36
Bridging length and time scales in biomolecular systems Peter Bolhuis van ‘t Hoff institute for Molecular Sciences University of Amsterdam, The Netherlands

Bridging length and time scales in biomolecular systems

Embed Size (px)

Citation preview

Page 1: Bridging length and time scales in biomolecular systems

Bridging length and time scales in biomolecular systems

!

Peter Bolhuisvan ‘t Hoff institute for Molecular SciencesUniversity of Amsterdam, The Netherlands

Page 2: Bridging length and time scales in biomolecular systems

Atoms are basis of complex systemswe have a good atomic theory: Quantum Mechanics

Paul Dirac, after completing his formalism of quantum mechanics: “The rest is chemistry…”

“The rest” is quite complex

since everything is made of atoms and molecules we can in principle predict complex processes by simulation!

Page 3: Bridging length and time scales in biomolecular systems

All (non-relativistic) processes are governed by Schrodinger equation!!!!!!!

Quantum mechanics

i� ⇥

⇥t�(r, t) = H�(r, t) H� = E�

Problem: It is computationally horribly expensive!

So why don’t we simulate just everything by QM?

Solution: approximate atoms as ions in sea of electrons!Newton’s 2nd law F=ma gives time evolution of the system!forces ← electronic structure ← solving Schrodinger equation at each time step in the potential of the atomic nuclei with Density Functional Theory!

The result: molecular dynamical trajectories

Page 4: Bridging length and time scales in biomolecular systems

Chemical reactions

Reaction is more complex than textbook indicates because environment (solvent) takes part

C2H4 + H2O ⇔ C2H5OH

Page 5: Bridging length and time scales in biomolecular systems

Why molecular simulation?

Experiment Theory

Testing of hypothesis

Simulation

Testing of theories starting from the same modelInterpretation of experiments

Properties of materialsNew phenomena or structuresStudy influence of environment

QM based Molecular dynamics limited in time and length scale

Page 6: Bridging length and time scales in biomolecular systems

10-10 10-9 10-8 10-7 10-6

length in meters

10-15

100

10-6

10-9

10-12

10-3

time

in s

econ

ds

All atomMD

QMDFT

Bridging time and length scales

Page 7: Bridging length and time scales in biomolecular systems

Complex biomolecular systems

classical force fields – ignore electrons, don’t allow reactions– define bond, angle, and torsion potentials– include non-bonded dispersion interaction

Page 8: Bridging length and time scales in biomolecular systems

!understanding protein conformational dynamics

– structure formation

– signaling and regulation

– transport

– neurodegenerative/genetic diseases

– .....novel self assembling biomaterials

– in medicine,

– smart packaging

– self healing coatings

– sensors

Protein conformational changes

Challengeunderstanding and predicting protein conformational dynamics with advanced molecular simulation

Page 9: Bridging length and time scales in biomolecular systems

Outline

Photoactive yellow protein

HAMP domainTrp cage FBP28 WW domain

Two state folders

Aggregation and fiber formation

Signalling proteins

Leucine zippers

GCPR!

Page 10: Bridging length and time scales in biomolecular systems

Ground state pG

Signalling state pB

fs-ns

μs-ms

ms-sec

Photoactive yellow protein

Question: What is the mechanism for amplifying signal?!We studied 2 steps:

1) proton transfer2) partial unfolding

DNA

proteins

membrane

signal

signal

transduction

response

chromophore

Tyr42

Thr50

Glu46

Cys69

Photoactive yellow protein

Page 11: Bridging length and time scales in biomolecular systems

Dynamics in proteins

ns

ps

μs to ms

Α

Β

Free

ene

rgy

Conformational space

fs ps ns μs ms s

Bond vibration

Methyl rotation

Loop motion

Side-chain rotamer

Larger domainmotions

Local flexibility Collective motions

Reactions

Straightforward MD unfeasible: dedicated methods

Page 12: Bridging length and time scales in biomolecular systems

MesoscopicFluid

dynamicsCoarse-graining

BD MC DPD

10-10 10-9 10-8 10-7 10-6

length in meters

10-15

100

10-6

10-9

10-12

10-3

time

in s

econ

ds

All atom FFMD

QMDFT

Rare eventsenhanced sampling

Page 13: Bridging length and time scales in biomolecular systems

Transition path samplingImportance sampling of the rare event path ensemble:all dynamical trajectories that lead over (high) barrier and connect stable states.

Why TPS?!-selects unbiased rare paths-no reaction coordinate needed-reaction coordinate from committor-rate constants

PGB, D. Chandler, C. Dellago, P.L. Geissler, Annu. Rev. Phys. Chem 2002

C. Dellago, PGB, Adv Polym Sci, 2009

Page 14: Bridging length and time scales in biomolecular systems

TPS of proton transfer• 28244 atoms• CPMD/QMMM• BLYP functional• Electronic mass 750 au• QM region: pCA, Glu46,Tyr42,

Thr50, Arg52• Gromos96 force field

!• TPS: two way shooting,

perturbation temp 35 K• 160 paths/ 50% acceptance• average path length 0.5-1.5 ps• reaction time microseconds

stable states pR (reaction) pB’ (product)

pCA-Glu46(H) > 1.60 A < 0.98 A

OX2-Tyr42 > 3.70 A < 1.80 A

OX1-Tyr42 > 5.30 A < 1.80 A What is unfolding mechanism?

Page 15: Bridging length and time scales in biomolecular systems

Transition path sampling of partial unfolding

state in which the helical conformation of helix α3 has partiallydisappeared. Uα denotes a state in which this region is completelyunfolded, while Glu46 and pCA are still inside the protein. Thelabels SE and SX correspond to states with a solvent exposedGlu46 and pCA, respectively. Finally, pB indicates the signalingstate, with both pCA and Glu46 exposed to solvent. The REMDsimulations provided the stable state definitions (see Table S2).

Our first attempt to sample the transition from pB0 to pB di-rectly with TPS was severely hampered by the presence of themetastable intermediate states Iα, Uα, SE, and SX , which causedvery long trajectories (i.e., much longer than 10 ns). Therefore,we split up the unfolding transition of pB0 to pB into four separatetransitions. These processes are: 1) the loss of α-helical structurein helix α3 (pB0 − Iα); 2) solvent exposure of Glu46 (Uα − SE);3) solvent exposure of pCA (Uα − SX ); and 4) solvent exposureof pCA following Glu46 (SE − pB). We refrained from perform-ing a TPS simulation of the (SX − pB) transition, as this routeturned out to be not productive.

We performed TPS simulations of these four transitions, usingthe definitions for the initial and final states listed in Table S2 andtaking initial trajectories from either REMD simulations (19) orhigh temperature MD trajectories. Table 1 lists the sampling sta-tistics for the four TPS simulations. The average path length in-dicates that the molecular timescale for the transitions is on theorder of ns. Note that the actual reaction times are much longer.

