23
Instructional Sequence for Scaffolding Inquiry Learning with Interactive Simulations Xinxin Fan The University of Queensland David Geelan Griffith University Wei Liang Beijing Normal University

Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Embed Size (px)

DESCRIPTION

A novel sequence for teaching students physics concepts and inquiry skills was developed and evaluated. It was found to enhance students' conceptual understanding, confidence in their understanding and skills in inquiry learning

Citation preview

Page 1: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Evaluating an Instructional Sequence for Scaffolding Inquiry Learning with Interactive Simulations

Xinxin FanThe University of Queensland

David GeelanGriffith University

Wei LiangBeijing Normal University

Page 2: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

So what?The instructional approach we will describe during this session has been demonstrated to yield measurable (large) increases, relative to ‘normal’ teaching, in physics students’:• Conceptual knowledge of physics concepts

(forces)• Confidence in their own knowledge• Skills in participating in inquiry learningWe suspect and hope that this approach has the potential to support learning in other science (STEM?) fields and levels.

Page 3: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Background Lots of good evidence that students enjoy

learning with visualisations Lots of teachers adopting them, lots of

money being spent developing, hosting and sharing them

Not much good quality quantitative evidence of their educational effectiveness, particularly at the high school level

Page 4: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Interactive Simulations

• Computer-based visualisations

• Are like ‘virtual laboratories’ (in some ways)

• Make it easy to do a number of experiments quickly

• Students manipulate variables and generate data

Page 5: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Examples

Page 6: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Inquiry Sequence using Interactive Simulations (ISIS) – outlined in a chapter by Geelan and Fan in the forthcoming Springer book edited by Eilam and Gilbert

Page 7: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

• This instructional sequence is referenced to a constructivist epistemology and draws on conceptual change pedagogy

• It also draws on Vygotsky’s ZPD• It is a scaffolded, supported approach to

inquiry learning, in which students actively engage in ‘testing to destruction’ candidate concepts for explaining phenomena

• It develops students’ understanding that scientific concepts are those that have (so far) survived such testing

Page 8: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

The Zeroth Step

• First, decide whether you can use real experiments instead of interactive simulations

• Real experiments and experiences are almost always better than virtual ones for conceptual development

• Different tools can complement one another for learning

Page 9: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Step One• Elicitation and clarification of existing

conceptions and the ‘target’ scientific conception

• Know the literature in relation to student misconceptions in your subject area• Well formulated questions, discussions,

possibly quizzes (use with care), POE• Introduction of scientific concept

Page 10: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Step Two

• Outlining the predictions and implications of students’ existing conceptions and the scientific conception

• In relation to a specific experiment to be completed using the interactive simulation, ask students to make predictions using the rival conceptions

Page 11: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Step Three

• Testing predictions of competing conceptions using interactive simulations

• Use the interactive simulation to test the predictions students make

• At every test, it should be clear to the students what each concept predicts, and what the findings mean

Page 12: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Step Four• Clarification of findings and linking results

to the scientific conception

• Demonstrate and discuss how the findings and results support the scientific concept and do not support the misconception

• Ensure that students understand how the theory predicts the observed results

Page 13: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Step Five

• Further testing to develop and deepen understanding of the scientific conception

• Extend the experience to novel contexts and problems

• Demonstrate the fruitfulness of the scientific concept

Page 14: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Sequence and Repetition• While some of these steps need to happen

before others, it may not be necessary for the full sequence to be completed

• It may also be necessary to cycle through the whole sequence or some subset of it again to ensure understanding

• Like all models, it is (potentially) useful rather than true

Page 15: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Evidence For Effectiveness

• In a preliminary study (as part of her PhD) Xinxin Fan, supported by Wei Liang, compared this sequence with ‘normal’ teaching in 4 classrooms (N=115) in two schools in Beijing for 8 weeks• Two teachers participated in the study.

Each received training and support in using the instructional sequence, and each taught one ‘experimental’ and one ‘control’ class

Page 16: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Research Design• Force Concept Inventory (FCI)• Addition of a 5-point Likert scale for confidence• Addition of an explanation of their answer by

students • Classroom observations, interviews• Also analysed by sex of students and academic

achievement level (thirds of class)• Cronbach alpha coefficients of the conceptual

understanding test, confidence survey and inquiry skills survey were .81, .94 and .87 respectively

Page 17: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Evidence For EffectivenessConceptual Understanding

• F (1, 115) = 25.11, p = .000, η2 = .18

• This is considered a large effect size, equivalent to a Cohen’s d value of 0.94 : students taught using the instructional sequence with interactive simulations significantly outperformed those taught without it

Page 18: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Evidence For Effectiveness

• True for both sexes and across all achievement levels

• ANCOVAs for conceptual understanding revealed no significant differences in gains for female vs male students and for levels of academic achievements

Page 19: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Evidence For Effectiveness

• Confidence

• F (1, 115) = 15.65, p = .000, η2= .12

• (equivalent to d = 0.74)

• No significant differences for sex or level

Page 20: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Evidence For Effectiveness

• Inquiry Skills

• F (1, 115) = 71.36, p = .000, η2= .38

• (equivalent to d = 1.57)

• No significant differences for sex or level

Page 21: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Further Research• Clearly, given the small sample size and the

specific Beijing context, our findings are tentative at this point – we would like to replicate and expand the study in multiple contexts• It seems plausible that such an approach would be

quite easily adapted to chemistry learning, although the affordances of the technology are likely to be different• Are there other contexts or content domains

across STEM Education where an approach of this kind may have potential?

Page 22: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Example QuestionTwo metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant. The time it takes the balls to reach the ground below will be:A. About half as long for the heavier ball as for the lighter one.B. About half as long for the lighter ball as for the heavier one.C. About the same for both balls.D. Considerably less for the heavier ball, but not necessarily half as

long.E. Considerably less for the lighter ball, but not necessarily half as long. : Could you please explain why you choose this answer? You can use your physics knowledge or your own words to write down your understanding.: How sure are you of your answer to the question?

A. Very sure; B. Sure; C. Neutral; D. Unsure; E. Very unsure.

Page 23: Evaluating an Instructional Sequence with Interactive Simulations (ISIS)

Sample Inquiry Skills Item

I understand the physical problems that I am exploring, but there are still some people who do not understand what I said or wrote. 5 = strongly agree; 4 = Agree; 3 = no opinion; 2 = disagree; 1 = strongly disagree