host  immune  system,  not  rest  of  interac<on  with  pathogen)  

l  ordering  of  events  (are  PTI/ETI  etc.  dis<nct  and  well-­‐ordered?)  

l  <mescale  (evolu<onary,  or  during  interac<on?)  

l  size  scale  (organism  or  cell  level)  

l  Quan<ta<ve  or  qualita<ve  (what  is  the  ‘amplitude’  of  defence?)  

l  Is  there  a  more  general  framework  for  host-­‐pathogen  interac2ons?  

Pritchard  L,  Birch  P  (2011)  A  systems  biology  perspec<ve  on  plant-­‐microbe  interac<ons:  Biochemical  and  structural  targets  of  pathogen  effectors.  Plant  Science  180:  584–603.  doi:10.1016/j.plantsci.2010.12.008.    

Page 114: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Biological  cells  can  be  represented  as  networks  

l Each  element  in  the  network  can  be  quan<fied:  

l  enzyme  concentra<on  (or  expression  level)  

l  metabolite  concentra<on  

l  phosphoryla<on/ubiqui<na<on/charge  states  as  dis<nct  en<<es  

l  etc.  

l We  represent  lists  of  values  as  vectors  

[v1, v2, v3, . . . , vk]

Page 115: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Biological  cells  can  be  represented  as  networks  

l Each  element  in  the  network  can  be  quan<fied:  

l  enzyme  concentra<on  (or  expression  level)  

l  metabolite  concentra<on  

l  phosphoryla<on/ubiqui<na<on/charge  states  as  dis<nct  en<<es  

l  etc.  

l We  represent  ordered  lists  of  values  as  vectors  

[v1, v2, v3, . . . , vk]

Page 116: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Biological  cells  can  be  represented  as  networks  

l Each  element  in  the  network  can  be  quan<fied:  

l  enzyme  concentra<on  (or  expression  level)  

l  metabolite  concentra<on  

l  phosphoryla<on/ubiqui<na<on/charge  states  as  dis<nct  en<<es  

l  etc.  

l We  represent  ordered  lists  of  values  as  vectors  

[v1, v2, v3, . . . , vk]

Page 117: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Vectors  are  co-­‐ordinates  in  space  

l  vectors  of  length  two:  points  on  a  surface  (2D  space)  

l  vectors  of  length  three:  points  in  3D  space  

l  vectors  of  length  k:  points  in  k-­‐dimensional  space  

l Points  that  are  close  together  are  ‘similar’  

Page 118: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Vectors  are  co-­‐ordinates  in  space  

l  vectors  of  length  two:  points  on  a  surface  (2D  space)  

l  vectors  of  length  three:  points  in  3D  space  

l  vectors  of  length  k:  points  in  k-­‐dimensional  space  

l Points  that  are  close  together  are  ‘similar’  

Page 119: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Let  our  vector  represent  the  measured  state  of  the  cell  (e.g.  host-­‐pathogen)  system  

l  enzyme/metabolite  concentra<ons,  etc.  

l Each  point  in  k-­‐space  represents  a  different  state  of  the  system  

l  similar  states  are  close  together  in  k-­‐space  

[v1, v2, v3, . . . , vk]

Page 120: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Let  our  vector  represent  the  measured  state  of  the  cell  (e.g.  host-­‐pathogen)  system  

l  enzyme/metabolite  concentra<ons,  etc.  

l Each  point  in  k-­‐space  represents  a  different  state  of  the  system  

l  similar  states  are  close  together  in  k-­‐space  

[v1, v2, v3, . . . , vk]

Page 121: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l States  that  lead  to  similar  phenotypes  can  be  grouped  in  phases:  

l  regions  of  space  where  cell  state  corresponds  to  named  behaviour  

l Temporal  evolu<on  of  a  cell  can  be  viewed  as  a  transi<on    through  states  

v1  

v2  

apoptosis  

ROS  produc<on  

seed  leaf  

root  

HR  

Page 122: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l States  that  lead  to  similar  phenotypes  can  be  grouped  in  phases:  

l  regions  of  space  where  cell  state  corresponds  to  named  behaviour  

l Temporal  evolu<on  of  a  cell  can  be  viewed  as  a  transi<on    through  states  

v1  

v2  

apoptosis  

ROS  produc<on  

seed  leaf  

root  

HR  

Page 123: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Complex  systems  can  behave  in  complex  ways  

l A  common  feature  of  complex  systems  is  aJractors  

l  A`ractors  are  ‘endpoints’:  states,  or  sets  of  states,  to  which  the  system  is  ‘a`racted’  

l  Analogous  to  stable  equilibria:    when  the  system  is  perturbed,    it  returns  to  its  a`ractor.  

l  Do  cell  phenotypes  correspond  to  a`ractors?  

