25
Department of Engineering Physics, Faculty of Engineering, Gadjah Mada University (Study Programs of Engineering Physics & Nuclear Engineering) Jl. Grafika 2, Yogyakarta 55281, (+62 274) 580882, http://www.tf.ugm.ac.id/ Nuclear Reactor Theory - Nuclear Reactor Analysis -

Arn 02-0-reactor theory

Embed Size (px)

Citation preview

Page 1: Arn 02-0-reactor theory

Department of Engineering Physics, Faculty of Engineering, Gadjah Mada University (Study Programs of Engineering Physics & Nuclear Engineering)

Jl. Grafika 2, Yogyakarta 55281, (+62 274) 580882, http://www.tf.ugm.ac.id/

Nuclear Reactor Theory

- Nuclear Reactor Analysis -

Page 2: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

FRM-II

2

Page 3: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Neutron Flux

The Neutron Flux is the Main Variable in Nuclear Reactor Theory

o To design and analyze a nuclear reactor it is necessary to predict:• How the neutrons are spatially distributed.

• How the neutron population evolves with time.

o An exact calculation would need to track the neutrons as they move in the system.

This is not possible with current computer capabilities

o We need to use Approximations:• Monte Carlo Methods.

• Analytic Neutron Transport Methods.

• Neutron Diffusion Approximation.

3

Page 4: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Neutron Flux

In a reactor neutrons have many different energies:

The neutrons move with velocities

The neutrons interact with a probability per unit length

The reaction rate can be written as

The neutron FLUX is

4

3

( ): neutron density per unit energy

( ) : is the the number of neutrons per cm

with energies in the interval [ , ]

n E

n E dE

E dE E dE

( ) cm/sv E1( ) cmE

3 1

0 0( ) ( ) number of neutron i( ) ( ) nteractions cm s( )n E v E EF E dE E dE

( ) = ( ) ( )E n E v E

Page 5: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Neutron Flux

Typical Neutron Energy Spectrum

5Ref.: http://www.tpub.com/content/doe/h1019v1/css/h1019v1_138.htm

Page 6: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

FRM-II

6

Page 7: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Diffusion Approximation: Fick´s Law

Neutrons DIFFUSE in the medium as Chemical Species do in solution.

o A net flow of neutrons exists from HIGH Flux to LOW Flux regions.

o For a one-dimemsional, one-energy system:

o Jx is the NET number of neutrons that pass per unit time through an area perpendicular to the direction x.

o D is the Diffusion Coefficent (cm)

7

x

dJ D

dx

x

(x)Jx

Gradient of Flux

( , , )x y zJ D D J J J

Neutron Current Density Vector

Page 8: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Equation of Continuity

It is the conservation equation of neutrons in a medium

The Total number of neutrons in a Volume V is

The Rate of Change is:

8

Rate of Change in Rate of of

Number of Neutrons in Neutr

Production

Abso

ons in

Rate of of Rate of of

Neutrons in Neu

rption Leakag

trons f o

e

r m

V V

V V

V

( , )V

n t dV r

r( , )V

dn t dV

dt r( , )

V

n tdV

t

r

Page 9: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Equation of Continuity

The Rate of Production in the Volume V is

The Rate of Absorption in the Volume V is

Rate of Leakage through the surface A

9

Production Rate = ( , )V

s t dV r

Absorption Rate = ( , ) ( , )a

V

t t dV r r

J

Surface

Jx

Jz

Jy

Leakage Rate =DivergenceTheorem

A V

J n dA J dV

x y zJ n J J J

Page 10: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Diffusion Equation

The Continuity Equation

The Diffusion Eq.

10

( , )( , ) ( , ) ( , )a

V V V V

n ts t dV t t dV J dV

t

rr r r

( , )( , ) ( , ) ( , )a

n ts t t t J

t

rr r r

21( , ) ( ,

( , )( ,) ( , ))) ( ,as t t D t

t

t

vt t

r r

rr rr

Fick´s Lawnv

2

a

LD

Diffusion Length

The integrands must satisfy

The integration is over the same volume V

trtrLtrD

trs

t

tr

trDv,,

1

,

,,

,

11 22

Page 11: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Diffusion Equation

Boundary Conditionso The neutron flux can be found by solving the diffusion equation.o It requires the specification of BOUNDARY conditions for the FLUX.

• Physical: The flux must be always POSITIVE.The flux must be FINITE.