Unfolding of Helix α3. An initial TPS simulation of the pB0 − Uαtransition yielded very long pathways due to the presence of in-termediate state Iα. Therefore, we performed a TPS simulation ofthe pB0 − Iα transition. Figs. 2A and B show representative path-ways, plotted onto the path density (see SI Text) from both thepB0 − Uα and the pB0 − Iα TPS simulations. Once the proteinis in intermediate state Iα it relaxes within nanoseconds to theUα state in which the helix is completely unfolded, indicating thatthe barrier separating Iα and Uα is lower than the barrier betweenpB0 and Iα.

For PYP, we have identified, based on visual inspection of thepathways and on chemical intuition, about 75 order parametersthat could be involved in the signaling state formation (seeTable S1). Only a fraction of these are used for the stable statedefinitions (see Table S2). We computed these order parametersfor the entire shooting point ensemble of the pB0 − Iα TPS simu-lation. Application of the LM analysis yielded the linear combi-nation of up to three order parameters that best describe the RC(see Table 2). When considering only single order parameters forthe pB0 − Iα transition the best model for the RC is rmsdα. Addingmore order parameters to the RC model is significant only if thelog-likelihood (lnL) increases by at least δLmin ¼ 1

2 lnðNÞ (28),with N the number of shooting points. For this simulation N ¼4149 and hence, δLmin ¼ 4.17. Including the number of water mo-lecules around Tyr42, nwY improves lnL by a value of δL ¼ 19.Using three order parameters, lnL improves significantly by δL ¼13 when nwY is replaced by dhb2 and dPA, respectively the lengthof the backbone hydrogen bond between Ala44 and Asp48 and

the distance between Pro54 and Ala44. Application of theBayesian path statistical analysis (26) confirms these findings(see Figs. S1 and S2).

The description for the optimal RC obtained with the LM ana-lysis agrees with visual inspection of the pB0 − Iα pathways. In pB0

Tyr42 is completely shielded from bulk water by Ala44 and Pro54.During the unfolding of helix α3, water molecules form hydrogenbonds to Tyr42, facilitated by Ala44 and Pro54 moving away fromeach other. This hydration is transient, as dPA decreases againwhen helix α3 is completely unfolded (see Fig. 2A). dPA is notthe only relevant order parameter, because the LM analysis alsoidentified the dhb2 as an important contribution to the RC. In-terestingly, including the helical hydrogen bonds between Asn43and Gly47 (dhb1), and between Ala45 and Ile49 (dhb3) also in-creased the lnL significantly but not as much as the Ala44-Asp48hydrogen bond. These three hydrogen bonds are located atthe solvent accessible side of helix α3. The remaining two helicalhydrogen bonds, located at the protein side of helix α3, do notcontribute at all to the RC.

The LM analysis predicts that structures with r ¼ 0 are transi-tion states. From the pB0 − Iα path ensemble we extracted theconformations with the 3-variable RC (see Table 2) within theinterval r ∈ ½−0.05; 0.05%. This TS ensemble is also plotted inFig. 2A and B, together with the predicted r ¼ 0 dividing surface.Visual inspection suggested that this ensemble is quite uniform.Fig. 2E displays a typical configuration from this predicted TSensemble. The relevant order parameters that contributed mostto the RC are highlighted. Helix α3 is clearly still in a helical con-formation, indicating that the TS is very close to the folded state.We explicitly computed the committors of the predicted r ¼ 0structures (see SI Text), and confirmed that 30% of the predictedstructures are true transition states (with committor values be-tween 0.3–0.7). The other conformations had committors closeto either zero or unity. We refrained from performing a full com-mittor analysis due to excessive computational costs. The TS en-semble for the pB0 − Iα transition is thus very sensitive to smallchanges in the protein conformation, indicating it involves a re-latively narrow barrier.

Solvent Exposure of Glu46 and pCA. Once the helix is unfolded andthe protein is in the Uα state, the solvent exposure of both Glu46and pCA constitutes the next step in the formation of pB. Trajec-tories from the REMD simulations (19) showed the solvent ex-posure of either Glu46 or pCA only, subsequently followed by thesolvent exposure of the other residue. Using REMD trajectoriesas initial pathways, we performed two TPS simulations, one forthe solvent exposure of Glu46 (Uα − SE) and one for the exposureof pCA (Uα − SX ). Definitions of the initial and final states arelisted in Table S2. Both transitions proved difficult to sample, asthe processes of exposing pCA or Glu46 involve long and diffu-sive paths. Figs. 2C and D show representative, uncorrelatedpathways for the Uα − SE and the Uα − SX transitions, plottedonto the path density. Note that these room temperature path-ways are fully decorrelated from the initial REMD trajectories.

The Uα − SE transition. LM analysis of the Uα − SE shooting pointensemble reveals that the best RC for the exposure of Glu46 tothe solvent is dXE, the distance between Glu46 and pCA (seeTable 2). As pCA is an important hydrogen bond donor, this dis-tance parameter indicates that disruption of the hydrogen bondnetwork around Glu46 inside the protein leads to Glu46’s solventexposure. Adding more order parameters does not significantlyimprove lnL, although adding the backbone torsions of Ala45and the distance between Glu9 and Lys110 almost reached thethreshold. The latter parameter is a salt bridge that is involvedin the formation of pB (36). For the best RC model r ¼ dXE,the TS ensemble is plotted as squares in Fig. 2C and D. Fig. 2Fshows one of these transition states. This prediction agrees with

Table 1. Statistics of the TPS ensembles. The average pathlength is a weighted average over the whole ensemble.Decorrelated pathways have lost the memory of theprevious decorrelated pathway. The aggregate time is theensemble aggregate length

pB0 − Iα Uα − SE Uα − SX SE − pB

acceptance 41% 25% 38% 44%avg. path length 105 ps 1.8 ns 1.5 ns 1.7 nsaccepted paths 3847 305 584 311decorr. paths 180 18 7 29aggregate time (μs) 1.0 2.3 2.3 1.2

Vreede et al. PNAS ∣ February 9, 2010 ∣ vol. 107 ∣ no. 6 ∣ 2399

BIOCH

EMISTR

YCH

EMISTR

YSE

ECO

MMEN

TARY

Vreede, Juraszek, PGB, PNAS 2010

Page 16: Bridging length and time scales in biomolecular systems

Reaction coordinate of helixα3 unfolding

n ln L RC

1 -2117 3.89–29.10 × rmsdα2 -2098 3.88–26.35 × rmsdα − 0.19 × nwY42

3 -2085 5.11–16.81 × rmsdα − 4.68 × dhb2 − 2.55 × dPA

δLmin = 4.17

Reaction coordinate by likelihood maximization (Peters & Trout, JCP 2006)!Order Parameters involved:

RMSDαnwY42 : water molecules around Tyr42dPA : distance Ala44(N) - Pro54(Cγ)dhb2 : distance Ala44(O) - Asp48(H)

Page 17: Bridging length and time scales in biomolecular systems

Solvent exposure transitionsrc =−2.03 + 2.70 dXE

rc = −5.05 + 5.02 dXYcom − 2.51 dXEcom + 4.30 dXETS Uα-SX

TS Uα-SE

rate limiting step 16 kBT: k ≈ 1 ms-1

Page 18: Bridging length and time scales in biomolecular systems

SE

SX

pB

Iα(a)

(b)

(c)

pB’

Juraszek , Vreede, PGB, Chem Phys 2011

Page 19: Bridging length and time scales in biomolecular systems

Outline

Photoactive yellow protein

HAMP domainTrp cage FBP28 WW domain

Two state folders

Aggregation and fiber formation

Signalling proteins

Leucine zippers

GCPR!

Page 20: Bridging length and time scales in biomolecular systems

• 20-residue fragment obtained from Gila monster saliva: α-helix, 310-helix, polyproline helix

NAYAQ WLKDG GPSSG RPPPS

• Folds on the microsecond timescale• 2-state folder, experimental rate 4 μs• T-jump vibrational spectroscopy (IR) shows bi-

exponential relaxation kinetics⇒ (un)folding involves an intermediate state

• timescales for different temperature, T=300 Kτ1=150 ns, t2= 2.2 μs

The Trp-cage miniprotein

Neidigh & al., Nature Struct.Biol. 9, 425 (2002)

Salt-bridge

Tyrosine Tryptophan Glycine Proline

3

H. Meuzelaar, K. A. Marino, A. Huerta-Viga, M. R. Panman, L.E. J. Smeenk, A.J. Kettelarij, J.H. van Maarseveen, P. Timmerman, PGB, and S. Woutersen JPCB 2013.

-0.03

-0.02

-0.01

0

0.01

0 1000 2000 3000 4000 5000

�A

time (ns)

1664 cm-1 (α-helix)

1620 cm-1 (Pro-helix)

τ = 800 ns

τ = 800 ns

τ = 125 ns

Page 21: Bridging length and time scales in biomolecular systems

Multiple state transition interface sampling

TIS: MSTIS:!no. of pathways coming from A, cross λmA, end i_____________________________________________________________________________________________________________________________________________

no. of pathways coming from A, cross λmA

rates can be used in Markov state model

J. Rogal, PGB, J. Chem. Phys. (2008).J. Rogal, PGB, J. Chem. Phys. (2010).

A

C

B

λmA

λ1Aλ0A

λ0B

λ0C

Φ0

= probability path crossing s for first time after leaving A reaches s+1 before APA(�(s+1)A|�(s+1)A)

dpi(t)

dt=

X

j 6=i

kjipj(t)�X

j 6=i

kijpi(t)

Page 22: Bridging length and time scales in biomolecular systems

!" #!" $!"

%&" '()*" #+"

," -" ."

• Approach– TIS from native state with RMSD as order parameter– cluster analysis on path ensemble– check metastability on metastable clusters.– apply single replica MSTIS for states– analyze rate matrix

!• Simulation setup

– Trp-cage in explicit water– Amber99SB, TIP3P– Gromacs package– single replica MSTIS wrapper script

Single replica MSTIS of Trp-cage

9 populated states out of 33

Du & PGB , J. Chem. Phys. 140, 195102 (2014)).

Page 23: Bridging length and time scales in biomolecular systems

N"

SN"

meta"

Pd"

I"

LN"

other"

U"

0"

1.0"

.1"

Commi5or"

.001"

.2"

LSN"

Lo"

Kinetics from rate matrix analysis

N

U

SN

fast

slow

p

t

Experimental t1=150 ns, t2= 2.2 μs

fast time scale 200 nsslow time scale 2 μs

pT(t) = pT

(0) exp(Kt)

SN state to end

11

TABLE IV. Full rate matrices. Rows denote leaving, columns arriving states. Top: conditional transition probability based on path type analysis, symmetrizationand WHAM. Middle: full rate matrix (in ns�1) by multiply the top matrix with the fluxes. Bottom: the mean first passage time matrix (in ns), obtained from thereciprocal rates.

N PN SN Mg meta Pd LN LSN Lm Lo I W other state UConditional transition probability matrix at the first interface of each state.N 9.83�10�1 2.18�10�3 1.35�10�4 2.71�10�4 9.59�10�3 3.10�10�3 1.41�10�3 6.04�10�5 5.82�10�6 1.23�10�7 5.26�10�5 1.36�10�5

PN 3.95�10�1 5.95�10�1 3.98�10�4 2.17�10�4 5.10�10�3 2.06�10�3 1.31�10�3 4.24�10�5 1.20�10�4 1.00�10�3 2.91�10�5

SN 6.02�10�4 9.76�10�6 9.98�10�1 2.29�10�6 1.47�10�4 4.17�10�4 1.46�10�5 4.50�10�4 1.30�10�5 5.63�10�5 1.32�10�8 5.37�10�4 1.15�10�4

Mg 1.50�10�1 6.60�10�4 2.85�10�4 7.05�10�1 1.16�10�1 2.76�10�2 1.20�10�5 7.93�10�7 4.99�10�4

meta 2.52�10�1 7.37�10�4 8.68�10�4 5.49�10�3 7.37�10�1 1.21�10�3 2.58�10�3 7.19�10�6 1.12�10�4 4.94�10�5 2.82�10�7 3.53�10�4 2.96�10�5

Pd 3.99�10�1 1.46�10�3 1.20�10�2 5.92�10�3 5.77�10�1 6.90�10�5 8.28�10�5 1.32�10�4 1.20�10�4 2.10�10�6 3.93�10�3 6.82�10�5

LN 5.58�10�2 2.85�10�4 1.29�10�4 1.98�10�3 3.90�10�3 2.13�10�5 9.36�10�1 3.50�10�4 1.19�10�3 3.54�10�5 4.03�10�6 3.05�10�4

LSN 1.48�10�2 4.01�10�5 9.43�10�5 1.30�10�3 9.81�10�1 1.68�10�3 4.53�10�5 1.81�10�7 6.44�10�4 4.94�10�4

Lm 8.14�10�2 3.15�10�4 2.91�10�5 5.77�10�3 4.07�10�2 8.72�10�1 3.65�10�6

Lo 1.72�10�3 6.04�10�4 6.77�10�3 9.45�10�1 3.06�10�4 1.32�10�6 3.89�10�2 6.58�10�3