Page 124: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Complex  systems  can  behave  in  complex  ways  

l A  common  feature  of  complex  systems  is  aJractors  

l  A`ractors  are  ‘endpoints’:  states,  or  sets  of  states,  to  which  the  system  is  ‘a`racted’  

l  Analogous  to  stable  equilibria:    when  the  system  is  perturbed,    it  returns  to  its  a`ractor.  

l  Do  cell  phenotypes  correspond  to  a`ractors?  

Page 125: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Complex  systems  can  behave  in  complex  ways  

l A  common  feature  of  complex  systems  is  aJractors  

l  A`ractors  are  ‘endpoints’:  states,  or  sets  of  states,  to  which  the  system  is  ‘a`racted’  

l  Analogous  to  stable  equilibria:    when  the  system  is  perturbed,    it  returns  to  its  a`ractor.  

l  Do  cell  phenotypes  correspond  to  a`ractors?  

Page 126: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Complex  systems  can  behave  in  complex  ways  

l A  common  feature  of  complex  systems  is  aJractors  

l  A`ractors  are  ‘endpoints’:  states,  or  sets  of  states,  to  which  the  system  is  ‘a`racted’  

l  Analogous  to  stable  equilibria:    when  the  system  is  perturbed,    it  returns  to  its  a`ractor.  

l  Do  cell  phenotypes  correspond  to  a`ractors?  

apoptosis  

ROS  produc<on  

seed  leaf  

root  

HR  

Page 127: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l A`ractors  are  associated  with  the  regions  of  space  that  lead  to  them:  ‘basins’  

l A`ractors  can  be:  l  Single  points  

l  Cycles  

l  Complex  ‘regions’  

Page 128: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l A`ractors  are  associated  with  the  regions  of  space  that  lead  to  them:  ‘basins’  

l A`ractors  can  be:  l  Single  points  

l  Cycles  

l  Complex  ‘regions’  

Page 129: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l  Interac<on  of  a  pathogen  with  the  host  can  push  the  system  from  one  basin  of  aJrac/on  to  another  

l There  may  be  mul<ple  routes  between  basins  of  a`rac<on,  depending  on  the  direc<on  or  <ming  of  perturba<on  

l  There  may  be  more  than  one  way  to  provoke  a  specific  outcome  from  the  host  (or  from  the  pathogen)  

Page 130: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l  Interac<on  of  a  pathogen  with  the  host  can  push  the  system  from  one  basin  of  aJrac/on  to  another  

l There  may  be  mul<ple  routes  between  basins  of  a`rac<on,  depending  on  the  direc<on  or  <ming  of  perturba<on  

l  There  may  be  more  than  one  way  to  provoke  a  specific  outcome  from  the  host  (or  from  the  pathogen)  

Page 131: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l Effectors  may  divert  the  expected  WT  system  trajectory:  

l  ‘Pushing’  the  host  cell  state    towards  a  different    aJractor/state  

l  ‘State’  may  be  a  developmental  checkpoint  

l Diversion  of  the  trajectory  may    also  be  beneficial  to  the  host  

l The  pathogen  may  detect  the  host  state  and  respond  accordingly  (e.g.  <ssue-­‐specific  effector  produc<on  in  Us/lago  maydis;  stage-­‐  and  <ssue-­‐specific  oomycete  effectors)  

v1  

v2  

nutrient    produc<on  

PTI  

seed  Epidermal  cell  

root  

HR  

Page 132: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is  encapsulated  within  a  state-­‐based  model  

PTI  

No  challenge  

ETI  

ETS  

Page 133: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is  encapsulated  within  a  state-­‐based  model  

