46

Derivatives of Trigonometric Functions, Part 1

Embed Size (px)

DESCRIPTION

In this presentation we calculate the derivative of sin(x). This is one of the basic formulas that is used to solve all the other trigonometric derivatives. For more lessons and videos: http://www.intuitive-calculus.com/derivatives-of-trigonometric-functions.html

Citation preview

Page 1: Derivatives of Trigonometric Functions, Part 1
Page 2: Derivatives of Trigonometric Functions, Part 1
Page 3: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

1. f (x) = sin x

2. g(x) = cos x

Page 4: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

Page 5: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

Page 6: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

Page 7: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

In this video we’re going to find the derivative of sin x .

Page 8: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 9: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

Page 10: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Page 11: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.

Page 12: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

Page 13: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x

Page 14: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x= lim

∆x→0

sin(x + ∆x) − sin x

∆x

Page 15: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x= lim

∆x→0

sin(x + ∆x) − sin x

∆x

Now we use the trig identity to expand sin(x + ∆x):

Page 16: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x= lim

∆x→0

sin(x + ∆x) − sin x

∆x

Now we use the trig identity to expand sin(x + ∆x):

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

Page 17: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 18: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

Page 19: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

Page 20: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

Page 21: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

Page 22: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

= sin x lim∆x→0

cos ∆x − 1

∆x+ cos x lim

∆x→0

sin ∆x

∆x

Page 23: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

= sin x lim∆x→0

cos ∆x − 1

∆x+ cos x

�������*

1

lim∆x→0

sin ∆x

∆x

Page 24: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

= sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x��

�����*

1

lim∆x→0

sin ∆x

∆x

Page 25: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 26: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

Page 27: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

Page 28: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x=

Page 29: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

Page 30: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x=

Page 31: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

1 − cos2 ∆x

∆x (1 + cos ∆x)

Page 32: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

Page 33: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= − lim∆x→0

sin ∆x

∆x. lim

∆x→0

sin ∆x

1 + cos ∆x

Page 34: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x. lim

∆x→0

sin ∆x

1 + cos ∆x

Page 35: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x. lim

∆x→0

����: 0

sin ∆x

1 + cos ∆x

Page 36: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x. lim

∆x→0

����: 0

sin ∆x

1 +����: 1

cos ∆x

Page 37: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x.���

������:

0lim

∆x→0

sin ∆x

1 + cos ∆x

Page 38: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x.���

������:

0lim

∆x→0

sin ∆x

1 + cos ∆x= 0

Page 39: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −�������*1

lim∆x→0

sin ∆x

∆x.���

������:

0lim

∆x→0

sin ∆x

1 + cos ∆x= 0

Page 40: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 41: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

Page 42: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Page 43: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Another way to put it:

Page 44: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Another way to put it:

d

dx(sin x) = cos x

Page 45: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Another way to put it:

d

dx(sin x) = cos x

Page 46: Derivatives of Trigonometric Functions, Part 1