• Geometry:Vacuum Boundary Condition: Unreflected Core

Interface Boundary Conditions for two adjacent regions

11

( ) 0d is the extrapolation distance 2.13d Dd

Continuity of the Flux: ( ) ( )

Continuity of the Current: ( ) ( )A n B n

A n B nJ J

A Bn

d

x)

d)=0

Page 12: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

The Diffusion Equation

The Diffusion Variables

Validity of the Fick´s Law Approximation:o Fick´s Law IS NOT an exact relation, but an approximation.o It is not valid:

• In a medium that strongly absorbs neutrons (e.g. near control rods).• Within about three mean free paths of either a neutron source or the surface of a medium.• For strongly anisotropic neutron scattering.

12

2Average cosine of scattering:

3Macroscopic Transport Cross-section: (1 )

1Transport Mean Free Path:

Diffusion Coefficient3

tr s

trtr

tr

A

D

Low A

High A

Reflectors have LOW A

Page 13: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

One-group Reactor Equation

The design of a reactor requireso The calculations of the conditions necessary for criticality.o The calculation of the distribution of neutrons to determine the power distribution in the

system:• Establish the thermal conditions.• Determine the needs for heat removal during operation and abnormal conditions.

The simplest equation is for a “bare” Fast Reactoro One-group Flux and Neutronic Parameters

o One-group Reactor Equation:

13

2 1aD s

v t

0

0

( ) ( )One Energy Flux: ( ) One Energy Equivalent X-Section

x

x

E EE E

dEd

Page 14: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

One-group Reactor Equation

The source of neutronso In a steady state reactor the source of neutrons is mainly the fissions in the fuel.o The average number of neutrons per fission is

o The source can be expressed in terms of the rate of absorptions as

o And in Terms of k∞

14

with

a

Fuela

Fuel NonFue

Fu

la

elf a

a

s f

f

.Fuelf

Fuela

For a one-group reactor k f and as k

Page 15: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

One-group Reactor Equationo In Steady-state, if the fission source does not balance the Leakage and the

absorption, the equation is not satisfied.o The source term is multiplied by 1/keff.

o The Buckling is defined as

o And the keff is

15

2 1( ) 0

1

efff akD

2 2gB

2 1 1m f a

eff

BD k

2 1( ) 0

1

efg f a

fkB

D

2 2

neutrons generated

neutrons lostf f

effg a g a

kDB DB

Material Buckling

Geometric Buckling

2 1aD s

v t

and as k

Page 16: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Criticality of a Bare ReactorThe necessary condition for the reactor to be critical is

In terms of the Buckling for a critical reactor:

o The equation determines the conditions under which a bare reactor is critical.

• For a given geometry, which determines the buckling, the composition can be calculated.

• For a given composition, the “CRITICAL” buckling can be computed and the geometric dimensions obtained.

16

1effk keff accounts also for the leakage

21ff

c

fe

a

kDB

2

1

c

f

f a a

a

DDB

Material Properties

2 22g m cB B B

Page 17: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

One-group Critical Reactor Equation

Examples of Solutions

17

r

R

2 2

2

1

2

1( ) sin( ) with

4 R f

g

Pr A B r A

B B

r E R

R

Power

Energy per fission

The Solution for the Flux is:

Buckling

2 22

1 ( )( ) 0g

d d rr B r

r dr dr

Spherical Critical Reactor The flux is a function only of the radius r

Homogeneous Reactor

The power is given by the integral

2

04 ( )

R

R fP E r r dr There are many possible values of B that will satisfy the boundary conditions, but the geometrical buckling is the FIRST eigenvalue B1

Page 18: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

One-group Critical Reactor Equation

Examples of Solutions

18

z

r

( , )r z

H/2

H/2

R

22

2

1 ( , ) ( , )( , ) 0m

r z r zr B r z

r r r z

22 2

( , ) ( ) ( )

rg z

r z r z

B

R

BB

Z

22

2

0

2

( , )

3.63

2.4

2

cos( )

05

r

r

R f

z

z

r z A r z

PA

V E

R d

B

B

J B

BH d

Finite Cylindrical Critical ReactorThe flux is a function of the radius r and z

Two Functions:

The solution:

Homogeneous Reactor

Page 19: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

One-group Critical Reactor Equation

Maximum-to-Average Flux and Powero The maximum value of the flux max in a uniform bare reactor is always found at the

center.o The power density is also highest at the center.o The maximun-to-average flux ratio is a measure of the overall variation of the flux

in the system.