I 1.23�10�2 1.40�10�3 2.68�10�2 3.98�10�3 1.97�10�3 1.89�10�3 6.54�10�4 1.10�10�3 9.31�10�1 3.65�10�6 1.22�10�2 6.30�10�3

W 7.91�10�3 1.91�10�4 9.23�10�5 6.93�10�4 1.05�10�3 6.55�10�3 7.96�10�5 1.74�10�4 1.44�10�4 1.11�10�4 8.27�10�1 8.30�10�6 1.56�10�1

other 6.88�10�3 7.23�10�4 1.58�10�2 1.18�10�4 1.76�10�3 3.99�10�3 5.75�10�4 8.64�10�3 7.52�10�4 1.68�10�8 9.59�10�1 2.21�10�3

U 1.94�10�3 2.29�10�5 3.70�10�3 1.61�10�4 7.58�10�5 1.10�10�3 4.82�10�4 1.60�10�3 4.25�10�4 3.46�10�4 2.41�10�3 9.88�10�1

Rate matrix (ns�1)N — 3.75�10�3 2.33�10�4 4.67�10�4 1.65�10�2 5.35�10�3 2.43�10�3 1.04�10�4 1.00�10�5 2.12�10�7 9.08�10�5 2.35�10�5

PN 6.68�10�1 — 6.73�10�4 3.66�10�4 8.61�10�3 3.48�10�3 2.21�10�3 7.16�10�5 2.02�10�4 1.70�10�3 4.92�10�5

SN 1.18�10�3 1.91�10�5 — 4.48�10�6 2.88�10�4 8.16�10�4 2.85�10�5 8.81�10�4 2.55�10�5 1.10�10�4 2.58�10�8 1.05�10�3 2.26�10�4

Mg 4.47�10�1 1.97�10�3 8.50�10�4 — 3.45�10�1 8.25�10�2 3.57�10�5 2.37�10�6 1.49�10�3

meta 7.65�10�1 2.24�10�3 2.64�10�3 1.67�10�2 — 3.68�10�3 7.85�10�3 2.19�10�5 3.42�10�4 1.50�10�4 8.59�10�7 1.07�10�3 9.01�10�5

Pd 4.87�10�1 1.78�10�3 1.47�10�2 7.22�10�3 — 8.42�10�5 1.01�10�4 1.61�10�4 1.46�10�4 2.56�10�6 4.79�10�3 8.32�10�5

LN 1.01�10�1 5.16�10�4 2.35�10�4 3.59�10�3 7.06�10�3 3.85�10�5 — 6.35�10�4 2.16�10�3 6.42�10�5 7.31�10�6 5.52�10�4

LSN 3.23�10�2 8.77�10�5 2.06�10�4 2.83�10�3 — 3.68�10�3 9.89�10�5 3.96�10�7 1.41�10�3 1.08�10�3

Lm 6.05�10�2 2.34�10�4 2.17�10�5 4.29�10�3 3.02�10�2 — 2.71�10�6

Lo 2.27�10�3 7.98�10�4 8.95�10�3 — 4.04�10�4 1.74�10�6 5.14�10�2 8.69�10�3

I 1.27�10�2 1.44�10�3 2.76�10�2 4.10�10�3 2.04�10�3 1.95�10�3 6.74�10�4 1.13�10�3 — 3.77�10�6 1.25�10�2 6.50�10�3

W 1.00�10�2 2.42�10�4 1.17�10�4 8.77�10�4 1.33�10�3 8.30�10�3 1.01�10�4 2.21�10�4 1.83�10�4 1.41�10�4 — 1.05�10�5 1.97�10�1

other 9.16�10�3 9.63�10�4 2.10�10�2 1.57�10�4 2.34�10�3 5.31�10�3 7.65�10�4 1.15�10�2 1.00�10�3 2.24�10�8 — 2.94�10�3

U 8.42�10�5 9.92�10�7 1.60�10�4 6.98�10�6 3.28�10�6 4.75�10�5 2.09�10�5 6.91�10�5 1.84�10�5 1.50�10�5 1.04�10�4 —Mean first passage time matrix (in ns)N — 266.32 4285.19 2140.96 60.46 186.82 411.60 9604.39 99546.28 4716906.61 11013.36 42587.61PN 1.50 — 1486.28 2732.88 116.09 287.30 453.22 13961.63 4939.45 589.39 20321.57SN 848.37 52314.82 — 223069.16 3470.29 1226.18 35105.49 1135.70 39240.29 9065.06 38717269.30 951.82 4432.97Mg 2.24 507.36 1176.55 — 2.89 12.12 28020.71 422276.02 671.39meta 1.31 446.00 378.78 59.90 — 271.97 127.34 45693.52 2927.91 6659.63 1163470.96 931.88 11104.12Pd 2.06 561.95 68.14 138.46 — 11879.92 9899.94 6216.24 6830.74 390867.46 208.89 12019.98LN 9.89 1937.00 4262.58 278.93 141.66 25958.58 — 1574.98 462.31 15579.13 136868.45 1812.23LSN 30.93 11402.98 4852.69 353.31 — 271.74 10115.13 2526634.83 711.12 926.84Lm 16.53 4272.44 46187.18 233.21 33.10 — 368661.10Lo 439.66 1253.37 111.78 — 2472.32 573408.12 19.45 115.01I 78.74 694.61 36.22 243.77 491.11 512.61 1483.64 881.59 — 265501.66 79.70 153.94W 99.87 4140.60 8562.15 1139.98 752.24 120.55 9920.18 4534.94 5473.20 7107.00 — 95233.76 5.07other 109.18 1038.80 47.66 6373.92 427.51 188.23 1307.28 86.93 998.97 44590152.33 — 340.64U 11880.87 1007937.81 6246.63 143356.55 304806.40 21031.35 47948.61 14465.10 54295.70 66740.76 9586.12 —

11

TABLE IV. Full rate matrices. Rows denote leaving, columns arriving states. Top: conditional transition probability based on path type analysis, symmetrizationand WHAM. Middle: full rate matrix (in ns�1) by multiply the top matrix with the fluxes. Bottom: the mean first passage time matrix (in ns), obtained from thereciprocal rates.