PTI  

No  challenge  

ETI  

ETS  

Page 134: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is  encapsulated  within  a  state-­‐based  model  

PTI  

No  challenge  

ETI  

ETS  

Page 135: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is  encapsulated  within  a  state-­‐based  model  

PTI  

No  challenge  

ETI  

ETS  

Page 136: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is  encapsulated  within  a  state-­‐based  model  

PTI  

No  challenge  

ETI  

ETS  

Page 137: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  Jones-­‐Dangl  Zig-­‐Zag(-­‐Zig)  model  is  encapsulated  within  a  state-­‐based  model  

PTI  

No  challenge  

ETI  

ETS  

Page 138: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  state-­‐based  model  has  advantages:  

l  Scope:  can  include  host  and  pathogen,  and  extend  beyond  host  immunity  

l  Ordering:  explicit  ordering  of  events  represented  by  paths  in  the  model  (determined  by  model)  

l  Timescale:  explicit  (determined  by  model)  

l  Size  scale:  can  include  mul<cellular  systems  

l  Quan2ta2ve  or  qualita2ve:  explicit  (dependent  on  model)    

PTI  

No  challenge  

ETI  

ETS  

Page 139: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  state-­‐based  model  has  advantages:  

l  Scope:  can  include  host  and  pathogen,  and  extend  beyond  host  immunity  

l  Ordering:  explicit  ordering  of  events  represented  by  paths  in  the  model  (determined  by  model)  

l  Timescale:  explicit  (determined  by  model)  

l  Size  scale:  can  include  mul<cellular  systems  

l  Quan2ta2ve  or  qualita2ve:  explicit  (dependent  on  model)    

PTI  

No  challenge  

ETI  

ETS  

Page 140: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  state-­‐based  model  has  advantages:  

l  Scope:  can  include  host  and  pathogen,  and  extend  beyond  host  immunity  

l  Ordering:  explicit  ordering  of  events  represented  by  paths  in  the  model  (determined  by  model)  

l  Timescale:  explicit  (determined  by  model)  

l  Size  scale:  can  include  mul<cellular  systems  

l  Quan2ta2ve  or  qualita2ve:  explicit  (dependent  on  model)    

PTI  

No  challenge  

ETI  

ETS  

Page 141: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  state-­‐based  model  has  advantages:  

l  Scope:  can  include  host  and  pathogen,  and  extend  beyond  host  immunity  

l  Ordering:  explicit  ordering  of  events  represented  by  paths  in  the  model  (determined  by  model)  

l  Timescale:  explicit  (determined  by  model)  

l  Size  scale:  can  include  mul<cellular  systems  

l  Quan2ta2ve  or  qualita2ve:  explicit  (dependent  on  model)    

PTI  

No  challenge  

ETI  

ETS  

Page 142: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

A  state-­‐based  model  of  interac2on  l The  state-­‐based  model  has  advantages:  

l  Scope:  can  include  host  and  pathogen,  and  extend  beyond  host  immunity  

l  Ordering:  explicit  ordering  of  events  represented  by  paths  in  the  model  (determined  by  model)  

l  Timescale:  explicit  (determined  by  model)  

l  Size  scale:  can  include  mul<cellular  systems  

l  Quan2ta2ve  or  qualita2ve:  explicit  (dependent  on  model)    

PTI  

No  challenge  

ETI  

ETS  

Page 143: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Summary  l Biological  systems  have  natural  network  representa<ons  

l  But  representa<on  must  be  reasonable  and  suit  the  ques<on  being  asked  

l  Interac<on  of  host  and  pathogen  makes  a  new  single  network  from  two  ini<al  networks  

l Network  topology  affects  l  Network  behaviour  

l  Suscep<bility  to  a`ack  (hubs,  bridges)  

l Network  dynamics  affect  

l  Network  behaviour  

l  Suscep<bility  to  a`ack  (distributed  control)  

l A  state-­‐based  framework  may  be  useful  for  understanding  host-­‐pathogen  interac<ons  

