16
Pattern Recognition and Applications Lab University of Cagliari, Italy Department of Electrical and Electronic Engineering Evasion attacks against machine learning at test time Ba#sta Biggio ( 1 ) Igino Corona ( 1 ), Davide Maiorca ( 1 ), Blaine Nelson ( 3 ), Nedim Šrndić ( 2 ), Pavel Laskov ( 2 ), Giorgio Giacinto ( 1 ), and Fabio Roli ( 1 ) ( 1 ) University of Cagliari (IT); ( 2 ) University of Tuebingen (GE); ( 3 ) University of Postdam (GE)

Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

Embed Size (px)

Citation preview

Page 1: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

Pattern Recognition and Applications Lab

                               

 University

of Cagliari, Italy

 

Department of Electrical and Electronic

Engineering

Evasion attacks against machine learning at test time

Ba#sta  Biggio  (1)  Igino  Corona  (1),  Davide  Maiorca  (1),  Blaine  Nelson  (3),  Nedim  Šrndić  (2),  

Pavel  Laskov  (2),  Giorgio  Giacinto  (1),  and  Fabio  Roli  (1)    

(1)  University  of  Cagliari  (IT);  (2)  University  of  Tuebingen  (GE);  (3)  University  of  Postdam  (GE)  

Page 2: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Machine learning in adversarial settings

•  Machine learning in computer security –  spam filtering, intrusion detection, malware detection

legitimate malicious

x1  

x2   f(x)

2  

Page 3: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Machine learning in adversarial settings

•  Machine learning in computer security –  spam filtering, intrusion detection, malware detection

•  Adversaries manipulate samples at test time to evade detection

legitimate malicious

x1  

x2   f(x)

3  

Trading alert! We see a run starting to happen. It’s just beginning of 1 week promotion … Tr@ding al3rt!

We see a run starting to happen. It’s just beginning of 1 week pr0m0ti0n …

Page 4: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Our work

Problem: can machine learning be secure? (1) •  Framework for proactive security evaluation of ML algorithms (2) Adversary model •  Goal of the attack •  Knowledge of the attacked system •  Capability of manipulating data •  Attack strategy as an optimization problem

4  

Bounded adversary!

(1)  M.  Barreno,  B.  Nelson,  R.  Sears,  A.  D.  Joseph,  and  J.  D.  Tygar.  Can  machine  learning  be  secure?  ASIACCS  2006  

(2)  B.  Biggio,  G.  Fumera,  F.  Roli.  Security  evaluaVon  of  paWern  classifiers  under  aWack.  IEEE  Trans.  on  Knowl.  and  Data  Engineering,  2013  

In  this  work  we  exploit  our  framework  for  security  evaluaVon  against  evasion  a)acks!  

Page 5: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Bounding the adversary’s capability

•  Cost of manipulations –  Spam: message readability

•  Encoded by a distance function in feature space (L1-norm) –  e.g., number of words that are modified in spam emails

5  

d (x , !x ) ≤ dmaxx2  

x1  

f(x)

Bounded by a maximum value

xFeasible domain

x 'We  will  evaluate  classifier  performance  vs.  increasing  dmax  

Page 6: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Gradient-descent evasion attacks

•  Goal: maximum-confidence evasion •  Knowledge: perfect •  Attack strategy:

•  Non-linear, constrained optimization –  Gradient descent: approximate

solution for smooth functions

•  Gradients of g(x) can be analytically computed in many cases

–  SVMs, Neural networks

6  

−2−1.5

−1−0.5

00.5

11.5

x

f (x) = sign g(x)( ) =+1, malicious−1, legitimate

"#$

%$

minx 'g(x ')

s.t. d(x, x ') ≤ dmax

x '

Page 7: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Computing descent directions

Support vector machines

Neural networks

7  

x1  

xd  

δ1  

δk  

δm  

xf   g(x)  

w1  

wk  

wm  

v11  

vmd  

vk1  

g(x) = αi yik(x,i∑ xi )+ b, ∇g(x) = αi yi∇k(x, xi )

i∑

g(x) = 1+ exp − wkδk (x)k=1

m

∑#

$%

&

'(

)

*+

,

-.

−1

∂g(x)∂x f

= g(x) 1− g(x)( ) wkδk (x) 1−δk (x)( )vkfk=1

m

RBF kernel gradient: ∇k (x ,xi ) = −2γ exp −γ || x − xi ||2{ }(x − xi )

Page 8: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

g(x) ! ! p(x|yc=!1), !=0

!4 !3 !2 !1 0 1 2 3 4!4

!2

0

2

4

!1

!0.5

0

0.5

1

•  Problem: greedily min. g(x) may not lead to classifier evasion!