N PN SN Mg meta Pd LN LSN Lm Lo I W other state UConditional transition probability matrix at the first interface of each state.N 9.83�10�1 2.18�10�3 1.35�10�4 2.71�10�4 9.59�10�3 3.10�10�3 1.41�10�3 6.04�10�5 5.82�10�6 1.23�10�7 5.26�10�5 1.36�10�5

PN 3.95�10�1 5.95�10�1 3.98�10�4 2.17�10�4 5.10�10�3 2.06�10�3 1.31�10�3 4.24�10�5 1.20�10�4 1.00�10�3 2.91�10�5

SN 6.02�10�4 9.76�10�6 9.98�10�1 2.29�10�6 1.47�10�4 4.17�10�4 1.46�10�5 4.50�10�4 1.30�10�5 5.63�10�5 1.32�10�8 5.37�10�4 1.15�10�4

Mg 1.50�10�1 6.60�10�4 2.85�10�4 7.05�10�1 1.16�10�1 2.76�10�2 1.20�10�5 7.93�10�7 4.99�10�4

meta 2.52�10�1 7.37�10�4 8.68�10�4 5.49�10�3 7.37�10�1 1.21�10�3 2.58�10�3 7.19�10�6 1.12�10�4 4.94�10�5 2.82�10�7 3.53�10�4 2.96�10�5

Pd 3.99�10�1 1.46�10�3 1.20�10�2 5.92�10�3 5.77�10�1 6.90�10�5 8.28�10�5 1.32�10�4 1.20�10�4 2.10�10�6 3.93�10�3 6.82�10�5

LN 5.58�10�2 2.85�10�4 1.29�10�4 1.98�10�3 3.90�10�3 2.13�10�5 9.36�10�1 3.50�10�4 1.19�10�3 3.54�10�5 4.03�10�6 3.05�10�4

LSN 1.48�10�2 4.01�10�5 9.43�10�5 1.30�10�3 9.81�10�1 1.68�10�3 4.53�10�5 1.81�10�7 6.44�10�4 4.94�10�4

Lm 8.14�10�2 3.15�10�4 2.91�10�5 5.77�10�3 4.07�10�2 8.72�10�1 3.65�10�6

Lo 1.72�10�3 6.04�10�4 6.77�10�3 9.45�10�1 3.06�10�4 1.32�10�6 3.89�10�2 6.58�10�3

I 1.23�10�2 1.40�10�3 2.68�10�2 3.98�10�3 1.97�10�3 1.89�10�3 6.54�10�4 1.10�10�3 9.31�10�1 3.65�10�6 1.22�10�2 6.30�10�3

W 7.91�10�3 1.91�10�4 9.23�10�5 6.93�10�4 1.05�10�3 6.55�10�3 7.96�10�5 1.74�10�4 1.44�10�4 1.11�10�4 8.27�10�1 8.30�10�6 1.56�10�1

other 6.88�10�3 7.23�10�4 1.58�10�2 1.18�10�4 1.76�10�3 3.99�10�3 5.75�10�4 8.64�10�3 7.52�10�4 1.68�10�8 9.59�10�1 2.21�10�3

U 1.94�10�3 2.29�10�5 3.70�10�3 1.61�10�4 7.58�10�5 1.10�10�3 4.82�10�4 1.60�10�3 4.25�10�4 3.46�10�4 2.41�10�3 9.88�10�1

Rate matrix (ns�1)N — 3.75�10�3 2.33�10�4 4.67�10�4 1.65�10�2 5.35�10�3 2.43�10�3 1.04�10�4 1.00�10�5 2.12�10�7 9.08�10�5 2.35�10�5

PN 6.68�10�1 — 6.73�10�4 3.66�10�4 8.61�10�3 3.48�10�3 2.21�10�3 7.16�10�5 2.02�10�4 1.70�10�3 4.92�10�5

SN 1.18�10�3 1.91�10�5 — 4.48�10�6 2.88�10�4 8.16�10�4 2.85�10�5 8.81�10�4 2.55�10�5 1.10�10�4 2.58�10�8 1.05�10�3 2.26�10�4

Mg 4.47�10�1 1.97�10�3 8.50�10�4 — 3.45�10�1 8.25�10�2 3.57�10�5 2.37�10�6 1.49�10�3

meta 7.65�10�1 2.24�10�3 2.64�10�3 1.67�10�2 — 3.68�10�3 7.85�10�3 2.19�10�5 3.42�10�4 1.50�10�4 8.59�10�7 1.07�10�3 9.01�10�5

Pd 4.87�10�1 1.78�10�3 1.47�10�2 7.22�10�3 — 8.42�10�5 1.01�10�4 1.61�10�4 1.46�10�4 2.56�10�6 4.79�10�3 8.32�10�5

LN 1.01�10�1 5.16�10�4 2.35�10�4 3.59�10�3 7.06�10�3 3.85�10�5 — 6.35�10�4 2.16�10�3 6.42�10�5 7.31�10�6 5.52�10�4

LSN 3.23�10�2 8.77�10�5 2.06�10�4 2.83�10�3 — 3.68�10�3 9.89�10�5 3.96�10�7 1.41�10�3 1.08�10�3

Lm 6.05�10�2 2.34�10�4 2.17�10�5 4.29�10�3 3.02�10�2 — 2.71�10�6

Lo 2.27�10�3 7.98�10�4 8.95�10�3 — 4.04�10�4 1.74�10�6 5.14�10�2 8.69�10�3

I 1.27�10�2 1.44�10�3 2.76�10�2 4.10�10�3 2.04�10�3 1.95�10�3 6.74�10�4 1.13�10�3 — 3.77�10�6 1.25�10�2 6.50�10�3

W 1.00�10�2 2.42�10�4 1.17�10�4 8.77�10�4 1.33�10�3 8.30�10�3 1.01�10�4 2.21�10�4 1.83�10�4 1.41�10�4 — 1.05�10�5 1.97�10�1

other 9.16�10�3 9.63�10�4 2.10�10�2 1.57�10�4 2.34�10�3 5.31�10�3 7.65�10�4 1.15�10�2 1.00�10�3 2.24�10�8 — 2.94�10�3

U 8.42�10�5 9.92�10�7 1.60�10�4 6.98�10�6 3.28�10�6 4.75�10�5 2.09�10�5 6.91�10�5 1.84�10�5 1.50�10�5 1.04�10�4 —Mean first passage time matrix (in ns)N — 266.32 4285.19 2140.96 60.46 186.82 411.60 9604.39 99546.28 4716906.61 11013.36 42587.61PN 1.50 — 1486.28 2732.88 116.09 287.30 453.22 13961.63 4939.45 589.39 20321.57SN 848.37 52314.82 — 223069.16 3470.29 1226.18 35105.49 1135.70 39240.29 9065.06 38717269.30 951.82 4432.97Mg 2.24 507.36 1176.55 — 2.89 12.12 28020.71 422276.02 671.39meta 1.31 446.00 378.78 59.90 — 271.97 127.34 45693.52 2927.91 6659.63 1163470.96 931.88 11104.12Pd 2.06 561.95 68.14 138.46 — 11879.92 9899.94 6216.24 6830.74 390867.46 208.89 12019.98LN 9.89 1937.00 4262.58 278.93 141.66 25958.58 — 1574.98 462.31 15579.13 136868.45 1812.23LSN 30.93 11402.98 4852.69 353.31 — 271.74 10115.13 2526634.83 711.12 926.84Lm 16.53 4272.44 46187.18 233.21 33.10 — 368661.10Lo 439.66 1253.37 111.78 — 2472.32 573408.12 19.45 115.01I 78.74 694.61 36.22 243.77 491.11 512.61 1483.64 881.59 — 265501.66 79.70 153.94W 99.87 4140.60 8562.15 1139.98 752.24 120.55 9920.18 4534.94 5473.20 7107.00 — 95233.76 5.07other 109.18 1038.80 47.66 6373.92 427.51 188.23 1307.28 86.93 998.97 44590152.33 — 340.64U 11880.87 1007937.81 6246.63 143356.55 304806.40 21031.35 47948.61 14465.10 54295.70 66740.76 9586.12 —

Page 24: Bridging length and time scales in biomolecular systems

Outline

Photoactive yellow protein

HAMP domainTrp cage FBP28 WW domain

Two state folders

Aggregation and fiber formation

Signalling proteins

Leucine zippers

GCPR!