Page 144: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Acknowledgements  l Systems  Biology  at  Aberystwyth/Manchester  

l  Doug  Kell,  David  Broadhurst,  Pedro  Mendes,  Roy  Goodacre,  Andy  Woodward,  Simon  Garre`,    

l Computa<onal  biology  at  JHI  

l  Peter  Cock  

l Phytophthora  research  at  JHI  l  Paul  Birch,  Steve  Whisson,  Miles  Armstrong  

l Bacteriology  research  at  JHI  l  Ian  Toth,  Sonia  Humphris,  Nicola  Holden  

l Many,  many  discussions  with  colleagues  

Page 145: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Proposed  by  computer  scien<sts  in  machine  learning:  avoids  detec<on  ‘bloat’  of  one  ‘recogni<on  gene’  per  threat.  

l Popular  in  (animal)  immunology;  Analogous  to  Guard  Hypothesis  and  Dense  Overlapping  Regions  (DORs)  

l  Integra<on  of  mul<ple  signals  and  contextual  cues  

Aickelin  et  al.  Danger  theory:  The  link  between  AIS  and  IDS?.  Lect  Notes  Comput  Sc  (2003)  vol.  2787  pp.  147-­‐155  

Page 146: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Some  signals  ‘cri<cal’  and  require  immediate  response  (e.g.    avirulence  gene  products?)  

l Other  signals  contextual  –  require  ‘processing’  (e.g.  MAMPs)  Boller  and  Felix.  A  renaissance  of  elicitors:  percep<on  of  microbe-­‐associated  molecular  pa`erns  and  danger  signals  by  pa`ern-­‐recogni<on  receptors.  Annu.  Rev.  Plant.  Biol.  (2009)  vol.  60  pp.  379-­‐406  doi:10.1146/annurev.arplant.57.032905.105346  

Page 147: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems  of  interpreta<on  in  experiments.  

l Danger  R  when  signal  ≥  5  l  a+b+c+d  =  6  ⇒  R  

l  a+b+c  =  4  ⇒  no  R  

l  a+b+d  =  4  ⇒  no  R  

l  a+c+d  =  5  ⇒  R  

l  b+c+d  =  5  ⇒  R  

l  a+b  =  3  ⇒  no  R  

l  {c  and  d}  required  for  R?  

Page 148: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems  of  interpreta<on  in  experiments.  

l Danger  R  when  signal  ≥  5  l  a+b+c+d  =  6  ⇒  R  

l  a+b+c  =  4  ⇒  no  R  

l  a+b+d  =  4  ⇒  no  R  

l  a+c+d  =  5  ⇒  R  

l  b+c+d  =  5  ⇒  R  

l  a+b  =  3  ⇒  no  R  

l  {c  and  d}  required  for  R?  

Page 149: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems  of  interpreta<on  in  experiments.  

l Danger  R  when  signal  ≥  5  l  a+b+c+d  =  6  ⇒  R  

l  a+b+c  =  4  ⇒  no  R  

l  a+b+d  =  4  ⇒  no  R  

l  a+c+d  =  5  ⇒  R  

l  b+c+d  =  5  ⇒  R  

l  a+b  =  3  ⇒  no  R  

l  {c  and  d}  required  for  R?  

Page 150: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems  of  interpreta<on  in  experiments.  

l Danger  R  when  signal  ≥  5  l  a+b+c+d  =  6  ⇒  R  

l  a+b+c  =  4  ⇒  no  R  

l  a+b+d  =  4  ⇒  no  R  

l  a+c+d  =  5  ⇒  R  

l  b+c+d  =  5  ⇒  R  

l  a+b  =  3  ⇒  no  R  

l  {c  and  d}  required  for  R?  

l No:  a+b+c+e,  a+b+d+e  ⇒  R  

Page 151: A Systems Biology Perspective on Plant-Pathogen Interactions 2012-05-08, Turin

Danger  Theory  l Context  dependence  and  non-­‐linear  signal  may  lead  to  problems  of  interpreta<on  in  experiments.  

l Danger  R  when  signal  ≥  5  l  All  single  knockouts  ⇒  R  ∴  all  receptors  redundant?  

l  a+c+e  =  4  ⇒  no  R  a+b+c+e  =  5  ⇒  R  ∴  {a,b}  non-­‐redundant?  

l  a+c+d+e  =  5  ⇒  R  b+c+d+e  =  5  ⇒  R  ∴  {a,b}  redundant?  

l  ‘unequal  gene2c  redundancy’