•  Solution: adding a mimicry component that attracts the attack samples towards samples classified as legitimate

Density-augmented gradient-descent

Mimicry component (Kernel Density Estimator)

8  

g(x) ! ! p(x|yc=!1), !=20

!4 !3 !2 !1 0 1 2 3 4!4

!2

0

2

4

!4.5

!4

!3.5

!3

!2.5

!2

!1.5

!1

Now  all  the  aWack  samples  evade  the  classifier!  

Some  aWack  samples  may  not  evade  the  classifier!    

minx 'g(x ')−λp(x ' | yc = −1)

s.t. d(x, x ') ≤ dmax

Page 9: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Density-augmented gradient-descent

9  

∇p(x | yc = −1) = − 2nh

exp −|| x − xi ||2

h#

$%

&

'( x − xi( )i|yic=−1∑KDE  gradient  (RBF  kernel):  

Page 10: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

An example on MNIST handwritten digits

10  

•  Linear SVM, 3 vs 7. Features: pixel values.

Before attack (3 vs 7)

5 10 15 20 25

5

10

15

20

25

After attack, g(x)=0

5 10 15 20 25

5

10

15

20

25

After attack, last iter.

5 10 15 20 25

5

10

15

20

25

0 500!2

!1

0

1

2g(x)

number of iterations

Without mimicry λ = 0

dmax

5000

Before attack (3 vs 7)

5 10 15 20 25

5

10

15

20

25

After attack, g(x)=0

5 10 15 20 25

5

10

15

20

25

After attack, last iter.

5 10 15 20 25

5

10

15

20

25

0 500!2

!1

0

1

2g(x)

number of iterations

With mimicry λ = 10

dmax

5000

Page 11: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Bounding the adversary’s knowledge Limited knowledge attacks

•  Only feature representation and learning algorithm are known •  Surrogate data sampled from the same distribution as the

classifier’s training data •  Classifier’s feedback to label surrogate data

11  

PD(X,Y) data  

Surrogate training data

f(x)

Send queries

Get labels Learn surrogate classifier

f’(x)

Page 12: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Experiments on PDF malware detection

•  PDF: hierarchy of interconnected objects (keyword/value pairs)

•  Adversary’s capability

–  adding up to dmax objects to the PDF –  removing objects may

compromise the PDF file (and embedded malware code)!

12  

/Type    2  /Page    1  /Encoding  1  …  

13  0  obj  <<  /Kids  [  1  0  R  11  0  R  ]  /Type  /Page  ...  >>  end  obj  17  0  obj  <<  /Type  /Encoding  /Differences  [  0  /C0032  ]  >>  endobj    

Features:  keyword  count  

minx 'g(x ')−λp(x ' | y = −1)

s.t. d(x, x ') ≤ dmax

x ≤ x '

Page 13: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

dmax

FN

SVM (Linear), !=0

PK (C=1)LK (C=1)

Experiments on PDF malware detection Linear SVM

13  

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1SVM (linear) ! C=1, !=500

dmax

FN

PKLK

•  Dataset: 500 malware samples (Contagio), 500 benign (Internet) –  5-fold cross-validation –  Targeted (surrogate) classifier trained on 500 (100) samples

•  Evasion rate (FN) at FP=1% vs max. number of added keywords

–  Perfect knowledge (PK); Limited knowledge (LK)

Without mimicry λ = 0

With mimicry λ = 500

Page 14: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Experiments on PDF malware detection SVM with RBF kernel, Neural Network

14  

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

Neural Netw. ! m=5, !=500

dmax

FN

PK

LK

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1SVM (RBF) ! C=1, !=1, "=500

dmax

FN

PKLK

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

dmax

FN

SVM (RBF), !=0

PK (C=1)LK (C=1)

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

dmax

FN

Neural Netw., !=0

PK (C=1)LK (C=1)

(m=5) (m=5)

Page 15: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

Conclusions and future work

•  Related work. Near-optimal evasion of linear and convex-inducing classifiers (1,2)

•  Our work. Linear and non-linear classifiers can be highly vulnerable to well-crafted evasion attacks

–  … even under limited attacker’s knowledge

•  Future work –  Evasion of non-differentiable decision functions (decision trees) –  Surrogate data: how to query more efficiently the targeted classifier? –  Practical evasion: feature representation partially known or difficult to

reverse-engineer –  Securing learning: game theory to model classifier vs. adversary

15  

(1)  D.  Lowd  and  C.  Meek.  Adversarial  learning.  ACM  SIGKDD,  2005.  (2)  B.  Nelson,  B.  I.  Rubinstein,  L.  Huang,  A.  D.  Joseph,  S.  J.  Lee,  S.  Rao,  and  J.  D.  

Tygar.  Query  strategies  for  evading  convex-­‐inducing  classifiers.  JMLR,  2012.  

Page 16: Battista Biggio @ ECML PKDD 2013 - Evasion attacks against machine learning at test time

 

http://pralab.diee.unica.it

?  16  

 Any  ques@ons  Thanks  for  your  aWenVon!