Page 25: Bridging length and time scales in biomolecular systems

Kinetics of (protein) complex formation!!!!!!!!

• formation dynamics/kinetics of complexes difficult by all-atom MD• extreme coarse graining: single particle representation with directional interactions

(equivalent to colloidal particles)!

• Kinetic trapping hampers direct sampling of assembly pathways of structures• Solution: use (single replica) multiple state TIS.

Arthur Newton

• Assembly kinetics is governed by rotational and translational diffusion• Question: How does rotational diffusion influence kinetic pathways?

Page 26: Bridging length and time scales in biomolecular systems

Validity of Stokes-Einstein relation

SE relation. Our result agrees with the work of Bhat andTimasheff,21 who showed that PEG induces preferential hydra-tion of proteins.Rotational Diffusion. Rotational correlation times were

calculated from fluorescence anisotropy measurements of eGFP(the rationale behind using eGFP to measure rotation wasdiscussed in Materials and Methods and was checked with alimited set of measurements on Alexa-labeled BLIP). Figure 3shows the relative rotational correlation time, θh ) θ/θw (θw isthe correlation time in water) in glycerol solutions (squares)and in PEG 8000 solutions (circles), as a function of relativeviscosity, ηj. As above, the line is the linear prediction of theSE relation (i.e., θh ) ηj). The rotational correlation times inglycerol solutions remain close to the SE prediction at least upto a relative viscosity of 30. However, the rotational correlationtimes in PEG 8000 strongly deviate from this relation, beingmuch faster than predicted by viscosity. In fact, their dependenceon viscosity is very similar to the dependence of the relativeassociation times on viscosity (inset to Figure 3).The success of the SE relation to capture the viscosity

dependence of molecular rotational correlation times is well-known. This success can be attributed to the fact that theinteraction of solvent molecules with the rotating molecule iswell-described by the stick boundary condition used to derivethe relation. It is likely that rotation in polymer solutions isqualitatively different. It occurs in a “solvent cage” madeessentially of water molecules, into which the bulky polymermolecules cannot penetrate. This is why the macroscopicviscosity is not a good determinant of the rotational diffusionin these solutions, as already shown previously.22

DiscussionDiffusion in Polymer Solutions. The effect of polymer

solutions on translation and rotation, in general, and in the

context of proteins, in particular, has been studied by manyauthors (see, e.g., ref 23 for a compilation of many experimentalresults on protein diffusion) and is not the subject of this work.Rather, our main interest in the diffusion results is in using themto understand association kinetics. We will therefore not attempta comparison of our results to the extensive literature on proteindiffusion in polymers. One point is nevertheless worthy ofdiscussion here. The concurrent measurement of both transla-tional and rotational diffusion within the same matrix can, inprinciple, pave the way to better understanding of the micro-scopic structure of a polymer network as it influences variousmotions. While several theories of translational diffusion inpolymer matrices exist (see ref 17 for a recent review), it isdifficult to find a consistent first-principles theoretical treatmentof both rotational and translational motion of a small probe insemidilute polymer solutions. One such approach is providedby the theory of diffusion in a Brinkman fluid,24,25 which wasused successfully to model measurements of translational androtational diffusion of a probe particle in xanthane solutions,already mentioned above.18 The important parameter in thetheory is the hydrodynamic screening length of the medium,commonly equated to the correlation length of the polymersolution. The Brinkman fluid theory does predict a much weakereffect on the rotational motion of a probe in PEG 8000 solutionsthan on its translational motion, although a quantitative agree-ment with the experiment is not achieved (see SupportingInformation). We will leave this important problem to a futurestudy and focus on the main issue of this work, associationkinetics.Understanding Association Kinetics. To interpret the as-

sociation rate results, we turn to the theory of diffusion-limitedassociation (DLA). The theory starts from the combinedrotation-translation diffusion equation for a pair of particles(spheres) moving in a liquid. To account for nonuniformreactivity of the spheres, the diffusion equation is augmentedby boundary conditions that guarantee reaction at the propermutual orientation.3 Szabo and co-workers showed how thisformalism can be used to obtain an analytic expression for theassociation reaction rate.4 Using the Szabo approach, togetherwith a simple approximation due to Berg,26 Zhou5 wrote downan explicit formula for the fully diffusion-controlled rate (whichis the rate in the case that each encounter between the reactivepatches leads to association) of two spheres with sphericallysymmetric reactive regions of sizes δ1 and δ2:

where Fi ) sin2 (δi/2), $i ) !(1+Dr,ia2/(Dt,1+Dt,2))/2, Dt,i andDr,i are the translational and rotational diffusion coefficients ofprotein i (i ) 1,2), respectively, and a is the sum of thehydrodynamic radii of the two proteins. If we assume that thetwo proteins have equal-sized reactive patches, we can use eq3 to calculate the relative association time. It is easy to see thatin the SE case, when both translational and rotational diffusioncoefficients are inversely proportional to the viscosity, therelative association time is equal to the relative viscosity, τja )ηj. As shown in Figure 1, this simple behavior is obtained neitherin solutions of the small viscogen glycerol, where the relative

(21) Bhat, R.; Timasheff, S. N. Protein Sci. 1992, 1, 1133-1143.(22) Lavalette, D.; Tetreau, C.; Tourbez, M.; Blouquit, Y. Biophys. J. 1999,

76, 2744-2751.

(23) Odijk, T. Biophys. J. 2000, 79, 2314-2321.(24) Brinkman, H. C. Appl. Sci. Res. A 1947, 1, 27.(25) Solomentsev, Y. E.; Anderson, J. L. Phys. Fluids 1996, 8, 1119-1121.(26) Berg, O. G. Biophys. J. 1985, 47, 1-14.