For a spherical bare reactor

19

max 2 30

sin( / )lim

4 4rR f R f

P r R P

E R r E R

1avg V

avgR f

R f V

dV PVE VP E dV

Bare Spherical React

3max

or 3.293avg

Too large for a real reactor.Real reactors have FLATTER Flux distributions by using reflectors and distributing the fuel.

Page 20: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Multi-group Reactor EquationFor thermal reactors and for accurate

solutions it is necessary to solve the diffusion equation the energy dependency to obtain

o More precise description of Cross Section energy dependency.

o More accurate reaction rates (fission, absorption, scattering, etc.)

o The process of moderation and resonance absorption.

o The thermal and fast fission rates.

The energy spectrum is divided into “ENERGY GROUPS”: g1, g2,…,gN

20

g1g2gN ……..

Discretization of the Neutron Energy for Multi-group Calculations

Page 21: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Multi-group Reactor EquationThe “transfer” of neutrons between groups is accounted for by:

o Scattering Cross-sections (Transfer X_sections)o Fission Spectrum

The Multi-group diffusion equations are:

For Fluxes and X-sections defined as:

21

Group 1 (g1)

Group 2 (g1)

Group n-1 (gn-1)

Group N (gN)

….

Ene

rgy

Incr

easi

ng

Energy Groups for a N-Group Diffusion Calculation

12

1 1

0

1,...,

gN

g g gg ag hh g h

h gg h g s

N

D

g

Transfer out of gTransfer into g

( )g gE dE

1( ) ( )g g

g

dE E E

Page 22: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Multigroup Diffusion Core Analysis Codes

Modern Core Analysis Codeso They use the Multi-group Diffusion Equations in two or several groups

• Two to six Groups: Fast and Thermal + additional resonance region groups.

• Cross sections are obtained form Advanced Transport based Lattice-Codes (e.g. CASMO-4, WIMS, NEWT):

Energy Averages maintaining Reaction Rates.Spatial-Material Averages: Heterogeneous Cores.

• Corrections to the Diffusion Approximation:Neutronic Information from Lattice-Codes with Neutron Transport Corrections.Advanced formulations of NET NEUTRON CURRENTS across interfaces and in

highly absorbing regions.Algorithms to “reconstruct” the local flux at the fuel rod level.

o Examples: SIMULATE, DIF3D, PARCS.

22

Page 23: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

State-of-the-Art Nodal Methods

23

Ref.: www.fz-juelich.de/ ief/ief-6/2/htr2-flu.html

12

1 1 , ,

0

1,...,

gN

g g g hh g gg ag g hh g h i j k

sD

g N

Node i,j,k

, ,

,

i k

g z

jJ

, ,

,

i k

g z

jJ

, ,

,

i k

g y

jJ , ,k

gi j

Ref.: http://www.polymtl.ca/nucleaire/en/GAN/GAN.php

The Multi-group equations are solved for each node i,j,k in which the reactor is divided.The nodes “homogenize” the heterogeneous reactor.

Page 24: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Neutron Transport

Transport theory is based on the Boltzmann Equation developed for the kinetic theory of gases.

o The development of nuclear reactors in the 1940 applied the equation to the transport of neutrons in • Reactor design and• Radiation shielding.

o Analytical solutions are very difficult for real 3D-configurations.

o Today, the Transport Equation is solved numerically by discretizing the• Angular, • Energy, and • Time Dependence of the neutron flux and the cross sections.

It is a more accurate description of the neutron

field than the diffusion equation.

24

Page 25: Arn 02-0-reactor theory

UGM

Dep

art

men

t of

En

gin

eeri

ng

Ph

ysi

cs, Fa

cult

y o

f En

gin

eeri

ng

S

tud

y P

rog

ram

s of

En

gin

eeri

ng

Ph

ysi

cs &

Nu

clear

En

gin

eeri

ng

Neutron TransportNeutron Transport Methods account for the angular direction

25

( , , ) ( , , )r E vN r E

1( , ) ( , , , )

( , , , )

( , , ) ( , , , )

( ) ( , ) ( , , , )

total

ext

s

f

r E r E tv t

q r E t

dE d r E E r E t

E dE r E d r E t

Fission Source

Scattering

External Neutron Source

Time variation and removal of neutrons

Angular Flux and Neutron Density

z

x

y

dV

dA

is a Solid Angle

d

r