Figure 3. Dependence of relative rotational correlation time of eGFPmolecules on relative viscosity in glycerol solution (green squares) and PEG8000 solutions (red circles). The line is the SE prediction. Rotationalcorrelation times were calculated from fluorescence anisotropy measure-ments. Inset: comparison of the experimental relative rotational correlationtimes in PEG 8000 solutions (red circles) with the relative association times(blue triangles).

ka ) 4π(Dt,1 + Dt,2)a[F1$2 tan (δ2/2) + F2$1 tan (δ1/2)] (3)

Contribution of Translational and Rotational Diffusion A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 127, NO. 43, 2005 15141

Dr =kBT

8⇡⌘R3

Validity of Stokes-Einstein equation

Association Rate Measurements. The association reaction of TEMand BLIP in various solutions was measured following the methods ofKozer and Schreiber,9 under second-order kinetic conditions, with equalconcentrations (0.5 µM) of both proteins. A thermostated bath allowedmaintaining the sample temperature at 25((0.2) °C. The data werefitted to a standard equation describing association under the conditionof equal reactant concentrations (see Supporting Information for moredetails).

Results

Methodology. To obtain a full picture of the nonspecificdynamic processes affecting the association reaction, we studiedthe association reaction of TEM and BLIP in water solutionsof the small viscogen glycerol, as well as in water solutions ofthe polymer PEG 8000. The concentration of the additives wassystematically varied, and the macroscopic viscosity at eachconcentration was assessed. We then determined in each solutionthe translational and rotational correlation times, as well as theassociation times (inverse rates). We found it convenient to relatemeasured times to the corresponding values in water. Thus, allvalues given below are relative and unitless.Association Rates. The association rates of TEM and BLIP

were extracted from fits to stopped-flow measurements inglycerol and PEG 8000 solutions of increasing viscosity, asdescribed in the Materials and Methods section. We define arelatiVe association time τja ) ka,w/ka (where ka,w is theassociation rate constant in water), and in Figure 1, we showthe dependence of τja on relative viscosity, ηj ) η/ηw, (ηw is theviscosity of water), for the two types of solutions (glycerol,squares, and PEG 8000, circles); τja shows a strong, nonlineardependence on viscosity in glycerol. Surprisingly, it is foundto depend only weakly on viscosity in PEG 8000 solutions.Translational Diffusion. Correlation functions calculated

from FCS data taken in glycerol and PEG 8000 solutions werefitted to eq 2. Figure 2 shows the relative translational correlationtime, τjD ) τD/τD,w (where τD,w is the correlation time in water),

obtained from the fits as a function of relative viscosity, bothin glycerol solutions (squares) and in PEG 8000 solutions(circles).The line in Figure 2 is the linear prediction of the SE relation

(i.e., τjD ) ηj). The translational correlation times follow thisrelation in both types of solutions up to ηj ∼ 20. The closeadherence to the linear relation in PEG 8000 solutions is ratherunexpected, considering that at polymer concentrations greaterthan 2.5% (w/v), equivalent to ηj > 1.5, the solution is in thesemidilute regime, with significant overlap between adjacentpolymer molecules. However, we remember that PEG 8000molecules, with a radius of gyration Rg ) 4.2 nm, are not muchlarger than the protein molecules studied here. It is thereforelikely that their translational dynamics are still the dominantfactor in determining the motion of a tracer protein on the timescale probed in FCS, from ∼10 µs to ∼1 ms. This behaviorcontrasts with what is usually found for translational diffusionin solutions of (typically larger) polymers.15-17 In a recentexample, Koenderink et al. used dynamic light scattering tomeasure translational diffusion in solutions of xanthane, apolymer of a molecular weight of 4 × 106 g/mol,18 and founda significant deviation from SE behavior. In this case, only localmotions of the polymer network were important on the timescale probed by dynamic light scattering, and overall translationof the giant polymer molecules was too slow to affect the result.It is important to note here that, while some recent studies

suggest attractive interactions between PEG and protein mol-ecules,19,20 our translational diffusion results overrule suchinteractions in the present case. Any association of PEG andprotein molecules would lead to species with higher hydrody-namic radii and longer diffusion times than predicted by the

(15) Gold, D.; Onyenemezu, C.; Miller, W. G.Macromolecules 1996, 29, 5700-5709.

(16) Ye, X.; Tong, P.; Fetters, L. J. Macromolecules 1998, 31, 5785-5793.(17) Masaro, L.; Zhu, X. X. Prog. Polym. Sci. 1999, 24, 731-775.(18) Koenderink, G. H.; Sacanna, S.; Aarts, D. G. A. L.; Philipse, A. P. Phys.

ReV. E 2004, 69.(19) Kulkarni, A. M.; Chatterjee, A. P.; Schweizer, K. S.; Zukoski, C. F. J.

Chem. Phys. 2000, 113, 9863-9873.(20) Tubio, G.; Nerli, B.; Pico, G. J. Chromatogr. B Anal. Technol. Biomed.

Life Sci. 2004, 799, 293-301.

Figure 1. Dependence of the relative association time (ka,w/ka) of the TEM-BLIP pair on relative viscosity in glycerol solution (green squares) andPEG 8000 solutions (red circles). Association times were measured usinga stopped-flow apparatus. The line is the SE prediction for the relativeassociation time (see discussion following eq 3). The error bars for thePEG 8000 measurements are smaller than the symbol size.

Figure 2. Dependence of the relative translational correlation time ofAlexa488-BLIP molecules on relative viscosity in glycerol solution (greensquares) and PEG 8000 solutions (red circles). The line is the SE prediction.Translational correlation times were obtained by fitting FCS correlationfunctions.

A R T I C L E S Kuttner et al.

15140 J. AM. CHEM. SOC. 9 VOL. 127, NO. 43, 2005

Dt =kBT

6⇡⌘R

Kuttner et. al.; JACS, 2005 Wang, Li and Pielak, JACS, 132, 9392 2010

Page 27: Bridging length and time scales in biomolecular systems

fSE=10.0!fSE=0.1! fSE=1.0!

Free Energy!

Reactive Path Current!

R12 φ1"

Unbound (U) Bound (B)

θji θij

rij

Path density fSE=0.1

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1

Path density fSE=1.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1

Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1

Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Reactive Path Density!

0

1

2

3

4

5

6

1 1.2 1.4 1.6 1.8 2

q

Rij

Reactive Current f=0.1

0

1

2

3

4

5

6

1 1.2 1.4 1.6 1.8 2

q

Rij

Reactive Current f=1.0

0

1

2

3

4

5

6

1 1.2 1.4 1.6 1.8 2

q

Rij

Reactive Current f=10.0Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1

Free Energy fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

2

4

6

8

10

12

Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1Path density fSE=10.0

1 1.2 1.4 1.6 1.8 2Rij

0

0.5/

/

1.5/

2/

q

0

0.2

0.4

0.6

0.8

1

φ2"

f=0.1 f=1 f=10

Dr = 3 fSE Dt/σ2

Utot

= �✏X

pij

e�krij e�(✓2i+✓

2j )/w

2

k = 4.0�

✏ = 20kBT

w = 0.5�2

hq(xL) =

⇢1 if path visits q

0 otherwise

nij(q) = hhi(x0)hj(xL)hq(xL)iRPE

A.C. Newton, J. Groenewold, W.K. Kegel, PGB, PNAS (2015), in press

Page 28: Bridging length and time scales in biomolecular systems

Rotational diffusion influences tetrahedron formation

Faster rotational diffusion increases likelihood to go via intermediate (trapped) state

0

2

4

6

8

10

0.5 1 1.5 2

Rat

io ra

tes

from

the

boun

d st

ate

Factor Rotational diffusion

Rate network changes with rotational diffusion

I

B

U

+"

kBI kBU

kBI kBU

Rat

io r

ates

Factor Rotational Diffusion

Intermediate (I)

Bound (B)

Unbound (U)

+

Φ

Rij Rij Rij

f=0.5 f=1.0 f=2.0

I

B

U +" kUI

kIU

kBI kIB

kUB kBU PI

PU

Time%[103ΔMC]%

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

Ê

‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

ÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

···················································································································································································································································································································································································································································································································

0 100 200 300 400 500

2

4

6

8

10 Ê fSE=0.5

‡ fSE=0.75

Ï fSE=1.0

Ú fSE=1.25

Ù fSE=1.5

Á fSE=1.75

· fSE=2.0

Page 29: Bridging length and time scales in biomolecular systems

Flux network of full tetramer

frustrated states are avoided for low rotational diffusion

Slow rotation

+

Fast rotation

fSE=0.1 fSE=2.0

A.C. Newton, J. Groenewold, W.K. Kegel, PGB, PNAS (2015), in press

Page 30: Bridging length and time scales in biomolecular systems

Open issue: transitions with many molecules• Example: ordering transition in amyloid nucleation and crystallisation

condensation ordering

reaction coordinate

different peptides

Page 31: Bridging length and time scales in biomolecular systems

Green’s Function Reaction Dynamics(Mesoscopic)

1

One- and two-body problems

Analytical solution for eachdomain using Green’s Function

Event Type Event Time

F

o

r

e

a

c

h

d

o

m

a

i

n

F

o

r

e

a

c

h

d

o

m

a

i

n

Reaction Escape fromthe domain

Forms thescheduler list

Updated chronologically

1

many-bodyreaction-di�usion problem

sets of one- andtwo-body problems

- GFRD domain - particle

GFRD is an exact,

event-driven, asynchronous

algorithm.

Open issue: very dilute systems• for self-assembly/reaction networks at low density, diffusive paths become very long• solution: connect straightforward MD (Langevin dynamics) with mesoscopic

Green’s Function Reaction Dynamics in a multi-scale method

van Zon, ten Wolde Phys. Rev. Lett., 94,1 (2005)

Page 32: Bridging length and time scales in biomolecular systems

Hybrid MD-GFRD of binding Multi-Scale Simulation MD-GFRD

1

V(r

)Inter-Particle Potential

ra

rd

rLD

rGFRD

C Ω A+B

C æ A+B

r

-ln(P

(r))

Free Energy

Association surface (B1)

Dissociation surface (B2) LD surface (B3)

GFRD surface (B4)

GFRD doamin

Particle

1

- GFRD domain - particle

Mesoscopic di↵usion is

simulated using GFRD and

particle encounters are

simulated using LD.

Vijaykumar, PGB, ten Wolde, 2015, JCP in press

A,B particles are replaced by C after binding

Page 33: Bridging length and time scales in biomolecular systems

Results

1

-0.0125

0

0.0125

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

N

Pb

‘ = 10kBT

‘ = 12kBT

1

10

410

510

610

710

810

910

1010

≠16

10

≠14

10

≠12

10

≠10

10

≠8

10

≠6

Ê [s≠1]

P(Ê

)

Brute Force LD

Multi-scale scheme

1

10

≠210

≠110

010

1

0

0.5

1

·10

4

Concentration of the system [µM]

CPU

time

[s]

Multi-scale scheme, D = 10

3µm

2/s

Multi-scale scheme, D = 10

5µm

2/s

Brute force LD

MD-GFRD performs better than

brute force LD when the

concentration of the system is

less than 1µM

hybrid MD-GFRD results

Vijaykumar, PGB, ten Wolde, 2015, JCP in press

bind

ing

prob

abili

ty

Page 34: Bridging length and time scales in biomolecular systems

Outlook: combine GFRD with molecular level MSM

SE

SX

pB

Iα(a)

(b)

(c)

pB’!"#$%&'(%)*#+,-.)

1μm1s

10nm1ms

GFRD MSM

Vijaykumar, ten Wolde, PGB in progress

Page 35: Bridging length and time scales in biomolecular systems

Take home messages• Transition path sampling gives unbiased paths of protein conformational changes

– millisecond light-induced unfolding mechanism in PYP– reaction coordinate requires advanced data analysis of simulations

!• Single replica MSTIS samples equilibrium network of Trp Cage

– asynchronous sampling scheme (in contrast to parallel replica exchange)– corroborates experimental evidence for near native intermediate– structure and correct time scales predicted by single replica MSTIS !

• Application to protein (patchy particle) assembly– rotational diffusion affects kinetic pathways of binding but not thermodynamics– frustrated states are avoided at low diffusion constant!

• Dilute systems:– new hybrid MD-GFRD algorithm for large dilute diffusion-reaction systems– outlook: coupling to Markov State Models for faster dynamics: MSM-GFRD

SE

SX

pB

Iα(a)

(b)

(c)

pB’

Insight only with techniques and models that bridge time and length scales.

Page 36: Bridging length and time scales in biomolecular systems

Acknowledgements• BRG members

– Jocelyne Vreede– Kushagra Singhal– Aatish Kumar– Juriaan Luiken– Marcin Nowosielski– Arthur Newton– Phaedon Brotzakis– David Swenson– Ran Ni– Adithya Vijaykumar

!• Ex members

– Weina Du– Kristen Marino– Jutta Rogal– Marieke Schor– Wolfgang Lechner– Rosanne Zeiler– Jarek Juraszek!

• Funding– NWO– FOM– EU

• Collaborators– Sander Woutersen (UvA) – M. Cohen Stuart (Wageningen)– Willem Kegel (Utrecht)– Sander Tans (Amolf)– Pieter Rein ten Wolde (Amolf)– Christoph Dellago (Vienna)– Klaas Hellingwerf (UvA)– Huib Bakker (UvA)– Peter Schall (UvA)– Baron Peters (UCSB)

!